Using ACL2 Arrays to Formalize Matrix Algebra

by

John Cowles Ruben Gamboa Jeff Van Baalen

University of Wyoming {cowles,ruben,jvb}@cs.uwyo.edu

Supported by NASA grant NAG 2-1570.

Matrix Algebra

Let p and q be positive integers.

A $p \times q$ matrix is a rectangular array of numbers,

with p rows and q columns,

$$\left(\begin{array}{cccc} m_{1\ 1} & \cdots & m_{1\ q} \\ \vdots & \ddots & \vdots \\ m_{p\ 1} & \cdots & m_{p\ q} \end{array}\right)$$

Matrix Operations

- The **sum** of two $p \times q$ matrices is a $p \times q$ matrix.
- The **product** of a $p \times q$ matrix and a $q \times r$ matrix is a $p \times r$ matrix.
- The **scalar** product of a *number* and a $p \times q$ matrix is a $p \times q$ matrix.
- The **transpose** of a $p \times q$ matrix is a $q \times p$ matrix.

 Matrix addition and multiplication are associative.

$$(M_1 + M_2) + M_3 = M_1 + (M_2 + M_3)$$

Matrix addition is commutative.
 Matrix multiplication need not be commutative.

$$M_1 + M_2 = M_2 + M_1$$

 Matrix and scalar multiplication distribute over matrix addition.

$$M_1 \cdot (M_2 + M_3) = M_1 \cdot M_2 + M_1 \cdot M_3$$

ullet There is an unique $p \times q$ **zero** matrix $oldsymbol{0}$ such that

$$M + 0 = M = 0 + M$$
.

• For *square* matrices, there is an unique $p \times p$ identity matrix I such that

$$M \cdot \mathbf{I} = M = \mathbf{I} \cdot M$$
.

• Every $p \times q$ matrix has an unique $p \times q$ negative matrix such that

$$M + (-M) = 0 = (-M) + M.$$

 Some square matrices, called nonsingular, have unique (multiplicative) inverses such that

$$M \cdot M^{-1} = \mathbf{I} = M^{-1} \cdot M.$$

• If $M_1 \cdot M_2 = 0$, then neither M_1 nor M_2 need be $\mathbf{0}$.

ACL2 Arrays

ACL2 provides functions for accessing and updating both one and two dimensional arrays,

- with applicative semantics,
- but good access time to the most recently updated copy,
- and usually constant update time.

Should be natural and straight forward to implement the matrix operations using ACL2 two dimensional arrays.

Applicative Semantics for Arrays

- Use a "sparse" array representation.
- An array is an alist, i.e. a list of pairs.
 - One element is the "header" that contains
 - * the number of rows, d_1
 - st the number of columns, d_2
 - * a **default** value
 - \diamond Other elements are of the form ((i . j) . val).
 - $st\ i$ and j are integers
 - * $0 \le i < d_1$ and $0 \le j < d_2$
 - * val is an arbitrary object

Applicative Array Access

To access the value indexed by the pair $(i ext{ }. ext{ } j)$ in an array alist:

- Use the function aref2
- Search for the first pair whose car matches the pair $(i ext{ } . ext{ } j)$.
- If such a pair is found,
 - ♦ then aref2 returns the cdr of the pair
 - otherwise aref2 returns the default value stored in the header.

Fast Array Access

Made possible by maintaining, behind the scenes, a "real" Common Lisp array.

- The real array **may** currently represent the given array alist.
- In that case, an array access can be very fast because the real array can be accessed directly.
- If the real array does **not** currently represent the given array alist, access is done by linear search through the alist:

Complication

Useful to distinguish two versions of "two dimensional arrays."

Logical or "slow" array.

The **alist** representation used by the applicative semantics.

"Fast" executable array.

A logical array with fast accessing and updating.

Represented, behind the scenes, by a "real" Common Lisp array.

Additional Restriction on "Fast" Arrays

So some compilers can lay down faster code.

Let
$$d_1$$
 = number of rows and d_2 = number of columns.

Then $d_1 \cdot d_2$ is required to fit into 32 bits.

$$d_1 \cdot d_2$$
 < maximum-positive-32-bit-integer
= $2^{31} - 1$
= 2,147,483,647

Closure Properties of Matrix Operations

Whenever the results of these operations are mathematically defined,

both **logical** and **fast** arrays are closed under the operations of

- transpose,
- unary-minus,
- scalar multiplication,
- matrix sum, and
- matrix multiplicative inverse.

Complication due to the Additional Restriction on "Fast" Arrays

Logical arrays are closed under matrix product.

Fast arrays are not closed under matrix product.

Examples

Suppose the Additional Restriction on "Fast" Arrays is $d_1 \cdot d_2 \leq 20$.

• Product of **fast** arrays need not be **fast**.

$$M_1$$
 5×2
 5×5
 \uparrow

 Two equivalent ways to compute the same fast array, with differing results.

One More Restriction

Ensure that matrix products of **fast** arrays are always **fast** arrays:

Let
$$d_1$$
 = number of rows and d_2 = number of columns.

$$d_1, d_2$$
 $\leq \lfloor \sqrt{\text{maximum-positive-32-bit-integer}} \rfloor$
 $= \lfloor \sqrt{2, 147, 483, 647} \rfloor$
 $= 46,340$

Then $d_1 \cdot d_2$ is guaranteed to be less than the maximum-positive-32-bit-integer.

46,340 is **not** enough

http://www.mat.bham.ac.uk/atlas/v2.0/

ATLAS of Finite Group Representations

ATLAS: Monster group M

Order =

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ $\approx 8 \cdot 10^{53}$

Standard generators

Standard generators of the Monster group M are a and b where . . . and ab has order 29.

Update 15th December 1998:

standard generators have now been made as $196,882 \times 196,882$ matrices over GF(2). They have been multiplied together, using most of the computing resources of Lehrstuhl D für Mathematik, RWTH Aachen, for about 45 hours.

Test for Matrix Equality: (m-= M1 M2)

- **Equivalence** relation on the entire ACL2 universe.
- When one of M1 or M2 is not a logical array, then m-= coincides with equal.
- **Congruence** relation with respect to the matrix operations of transpose, unary minus, scalar product, sum, and product.

- Defined on the entire ACL2 universe.
- When one of M1 or M2 is not a logical array, then
 - ⋄ m-+ coincides with +
 - ⋄ m-* coincides with *.
- Allows some hypotheses-free matrix equalities.

Example **Distributivity**:

$$(m-= (m-* M1 (m-+ M2 M3))$$

 $(m-+ (m-* M1 M2)$
 $(m-* M1 M3)))$

- Allows some matrix equalities to use equal in place of m-=.
- Example: m-+ satisfies this version of commutativity

(equal
$$(m-+ M1 M2)$$

 $(m-+ M2 M1)$)

as well as this weaker version

$$(m-= (m-+ M1 M2) (m-+ M2 M1)).$$

 Similar comments apply to the associativity of m-+ and m-*.

Determinant Matrix Inverse: (m-/ M)

- Computed using row and column operations.
- Temporary definition:
 A matrix is nonsingular iff it is a square matrix and m-/ does, in fact, compute a two-sided multiplicative inverse.
- Future plans: Use determinants to determine if a square matrix is singular or nonsingular.

ACL2 proofs are still required for the following

- For square matrices, whenever the determinant is not 0, then m-/ computes the two-sided inverse.
- Whenever the determinant is 0 then there is no inverse.
- Non-square matrices do not have two-sided inverses.

```
(defun m-= (M1 M2))
  (declare (xargs :guard
                (and (array2p '$arg1 M1)
                      (array2p '$arg2 M2))))
  (if (mbt (and (alist2p '$arg1 M1)
                (alist2p '$arg2 M2)))
      (let ((dim1 (dimensions '$arg1 M1))
            (dim2 (dimensions '$arg2 M2)))
           (if (and (= (first dim1)
                       (first dim2))
                     (= (second dim1)
                        (second dim2)))
               (m-=-row-1 (compress2 '$arg1 M1)
                           (compress2 '$arg2
                                      M2)
                           (- (first dim1) 1)
                           (- (second dim1)
                              1))
               nil))
      (equal M1 M2)))
```

 (array2p name A) returns t if A is a two dimensional fast executable ACL2 array.
 Otherwise return nil.

The extra input argument name is used by ACL2's "fast" implementation of arrays.

- (alist2p name A) returns t if A is a two dimensional **logical array**. Otherwise return nil.
- (compress2 name A) allocates and stores fast array A in a Common Lisp array.
- (dimensions name A) returns the dimensions list of the array alist. That list contains d_1 and d_2 .

mbt ("must be true")

- A new ACL2 Version 2.8 macro.
- Used to replace an expensive Boolean test with t during execution.
- Semantically, (mbt x) equals x
- In raw Lisp (mbt x) macro-expands to t.
- A guard proof obligation is generated:

 ACL2's guard verification mechanism ensures that the raw Lisp code is only evaluated when appropriate.

mbt ("must be true")

In the definition of m-=, since

the mbt replaces the alist2p tests with t during execution.