Verification of an In-place Quicksort in ACL2

ACL2 Workshop
Grenoble, France
April 9, 2002

Sandip Ray sandip@cs.utexas.edu

Rob Sumners

robert.sumners@amd.com

| Brief Introduction |

- Goal: to demonstrate techniques for proving properties of stobj-based functions
- We chose in-place Quicksort as a common, well-understood example
 - The in-place Quicksort may also be of practical use in writing ACL2 programs which need to efficiently sort a large list of objects
- Supporting materials for this paper include the necessary definitions and proofs

| In-place Quicksort |

- Sort an array in-place by recursively dividing the problem and subsequently merging the results from this division
 - Choose a splitter object from the array and partition the input array into two halves and recursively sort the two halves
 - No subsequent merging is necessary since all elements in the $upper\ half$ will be greater than the elements in the $lower\ half$
- We would like our definition of Quicksort to map an unsorted list to a sorted list (as opposed to using arrays)
 - So, in order to have the efficiency of array access and update, we will need to use a (local) single-threaded object

| Single-Threaded Objects (stobjs) |

- Stobjs were introduced in ACL2 2.4
 - Stobjs consist of a fixed set of fields, some of which may be arrays
 - The use of stobjs is syntactically restricted to ensure that the applicative semantics coincides with the destructive implementation
- In ACL2 2.6, several enhancements were made to stobjs:
 - Stobjs are more efficient, arrays can be resized, and stobjs may now be local to a given function
 - Stobj arrays in ACL2 are comparable in efficiency to arrays in C
 - stobj array access and update (essentially) add the overhead of a function call

| Definition of In-Place Quicksort-1 |

• Definition of main **qsort** wrapper function:

• Definition of recursive sorting function **sort-qs**:

| Definition of In-Place Quicksort-2 |

• Definition of array splitting function **split-qs**:

```
(defun split-qs (lo hi splitter qstor)
  (declare (xargs :stobjs qstor))
  (if (ndx< hi lo)
      (mv lo qstor)
    (let* ((swap-lo (<<= splitter (objsi lo qstor)))
           (swap-hi (<< (objsi hi qstor) splitter))
           (qstor (if (and swap-lo swap-hi)
                       (swap lo hi qstor)
                    qstor)))
      (split-qs (if (implies swap-lo swap-hi)
                    (1 + 10)
                   10)
                (if (implies swap-hi swap-lo)
                    (1- hi)
                   hi)
                splitter qstor))))
```

• Definition of the stobj qstor:

| Specification and Decomposition |

- The output of **qsort** is an ordered permutation of the input
 - We use the ACL2 total order <<
- We prefer to first define a simple insertion sort isort and:
 - Prove that this function returns an ordered permutation (standard ACL2 exercise)
 - Prove (thm (equal (qsort x) (isort x)))
 - o In the paper we add a (true-listp x) hypothesis, but this is only a matter of convenience
- isort can be viewed as an *intermediate* function which separates the specification from the implementation
 - We will introduce additional intermediate functions to aid in the proof

Reasoning about stobj functions

- Proofs about stobj functions encounter some common problems
 - Stobjs are frequently parameters (and return values)
 of every component function
 - Various properties will need to be proven to commute over the operations which update the stobj
 - \circ For example (with $[a, b] \cap [x, y] = \emptyset$):

- Various invariants may need to be defined and proven to hold of the functions which update the stobj
- The "logic" definition of the function will often be unwieldy to work with directly
 - Intermediate functions are often needed to factor the complexity of the proof into more manageable pieces

| Intermediate Function #1 |

• Our first intermediate function is an applicative Quicksort function:

| Intermediate Function #1, continued |

• The definitions of lower-part and upper-part model split-qs

```
(defun lower-part (x s)
  (cond
   ((endp x) nil)
   ((and (<<= s (first x)))
         (<< (last-val x) s))</pre>
    (cons (last-val x)
          (lower-part (del-last (rest x)) s)))
   ((and (<<= s (first x)))
         (<<= s (last-val x)))</pre>
    (lower-part (del-last x) s))
   ((and (<< (first x) s)
         (<< (last-val x) s))</pre>
    (cons (first x)
          (lower-part (rest x) s)))
   (t
    (cons (first x)
           (lower-part (del-last (rest x)) s))))
```

• Relevant properties of upper-part and lower-part...

| Refining the split function |

• The definition of qsort-split is difficult to correlate directly with split-qs, so we introduce another refinement:

- We then define in-situ-qsort-fn to be qsort-fn with in-situ-qsort-split replacing qsort-split
 - The equivalence of in-situ-qsort-fn with qsort-fn easily reduces to proving the equivalence of in-situ-qsort-split with qsort-split

Relevant properties...

• Properties relating in-situ-qsort-split with split-qs:

• Relating sort-qs with in-situ-qsort-fn:

Concluding Remarks |

- Previous work in Coq proved Quicksort using Hoare-style proof
 - i.e. loop invariants, preconditions, postconditions
 - Their proof is shorter, but comparison is difficult due to incongruences in libraries and definitions
- Quicksort is not the best example of the use of intermediate functions
 - This approach is more effective when stobjs are used to optimize the evaluation of applicative functions (e.g. hash tables, memoization, etc.)
- Future work:
 - Multi-threaded Quicksort with shared qstor
 - Proof requirements ensure that applicative semantics are still consistent with implementation
 - Develop library to aid in reasoning about stobjs