Efficient Rewriting of Operations on

Finite Structures in ACL2

ACL2 Workshop
Grenoble, France

April 9, 2002

Matt Kaufmann

matt.kaufmann@amd.com

Rob Sumners

robert.sumners@amd.com

| “efficient rewriting”? |

e Remove constraints on the contexts in which
the rules can be applied

— Eliminate hypothesis or conditions for applying the
rewrite rule

— Define the rewrite rules based on equal instead of a
weaker equivalence

e Define enough rules to effectively reduce (nor-
malize) the terms encountered

(implies (true-listp x)
(equal (append x ()) x))

| “operations on finite structures”? |

e Most programming languages provide support
for defining data structures

— A data structure is a collection of operations and an
underlying implementation

— Execution efliciency considerations may affect the
choice of implementation

o but, the properties of the operations should remain the same

e In ACL2, these properties are codified by a
set of rewrite rules referring to the operations

— Simplification efficiency considerations (which prop-
erties are provable) may affect the choice of definition

| Example: records |

e Records associate some finite number of keys
(“fields”) to (non-default) values

— Two operations on records: access (g, “get”) and
update (s, “set”)

— nil is an empty record (i.e. no fields are associated
with non-default value)

e ACL2 has support for records using defrec
and defstructure

— Fixed set of fields, quadratic number of rewrite rules

e How about using nth and update-nth?” or
assoc and acons” to define our records?

e What properties do we want? What defini-
tions are required?

| What properties do we want? |

e Desired properties (a fixed set of rewrite rules):

(defthm g-same-s
(equal (g a (s avr))
v))

(defthm g-diff-s
(implies (not (equal a b))
(equal (g a (s b vr))

(g ar)))

(defthm s-same-g
(equal (s a (g ar) r)
r))

(defthm s—-same-s
(equal (s ay (s axr))
(sayr)))

(defthm s-diff-s
(implies (not (equal a b))
(equal (s by (s axr))
(sax (sbyr)))))

5

| Structure normalization |

e Normalize structures such that equivalent struc-
tures are equal

— affords equal based rewrite rules

e Normalized records are alists where the keys
are ordered via <<

— <<is a strict (no duplicate keys) total order on ACL2
objects derived from lexorder

— The alists cannot bind a key to the default value of

nil

| Initial definitions |

e Definitions of s-rcd, g-rcd, and rcdp:

(defun g-rcd (a r)
(cond ((or (endp r) (<< a (caar r)))
nil)
((equal a (caar r))
(cdar r))
(t (g-rcd a (cdr r)))))

(defun acons-if (a v r)
(if v (acons a v r) r))

(defun s-rcd (a v r)
(cond ((or (endp r) (<< a (caar r)))
(acons-if a v 1))
((equal a (caar r))
(acons-if a v (cdr r)))
(t (cons (car r) (s-rcd a v (cdr r))))))

(defun rcdp (r)
(or (null r)
(and (consp r)
(consp (car r))
(cdar r)
(or (endp (cdr 1))
(<< (caar r) (caadr r)))
(redp 1))

e We can prove the desired properties, but we
have to add rcdp hypothesis

7

| Removing rcdp hypothesis #1 |

e Basic idea: interpret ACL2 objects as suitable
records

e Details: every ACL2 object is either a record
(i.e. rcdp), the cons of a record with junk (i.e.
1sp), or just junk

— Notice that the definition of junk is recursive
— We interpret junk as an empty record

(defun g (a x)
(cond ((rcdp x)
(g-rcd a x))
((1sp x) ;5 (Krecord> . <junk>)
(g-rcd a (car x)))
(t nil)))

| Definition of s |

e We now define the update function:

(defun s (a v x)
(cond ((rcdp x)
(s-rcd a v x))

((1sp x)
(let ((r (s-rcd a v (car x))))
(if r (cons r (cdr x)) (cdr x))))
(t ;; otherwise we have junk
(let ((r (s-rcd a v nil)))
(if r (cons r x) x)))))

e The proofs of the record properties go through
with a few lemmas

e We found this approach difficult to transter to
other structures (e.g. flat sets)

— We may need to continually modify the interpreta-
tion of junk based on the theorems we want to prove

9

| Removing rcdp hypothesis #2 |

e Basic idea: translate operations on records to
operations on ACL2 objects using an invertible
mapping of ACL2 objects to records

e Define a mapping acl2->rcd of ACL2 ob-
jects to records and an inverse mapping rcd->acl2

— We must be careful to leave enough room in order to
map ACL2 objects into a subset of the ACL2 objects

(defun ifrp (x) ;; ill-formed rcdp
(or (not (rcdp x))
(and (consp x)
(null (cdr x))
(consp (car x))
(equal (caar x) (ifrp-tag))
(ifrp (cdar x)))))

(defun acl2->rcd (x)
(if (ifrp x) (list (comns (ifrp-tag) x)) x))

(defun rcd->acl2 (x)
(if (ifrp x) (cdar x) x))

10

| Definitions continued... |

e A few theorems about the translation:

(defthm acl2->rcd-returns-rcdp
(rcdp (acl2->rcd x)))

(defthm acl2->rcd-rcd->acl2-of-rcdp
(implies (rcdp x)
(equal (acl2->rcd (rcd->acl2 x)) x)))

(defthm rcd->acl2-rcd->acl2-inverse
(equal (rcd->acl2 (acl2->rcd x)) x))

e We now have to translate s-rcd and g-rcd
to ACL2 objects:

(defun g (a x)
(g-rcd a (acl2->rcd x)))

(defun s (a v x)
(rcd->acl2 (s-rcd a v (acl2->rcd x))))

e Potential downside: executable-counterpart
does not map records to records

11

| Conclusion |

e We presented a few approaches for defining
ACL2 functions on finite structures which afford
efhicient rewrite rules

— We focused on the application of records, but a book
on flat sets using the second approach is included in the
supporting materials

e We would like to develop a library of books

on finite structures with optimized rewrite rules

— partitions, relations, etc.

e We should note that in a higher-order logic,
one could define records by functions without
having to construct a normal structure

— Well, some normalization would be needed at the
term level in order for syntactic equality between terms
defining functions (records) to coincide with equal

12

