Using ACL2 Arrays to Formalize
Matrix Algebra

by
John Cowles
Ruben Gamboa

Jeff Van Baalen
University of Wyoming
{cowles,ruben,jvb}@cs.uwyo.edu

Supported by NASA grant NAG 2-1570.

Matrix Algebra
Let p and g be positive integers.

A p X ¢ matrix is a rectangular array of
numbers,

with p rows and g columns,

mll * o o mlq

mpl e o o mpq

Matrix Operations

The sum of two p X ¢ matrices is a p X q
matrix.

The product of a p x ¢ matrix and a g x r
matrix is a p X » matrix.

The scalar product of a number and a
p X g matrix is a p x ¢ matrix.

The transpose of a p X ¢ matrixis a g x p
matrix.

Matrix addition and multiplication are
associative.

(M1 + M>) + M3 = M + (Mo + M3)

Matrix addition is commmutative.
Matrix multiplication need not be
commutative.

My + Mz = M> + M;

Matrix and scalar multiplication
distribute over matrix addition.

My - (Mo + M3) = My - My + My - M3

There is an unique p X g zero matrix 0
such that

M4+0=M=0++ M.

For square matrices, there is an unique
p X p identity matrix I such that

M- I=M=1-M.

Every p X ¢ matrix has an unique p X g
negative matrix such that

M+ (-M)=0=(-M)+ M.

Some square matrices, called
nonsingular, have unique (multiplicative)
inverses such that

M-Ml=1=M"1 M

If M1 - My =0, then neither My nor M5
need be 0.

3-b

ACL2 Arrays

ACL?2 provides functions for accessing and
updating both one and two dimensional
arrays,

e With applicative semantics,

e but good access time to the most
recently updated copy,

e and usually constant update time.

Should be natural and straight forward to
implement the matrix operations using ACL2
two dimensional arrays.

Applicative Semantics for Arrays

e Use a ‘sparse’” array representation.

e An array is an alist, i.e. a list of pairs.

o One element is the “header” that
contains

x the number of rows, di
x the number of columns, d»
x a default value

¢ Other elements are of the form

((2.4) . val).

x ¢ and 7 are integers
x 0<i1<dy and 0< 5 <do

x val IS an arbitrary object

Applicative Array Access

To access the value indexed by the pair (¢ . j)
in an array alist:

e Use the function aref2

e Search for the first pair whose car
matches the pair (7 . 7).

e If such a pair is found,
¢ then aref2 returns the cdr of the pair

o otherwise aref2 returns the default
value stored in the header.

Fast Array Access

Made possible by maintaining, behind the
scenes, a ‘“real’” Common Lisp array.

e [he real array may currently represent
the given array alist.

e In that case, an array access can be very
fast because the real array can be
accessed directly.

e If the real array does not currently
represent the given array alist, access is
done by linear search through the alist:

3k 5k 3k 3k 3k 3k 5k 3k 3k >k %k 5k 3k 3k >k 3k 5k 3k 3k >k %k 5k 3k %k >k %k 5k >k %k >k %k >k >k >k >k %k >k %k

Slow Array Access! A call of AREF2 on
an array named Al is being executed

slowly. See :DOC slow-array-warning
sk ok sk ok ok ok ok ok ok sk ke ok ok s sk ok sk ok ok ok sk ok ok sk ok sk ok sk sk ok sk sk ok sk ok ook ok

Complication

Useful to distinguish two versions of
“two dimensional arrays.”

Logical or “slow” array.
The alist representation used by the
applicative semantics.

“Fast” executable array.
A logical array with fast accessing and
updating.

Represented, behind the scenes, by a
“real” Common Lisp array.

Additional Restriction on
“Fast” Arrays

So some compilers can lay down faster code.

Let di = number of rows and
do> = number of columns.

Then dy - d> is required to fit into 32 bits.

di-do < maximum-positive-32-bit-integer
231 _1q
2,147,483,647

Closure Properties of Matrix
Operations

Whenever the results of these operations are
mathematically defined,

both logical and fast arrays are closed under
the operations of

e transpose,

e UNnary-minus,

e Scalar multiplication,

e Mmatrix sum, and

e Matrix multiplicative inverse.

7-b

Complication due to the

Additional Restriction
on “Fast’” Arrays

Logical arrays are closed under matrix
product.

Fast arrays are not closed under matrix
product.

Examples

Suppose the Additional Restriction on
“Fast” Arrays is dq - do < 20.

e Product of fast arrays need not be fast.

My o M>
5x2 2 x5
5x5

/I\

e [woO equivalent ways to compute the
same fast array, with differing results.

(Mg o My) o My

2X5 5x2 2X5

2 X2 2X5
2X5

Mo e (M7 o M>»)
2 x5 5X2 2x5

7-d

One More Restriction

Ensure that matrix products of fast arrays
are always fast arrays:

Let di = number of rows and
do> = number of columns.

dq,dp
< |vmaximum-positive-32-bit-integer|

V2,147,483, 647 |
46,340

Then dq - do is guaranteed to be less than the
maximum-positive-32-bit-integer.

46,340 is not enough
http://www.mat.bham.ac.uk/atlas/v2.0/
ATLAS of Finite Group Representations
ATLAS: Monster group M

Order =

246.320.59.76.112.133.17.19.23.29.31.41.47-59.71
~ 8-.10°3

Standard generators

Standard generators of the Monster group M
are a and b where ...and ab has order 29.

Update 15th December 1998:

standard generators have now been made as
196,882 x 196,882 matrices over GF(2).
They have been multiplied together, using
most of the computing resources of Lehrstuhl
D fur Mathematik, RWTH Aachen, for about
45 hours.

7-f

Test for Matrix Equality: (m-= M1 M2)

e Equivalence relation on the entire ACL2
universe.

e When one of M1 or M2 is not a logical
array, then m-= coincides with equal.

e Congruence relation with respect to the
matrix operations of transpose, unary
minus, scalar product, sum, and product.

Matrix Sum: (m-+ M1 M2)
Matrix Product: (m-* M1 M2)

e Defined on the entire ACL2 universe.

e When one of M1 or M2 is not a logical
array, then

¢ m-+ coincides with +
¢ m—-* coincides with .
e Allows some hypotheses-free matrix

equalities.
Example Distributivity:

(m-= (m-* M1 (m-+ M2 M3))
(m-+ (m-* M1 M2)
(m-* M1 M3)))

Allows some matrix equalities to use equal
in place of m-=.

Example: m-+ satisfies this version of
commutativity

(equal (m-+ M1 M2)
(m-+ M2 M1))

as well as this weaker version

(m-= (m-+ M1 M2)
(m-+ M2 M1)).

Similar comments apply to the
associativity of m-+ and m-x*.

Determinant
Matrix Inverse: (m-/ M)

e Computed using row and column
operations.

e Temporary definition:
A matrix is nonsingular iff it is a square
matrix and m-/ does, in fact, compute a
two-sided multiplicative inverse.

e Future plans: Use determinants to
determine if a square matrix is singular or
nonsingular.

10

ACL?2 proofs are still required for the following

e For square matrices, whenever the
determinant is not O, then m-/ computes
the two-sided inverse.

e \Whenever the determinant is O then there
IS NO inverse.

e Non-square matrices do not have
two-sided inverses.

10-a

(defun m-= (M1 M2)
(declare (xargs :guard
(and (array2p ’$argl M1)
(array2p ’$arg2 M2))))

(if (mbt (and (alist2p ’$argl M1)
(alist2p ’$arg2 M2)))

(let ((diml (dimensions ’$argl M1))
(dim2 (dimensions ’$arg2 M2)))
(if (and (= (first diml)
(first dim2))
(= (second dimil)
(second dim2)))
(m—=-row-1 (compress2 ’$argl M1)
(compress2 ’$arg?2
M2)
(- (first diml) 1)
(- (second diml)
1))
nil))

(equal M1 M2)))

11

(array2p name A) returns t if A is a two
dimensional fast executable ACL2 array.
Otherwise return nil.

The extra input argument name is used by
ACL2's “fast” implementation of arrays.

(alist2p name A) returns t if A is a two
dimensional logical array. Otherwise
return nil.

(compress2 name A) allocates and stores
fast array A in a Common Lisp array.

(dimensions name A) returns the
dimensions list of the array alist.
That list contains di and d».

11-a

mbt (“must be true')
A new ACL2 Version 2.8 macro.

Used to replace an expensive Boolean test
with t during execution.

Semantically, (mbt x) equals x
In raw Lisp (mbt x) macro-expands to t.

A guard proof obligation is generated:

(implies <guard>
(equal x t))

ACL2’'s guard verification mechanism
ensures that the raw Lisp code is only
evaluated when appropriate.

11-b

mbt (“must be true”)
In the definition of m-=, since

(implies (array2p name M)
(alist2p name M),

the mbt replaces the alist2p tests with t
during execution.

11-c

