Verification of an In-place

Quicksort in ACL2

ACL2 Workshop
Grenoble, France

April 9, 2002

Sandip Ray

sandip@cs.utexas.edu

Rob Sumners

robert.sumners@Qamd.com

| Brief Introduction |

e Goal: to demonstrate techniques for proving
properties of stobj-based functions

e We chose in-place Quicksort as a common,
well-understood example

— The in-place Quicksort may also be of practical use
in writing ACL2 programs which need to efficiently sort
a large list of objects

e Supporting materials for this paper include
the necessary definitions and proofs

| In-place Quicksort |

e Sort an array in-place by recursively divid-
ing the problem and subsequently merging the
results from this division

— Choose a splitter object from the array and partition
the input array into two halves and recursively sort the
two halves

— No subsequent merging is necessary since all ele-
ments in the upper half will be greater than the ele-
ments in the lower half

e We would like our definition of Quicksort to
map an unsorted list to a sorted list (as opposed
to using arrays)

— 5o, in order to have the efficiency of array access and
update, we will need to use a (local) single-threaded
object

| Single-Threaded Objects (stobjs) |

e Stobjs were introduced in ACL2 2.4

— Stobjs consist of a fixed set of fields, some of which
may be arrays

— The use of stobjs is syntactically restricted to en-
sure that the applicative semantics coincides with the
destructive implementation

e In ACL2 2.6, several enhancements were made
to stobjs:

— Stobjs are more efficient, arrays can be resized, and
stobjs may now be local to a given function

— Stobj arrays in ACL2 are comparable in efficiency
to arrays in C

o stobj array access and update (essentially) add the overhead
of a function call

| Definition of In-Place Quicksort-1 |

e Definition of main gsort wrapper function:

(defun gsort (x)
(with-local-stobj gstor
(mv-let (rslt gstor)
(let* ((size (length x))
(gstor (alloc-gs size gstor))
(gstor (load-gs x O size gstor))
(gstor (sort-gqs 0 (1- size) gstor)))
(mv (extract-gs 0 (1- size) gstor)
gstor))
rslt)))

e Definition of recursive sorting function sort-gs:

(defun sort-gs (lo hi gstor)
(declare (xargs :stobjs gstor))
(if (ndx<= hi lo)
gstor
(mv-let (index gstor)
(split-gs lo hi (objsi lo gstor) gstor)
(if (ndx<= index lo)
(sort-gs (1+ lo) hi gstor)
(let ((gstor (sort-gs index hi gstor)))
(sort-gqs lo (1- index) gstor))))))

| Definition of In-Place Quicksort-2 |

e Definition of array splitting function split-gs:

(defun split-gqs (lo hi splitter gstor)
(declare (xargs :stobjs gstor))
(if (ndx< hi lo)
(mv lo gstor)
(let* ((swap-lo (<<= splitter (objsi lo gstor)))
(swap-hi (<< (objsi hi gstor) splitter))
(gstor (if (and swap-lo swap-hi)
(swap lo hi gstor)
gstor)))
(split-qs (if (implies swap-lo swap-hi)
(1+ lo)
1lo)
(if (implies swap-hi swap-1lo)
(1- hi)
hi)
splitter gstor))))

e Definition of the stobj gstor:

(defstobj gstor
(objs :type (array T (0))
:resizable t
rinitially nil))

| Specification and Decomposition |

e The output of gsort is an ordered permuta-
tion of the input

— We use the ACL2 total order <<

e We prefer to first define a simple insertion sort
isort and:

— Prove that this function returns an ordered permu-
tation (standard ACL2 exercise)

— Prove (thm (equal (gsort x) (isort x)))

o In the paper we add a (true-listp x) hypothesis, but this
is only a matter of convenience

e isort can be viewed as an intermediate func-
tion which separates the specification from the
implementation

— We will introduce additional intermediate functions
to aid in the proof

| Reasoning about stobj functions |

e Proofs about stobj functions encounter some
common problems

— Stobjs are frequently parameters (and return values)
of every component function

— Various properties will need to be proven to commute
over the operations which update the stob]
o For example (with [a,b] N [x,y] = 0):

(equal (extract-gs a b (sort-gs x y gs))
(extract-qs a b gs))

— Various invariants may need to be defined and proven
to hold of the functions which update the stob]

— The “logic” definition of the function will often be
unwieldy to work with directly

o Intermediate functions are often needed to factor the com-
plexity of the proof into more manageable pieces

| Intermediate Function #1 |

e Our first intermediate function is an applica-
tive Quicksort function:

(defun gsort-split (1lst)
(mv (lower-part lst (first 1lst))
(upper-part 1lst (first 1lst))))

(defun gsort-fn (1lst)
(if (endp 1lst) nil
(if (endp (rest 1lst))
(list (first 1st))
(mv-let (lower upper)
(gsort-split 1lst)
(if (endp lower)
(cons (first upper)
(gsort-fn (rest upper)))
(append (gsort-fn lower)
(gsort-fn upper)))))))

| Intermediate Function #1, continued |

e The definitions of lower-part and upper-part
model split-gs

(defun lower-part (x s)
(cond
((endp x) nil)
((and (<<= s (first x))
(<< (last-val x) s))
(cons (last-val x)
(lower-part (del-last (rest x)) s)))
((and (<<= s (first x))
(<<= s (last-val x)))
(lower-part (del-last x) s))
((and (<< (first x) s)
(<< (last-val x) s))
(cons (first x)
(lower-part (rest x) s)))
(t
(cons (first x)
(lower-part (del-last (rest x)) s)))))

e Relevant properties of upper-part and
lower-part...

10

| Refining the split function |

e The definition of gsort-split is difficult to
correlate directly with split-qgs, so we intro-
duce another refinement:

(defun in-situ-qgsort-split (1lst)
(let* ((merge (merge-func 1lst (first 1lst)))
(ndx (walk 1st (first 1st)))
(mv (first-n ndx merge)
(last-n ndx merge))))

e We then define in-situ-gqsort-fn to be
gsort-fn with in-situ-qsort-split replac-
Ing gsort-split

— The equivalence of in-situ-gsort-fn with
gsort-fn easily reduces to proving the equivalence of
in-situ-gsort-split with gsort-split

11

| Relevant properties... |

e Properties relating in-situ-gqsort-split
with split-gs:

(defthm walk-split-gs-equal
(implies (and (natp lo) (natp hi))
(equal (mv-nth 0 (split-gs lo hi x gs))
(+ lo (walk (extract-gqs lo hi gs) x)))))

(defthm merge-func-split-gs-equal
(implies (and (natp lo) (natp hi))
(equal (extract-gs lo hi
(mv-nth 1 (split-gs lo hi x gs)))
(merge-func (extract-qs lo hi gs) x))))

e Relating sort-qs with in-situ-gqsort-£fn:

(defthm sort-gs-equal-in-situ-qsort-fn
(implies (and (natp lo) (matp hi) (<= lo hi))
(equal (extract-gqs lo hi (sort-gs lo hi gs))
(in-situ-gsort-fn (extract-qs lo hi gs)))))

12

| Concluding Remarks |

e Previous work in Coq proved Quicksort using
Hoare-style proot

— 1.e. loop invariants, preconditions, postconditions

— Their proof is shorter, but comparison is difficult due
to incongruences in libraries and definitions

e (Quicksort is not the best example of the use
of intermediate functions

— This approach is more effective when stobjs are used
to optimize the evaluation of applicative functions (e.g.
hash tables, memoization, etc.)

e Future work:

— Multi-threaded Quicksort with shared gstor

o Proof requirements ensure that applicative semantics are still
consistent with implementation

— Develop library to aid in reasoning about stobjs

13

