
Polymorphism in ACL2

Ruben Gamboa Mark Patterson
Computer Science Department

University of Wyoming
{ruben,mark}@cs.uwyo.edu

Abstract
The logic of ACL2 is descended from λ-calculus via Common LISP. It

is well-known that this logic is su�cient to reason about arbitrary com-
putations. However, λ-calculus is not today's dominant programming
paradigm. To reason about today's programs, as opposed to today's com-
putations, we need a logic that supports modern programming practices.
In this paper, we present an approach that allows ACL2 to support poly-
morphism, a cornerstone of object-oriented programming. We will also
show how polymorphism provides a convenient alternative to encapsulate
for reasoning about classes of functions. At present, the solution is based
on a translator which replaces ACL2 proof scripts including polymorphism
with regular ACL2 proof scripts. In the future, we plan a version of ACL2
that supports polymorphism directly.

1 Introduction

ACL2 is an industrial-strength theorem prover [6]. Based on Nqthm [2], also
known as the Boyer-Moore theorem prover, ACL2 allows the user to de�ne
programs in the purely functional or applicative subset of Common Lisp and
to prove theorems about such programs. This approach has yielded impressive
results. ACL2 has been used to verify aspects of commercial microprocessors,
�oating-point arithmetic units, program translators (compilers), and programs
in a Java-like virtual machine [9, 8, 5]. A distinct advantage of ACL2 is that
programs written in ACL2 can be executed directly. A consequence is that
a processor model written in ACL2 is not just a mathematical object whose
properties can be veri�ed formally; such a model is also an executable simulator
of the processor, which can be used, for example, in a traditional testing scenario.

It is hard to argue with success. ACL2 is a proven tool in the application
of formal methods to both hardware and software veri�cation, so why should
we modify it to support polymorphism? The class of programs expressible in
ACL2 is purely functional. While this class of programs has proven su�cient
to reason about microprocessor and hardware design, much of current software
follows the object-oriented model. As it stands, it is not possible to reason
about an object-oriented program directly in ACL2.

1



There are two aspects to object-oriented programming that do not �t well
with ACL2's functional style. First, the object-oriented paradigm revolves
around state. Each object contains some state, and its state changes as the
object responds to messages or methods. Second, di�erent objects may behave
di�erently when responding to the same message. This di�erence in behavior is
referred to as polymorphism. Informally, we say that objects encapsulate both
state and behavior.

A logic of object-oriented programs needs to support both of these notions:
state and polymorphism. We will show how ACL2's stobjs can be used to hold
the state of an object-oriented program. In this paper, we will concentrate
on an approach to polymorphism. The basic idea is that, at any given time,
each message or method can be thought of as a simple function whose behavior
depends on the type of its arguments. As new types or classes are introduced,
it becomes necessary to modify the de�nition of this simple function, and the
modi�cations are always of a simple form. Each time a new class is added, we
must extend the prior de�nitions by adding a case corresponding to the new
class.

The remainder of this paper is structured as follows. In section 2, we will
examine how CLOS incorporates polymorphism into Common LISP and discuss
why we can not take a similar approach in ACL2. Our extensions to the ACL2
language are described in section 3, and section 4 discusses why these extensions
are sound relative to ACL2. The basic soundness argument uses a translator
that translates ACL2 with polymorphism into traditional ACL2. In section 5 we
describe a translator we are using currently to experiment with polymorphism
in ACL2. In section 6, we give an example of polymorphism in ACL2. We
will pay special attention to the way in which polymorphism can be viewed as
an executable alternative to encapsulate. We present conclusions and future
directions in section 7.

2 Polymorphism in CLOS

It is an explicit goal of ACL2 to retain the syntax and semantics of the applica-
tive subset of Common LISP. It makes sense, therefore, to look at Common
LISP's object system (CLOS) to see how it handles polymorphism, and possi-
bly to adopt CLOS directly on ACL2. However, CLOS does not provide a good
avenue for polymorphism in ACL2.

The reason is that the semantics of CLOS are inconsistent with classical logic.
In particular, the semantics of CLOS is non-monotonic; as more functions are
de�ned, the value of previously de�ned expressions changes. This is completely
inconsistent with the semantics of ACL2 (not to mention good programming
sense).

To illustrate the point, consider the following example. There are two classes
in the hierarchy, super and sub, and sub is a subclass of super:

(defclass super nil)
(defclass sub (super))

2



We now de�ne the method size of super as follows:

(defmethod size ((super s))
0)

Now consider the following expression:

(size (make-instance sub))

Since the method size has not been de�ned for the class sub at this point, this
expression uses the method de�ned for the parent class, super. This is, after
all, the whole point of inheritance. In a hypothetical ACL2+CLOS system, we
would now be able to prove the following theorem:

(defthm size-sub
(implies (subp s)

(equal (size s) 0)))

However, suppose we proceed by de�ning the size method for the subclass:

(defmethod size ((sub s))
1)

Suddenly, (size (make-instance sub)) is equal to 1 instead of 0, so the the-
orem size-sub has become false.

The problem, of course, is that CLOS allows the de�nition of a new type
to be spread out throughout the program. When the type sub is de�ned, its
behavior is not fully speci�ed. Expressions involving sub at this point will use
the default behavior (i.e., that provided by inheritance). But this behavior
changes as more details of sub are provided, i.e. by overriding methods. What
we need is a way to de�ne the entire behavior of a new type atomically, as is
provided by the class primitive of other object-oriented languages. We give
such a proposal in the next section.

3 Adding Polymorphism to ACL2

We introduce classes into ACL2 using the defclass event, which is similar in
many ways to encapsulate. Like encapsulate, it contains embedded events,
such as the de�nition of the methods of the class. It may also contain theo-
rems that serve as constraints on future subclasses of the class. Syntactically,
defclass looks as follows:

(defclass classname superclass
state
methods
constraints )

3



The classname and superclass are identi�ers naming the new class and its par-
ent class, respectively. If the new class does not inherit from any other class,
superclass will be nil. The state speci�es the state held by the object, using
the same notation as defstobj. The methods specify the behavior of the ob-
jects in the class. Each method is de�ned in a defmethod event, similar to a
defun event, but with the restriction that the �rst argument of the function
must be an object of the given class (or one of its subclasses). The constraints
are theorems that serve to limit future subclasses. For example, a constraint of
a shape class might be that the area method return a positive real. As with
encapsulate, the constraint must be satis�ed by the current de�nition of the
class. It must also be satis�ed every time a new subclass is introduced. In the
language of ACL2, classes are inherently constrained, and subclasses must be
functional instances of their superclass.

3.1 Object State

There are two di�erent entities that we must include in our model to support
object-oriented programs: objects and references. Objects contain state infor-
mation, while references point to objects. It is possible for more than one ref-
erence to point to the same object. This is consistent with most formalizations
of object-oriented programs [1, 3, 4].

We store objects in a global registry, implemented as a stobj. Our current
approach is to encode all the state for an object into a single ACL2 object,
i.e., a list. The structure of this object is given by the state declaration of the
defclass, which uses the same syntax as defstobj. The ACL2 object is placed
in the registry, which is an array of cells.

References are essentially indices into the global registry. We have found it
convenient to implement references as pairs that also include the type of the
object, although this is not necessary.

References correspond to objects in typical object-oriented programs. For
example, when a Java program creates a new object with new, the value returned
is a reference; the object itself is somewhere in main memory, and its precise
location is of no relevance to a Java program.

It should be noted that references in a polymorphic ACL2 are �rst-class
ACL2 objects, not subject to the �draconian� restrictions placed on stobjs.
What this means is that it is possible to place references in other ACL2 ob-
jects, e.g., lists. It is also possible to place a reference inside an object, which is
necessary to implement object-oriented data structures. Of course, this is only
possible because we use a global stobj to hold all object state.

3.2 Object Behavior

The behavior of objects is de�ned by both the methods and constraints included
in the class. The methods de�ne the behavior of objects of this speci�c class. It is
assumed that objects of a subclass may implement di�erent behavior. However,
both the current class and all subclasses must abide by the given constraints.

4



To make this explicit, consider the following example:

(defclass measurable nil
((v :type integer :initially 0))
(defmethod measure (x memory)

(let ((xval (measurable..v x memory)))
(if (< xval 0)

(- xval)
xval)))

(defthm measure-is-non-negative-real
(implies (measurable-p x)

(and (realp (measure x memory))
(<= 0 (measure x memory)))))

...)

This introduces a class called measurable and a method measure. Notice that
measure accepts two arguments. The �rst argument, x, must belong to the class
measurable or one of its subclasses. It is the object receiving the message. The
last argument, memory, is the stobj representing the global object state.

The function measurable..v is generated automatically by defclass. It is
an accessor to the instance variable v of this class. When its argument is not a
reference to a measurable object, measurable..v returns a default value (e.g.,
through a completion axiom). The e�ect of the defmethod event is to add the
following de�nitional axiom to the ACL2 theory:

measure(x) =
{
−v(x), if x is a strict measurable and v(x) < 0
v(x), if x is a strict measurable and v(x) 6< 0

where v(x) denotes the current value of the real number in the object x.
Notice in particular that nothing is said of the behavior of measure unless its

argument is of type measurable, not including any subclasses of measurable.
We di�erentiate between objects that satisfy measurable-p, which includes all
objects of type measurable and any of its subclasses, and those which satisfy
strict-measurable-p, which includes all objects of type measurable but not
one of its subclasses. After this event, the following theorem will be valid:

(defthm strict-measurable-measure
(implies (strict-measurable-p x)

(or (equal (measure x memory)
(measurable..v x memory))

(equal (measure x memory)
(- (measurable..v x memory))))))

However, the following theorem will not be provable:

(defthm measurable-measure
(implies (measurable-p x)

(or (equal (measure x memory)

5



(measurable..v x))
(equal (measure x memory)

(- (measurable..v x))))))

The reason is that the behavior of measure for measurable objects is not com-
pletely known; subclasses may override the default behavior.

This is where constraints come into play. The constraint measure-is-non-
-negative-real guarantees that measure always returns a non-negative real for
any measurable argument. Before the defclass event is admitted, these con-
straints are checked to make sure they work for the current class. In particular,
the following proof obligation is established:

(implies (or (strict-measurable-p x))
(implies (measurable-p x)

(and (realp (measure x memory))
(<= 0 (measure x memory)))))

As new subclasses are de�ned, these constraints are rea�rmed. For example,
consider the following subclass:

(defclass complex measurable
((a :type real :initially 0)
(b :type real :initially 0))

(defmethod measure (c memory)
(let ((x (complex..a c memory))

(y (complex..b c memory)))
(acl2-sqrt (+ (* x x) (* y y)))))

...)

Before this event is admitted, the following proof obligation needs to be estab-
lished:

(implies (or (strict-measurable-p x)
(strict-complex-p x))

(implies (measurable-p x)
(and (realp (measure x memory))

(<= 0 (measure x memory)))))

In other words, whenever a new class is introduced, the proof obligations assert
that the constraints are satis�ed by all known classes.

The constraints themselves are available to ACL2 as theorems. This is the
only way in which we can reason about methods for all instances of a class, not
just the strict instances. For example, the following theorem would be valid:

(defthm abs-of-measurable-measure
(implies (measurable-p x)

(equal (abs (measure x memory))
(measure x memory))))

6



Contrast this with the non-theorem measurable-measure.
Because they allow us to reason about the behavior of all instances of a class,

constraints also impose a restriction on future subclasses. In this vein, they can
be viewed as an implementation of the design-by-contract paradigm popularized
by Ei�el [7].

4 Soundness

A feature of defmethod is that it allows a subclass to override a method de�ned
in a parent class. That is, it allows the de�nitional axiom of a function symbol to
be modi�ed. Since ACL2 does not support function rede�nition, this issue raises
some troubling soundness questions. We address these issues in this section.

Observe: we are not talking about arbitrary rede�nitions. A better word
may be �re�nement.� What we are allowing is for a function to be de�ned by
cases, and we are not requiring that all cases be speci�ed at once.

Consider a total function de�ned by cases:

f(x) =


f1(x), if x ∈ S1

f2(x), if x ∈ S2

...
fn(x), if x ∈ Sn

where the Si are mutually disjoint and exhaustive. Let Fi be the function
de�ned over the �rst i cases. Then Fi corresponds with f for arguments x in
S1, S2, . . . , Si, but its behavior is unde�ned for other x.

Thinking of de�nitions as introducing axioms, we have the following view.
The de�ning axiom for f is given by

f ≡ ∧n
i=1x ∈ Si ⇒ f(x) = fi(x).

Since the Si are mutually disjoint, this axiom is consistent (as long as the fi are
valid functions). Since the Si partition the universe, the axiom provides a total
de�nition � i.e., it tells us what the value of f(x) is for any x.

The story is not much di�erent for the Fj :

Fj ≡ ∧j
i=1x ∈ Si ⇒ f(x) = fi(x).

This axiom is clearly consistent, since it is weaker than the de�ning axiom for
f . Moreover, for i ≤ j we have that Fj ⇒ Fi, in particular f ⇒ Fi for any
1 ≤ i ≤ n.

Now, consider an ACL2 event history h = (e1, e2, . . . , em), and suppose that
there are indices 1 ≤ ii < i2 < . . . < in ≤ m so that eij = Fj for 1 ≤ j ≤ n and
none of the other ei events are partial de�nitions (i.e., all of the other events
are ACL2 events not involving polymorphism). Construct a new history h′ by
introducing the de�ning axiom for f immediately before ei1 and replacing the
eij de�ning axioms with the identical theorems (provable from the de�nition of

7



f). Notice that h′ is a valid ACL2 history. In it, method de�nitions have been
replaced by theorems about an ideal function f . We de�ne the semantics of our
polymorphic extensions to ACL2 by this construction. I.e., polymorphic ACL2
programs can always be translated into regular ACL2 programs.

So as long as we require that there exist a real total function f that is being
de�ned by disjoint cases, the principle of rede�nition we utilize is sound. In
a practical sense, the construction outlined above could be used to create the
new history h′, disabling the de�nition of f except in the proof of the Fi � we
use that approach in our translator, although we would like to see support for
polymorphism built into the theorem prover.

This construction depends on knowing the function f we are de�ning a priori,
or equivalently on knowing all subclasses that will ever be de�ned of a given
class. But what if we don't? Suppose we have to consider the history h without
knowledge of the function f . Moreover, suppose the events eij

de�ning f in
h are not exhaustive. We can still generate h′ as follows: �rst, complete the
de�nition of f by (arbitrarily) setting it to nil for any argument x that is not
in the cases covered by the eij , and then introduce f before ei1 as before.

However, as we add new events to h, the parallel construction of h′ may result
in di�erent completions of f . Each history h may be justi�ed by a di�erent
function f , but notice that for soundness we only need to have some f that
satis�es the de�ning axioms. But we insist that f be constructed by considering
all rede�nitions in h, whether or not they are visible at the end of h. That is,
we disallow defclass events inside local.

To summarize the logical perspective of polymorphism: We introduce a new
logical notion, the de�nition of functions by mutually disjoint cases. We allow
the cases to be presented in di�erent events in a history. The resulting history
violates the current rules for ACL2 histories. However, this history can be me-
chanically converted into a valid ACL2 history by collecting the de�nitions and
placing them at the beginning (possibly requiring the function to be completed
�rst). Hence this �new� principle is sound, since it can be viewed as nothing
more than syntactic sugar. What this means is that we are not changing the
semantics of ACL2 at all. We are merely introducing convenient syntax.

5 The Translator

The translator parses an existing ACL2 �le containing the de�nitions of a class
hierarchy and then writes a translation of that class hierarchy in traditional
ACL2 to a new �le. The translator, written in ACL2, is largely experimental
in nature. Currently, the translator is far from a �nished product. It was writ-
ten simply to demonstrate that polymorphism may be expressed in traditional
ACL2 by employing stobjs to hold the state of an object-oriented program. The
current translator handles most aspects of ACL2 with polymorphism, though
some aspects are still handled manually. For instance, the translator operates on
a single �le at a time, so it is not practical to write large polymorphic programs
in ACL2.

8



Moreover, as part of removing polymorphism, the translator needs to collect
all defmethod events de�ning a given method and combine their de�nition into
a single function. However, it is possible for a defmethod to use a function (or
method) that is de�ned after the initial parent class is written. This makes
it necessary to move not only the defmethod events, but also the intervening
de�nitions, and possibly some theorems to allow ACL2 to accept the de�nition
events. Although the translator does some of this automatically, it does not o�er
a general solution. Instead, we often �nd it necessary to modify the translated
�les.

As it stands, the translator is comprised of approximately two thousand
lines of code. The translator itself is comprised of seven modules and each
module handles a particular aspect of the translation. The seven modules are:
Preamble, Strict-p, Strict-object-p, Classrefs, Classobjs, Parentmethods, and
Childmethods.

Each module addresses some aspect of the translation by creating and then
writing to �le the executable code associated with that aspect of the translation.
Preamble creates the translated �le and writes the code that establishes the
global stobj (called memory) that will hold our program state, as well as functions
to deal with the object lifecycle. Strict-p writes the speci�c recognizers for
each of our hierarchical class references, i.e., the references to our class objects.
Strict-object-p writes the speci�c recognizers for each of our hierarchical class
objects. Classrefs writes the general recognizer for references to our parent
class. Classobjs writes the general recognizer for objects in our parent class.
This also writes the accessor methods for the class �elds. Parentmethods writes
ACL2 de�nitions of those non-polymorphic methods speci�c to the parent class.
Childmethods writes ACL2 de�nitions of each method, both polymorphic and
non-polymorphic, speci�c to the child classes.

The translator is a work in progress. The exercise of creating a translator
has been valuable in helping us to identify and address those issues intrinsic to
the problem of reasoning about the object-oriented paradigm in ACL2.

6 An Example

In this section we present a simple example that serves to illustrate most of the
relevant points. We will start with a class that describes objects that can be
compared:

(defclass comparable nil
((v :type integer :initially 0))
(defmethod lorder (x y memory)

(let ((xval (comparable..v x memory))
(yval (comparable..v y memory)))

(lexorder (cons (class-of x) xval)
(cons (class-of y) yval))))

(defthm lorder-boolean
(implies (and (comparable-p x) (comparable-p y))

9



(booleanp (lorder x y memory))))
(defthm lorder-total
(implies (and (comparable-p x) (comparable-p y))

(or (lorder x y memory) (lorder y x memory)))
:rule-classes ...)

(defthm lorder-reflexive
(implies (comparable-p x)

(lorder x x memory)))
(defthm lorder-transitive

(implies (and (comparable-p x)
(comparable-p y)
(comparable-p z)
(lorder x y memory) (lorder y z memory))

(lorder x z memory))))

The class-of function returns the name of the class to which an object be-
longs. We use it in the comparison function to make sure the ordering de�ned
works well even when objects of di�erent types are compared. Had we ignored
subclasses now, it may have become impossible to prove one or more of the
class constraints when making subclasses later1. The subtlety of checking the
argument type when comparing objects will be familiar to Java programmers.

We can also create objects of the comparable class with the comparable..new
function. This creates a default object, which can be modi�ed with the method
comparable..update-v, as in the following mv-let form:

(defun make-comparable (value memory)
(declare (xargs :stobjs (memory)))
(mv-let (obj memory)

(comparable..new memory)
(let ((memory (comparable..update-v obj value memory)))

(mv obj memory))))

We can de�ne functions that work on comparable objects. It is possible,
certainly, to de�ne methods that do so. But it can be convenient to de�ne
traditional ACL2 functions, as the following version of minimum:

(defun min-lorder (x y memory)
(declare (xargs :stobjs (memory)))
(if (lorder x y memory) x y))

Another obvious function would be sort-lorder which sorts lists of objects.
Note again that we have the choice of writing a container class and making sort
a method of that class, or of using an ACL2 container, e.g., lists.

Naturally, we can prove theorems about functions operating on objects, such
as the following:

1In fact, we had a simpler de�nition of lorder, which assumed the second argument was

of the same type as the �rst, but we discovered that lorder-transitive became false when

we tried to introduce the ordered-pair subclass.

10



(defthm min-lorder-associative
(implies (and (comparable-p x)

(comparable-p y)
(comparable-p z))

(equal (min-lorder (min-lorder x y memory)
z
memory)

(min-lorder x
(min-lorder y z memory)
memory))))

Similarly, we could prove that sort-lorder returns an ordered permutation of
its input.

It is worth noting again that the only reason these theorems are provable
is that they follow from the constraints on the comparable class, not on the
speci�c de�nition of lorder for that class. This is very similar to the situation
with encapsulate, with a few di�erences.

The �rst di�erence is that methods are executable. If we have a list of
references to comparable objects, we can sort it with sort-lorder. This is
most de�nitely not the case with encapsulate, since constrained functions in
ACL2 are not executable.

The second di�erence is that functions operating on objects and theorems
about these functions naturally extend to subclasses, without the need to cre-
ate specialized versions of these functions and reprove the theorems with a
:functional-instance hint.

To see this, consider the following subclass:

(defclass ordered-pair comparable
((v2 :type integer :initially 0))
(defmethod lorder (x y memory)

(let ((x1 (ordered-pair..v x memory))
(x2 (ordered-pair..v2 x memory))
(y1 (ordered-pair..v y memory))
(y2 (ordered-pair..v2 y memory)))

(lexorder (list (class-of x) x1 x2)
(list (class-of y) y1 y2)))))

Recall that before this class de�nition is accepted, all constraints de�ned by the
parent (or any ancestor) class are veri�ed. In particular, the following proof
obligations are generated:

(implies (and (or (strict-comparable-p x)
(strict-ordered-pair-p x))

(or (strict-comparable-p y)
(strict-ordered-pair-p y)))

(booleanp (lorder x y memory)))

11



(implies (and (or (strict-comparable-p x)
(strict-ordered-pair-p x))

(or (strict-comparable-p y)
(strict-ordered-pair-p y)))

(or (lorder x y memory) (lorder y x memory)))

(implies (or (strict-comparable-p x)
(strict-ordered-pair-p x))

(lorder x x memory))

(implies (and (or (strict-comparable-p x)
(strict-ordered-pair-p x))

(or (strict-comparable-p y)
(strict-ordered-pair-p y))

(or (strict-comparable-p z)
(strict-ordered-pair-p z))

(lorder x y memory) (lorder y z memory))
(lorder x z memory)))

Once the class is accepted, it is possible to use the function min-lorder or
sort-lorder on arguments of type ordered-pair as well as comparable, with-
out de�ning new functions. Moreover, the theorems about min-lorder and
sort-lorder remain valid, without the need to state explicitly that they hold
for objects of type ordered-pair.

In some ways, this makes polymorphism a more natural vehicle to reason
about classes of functions than encapsulate. The drawback, of course, is that
to use polymorphism requires dealing with the stobj memory, and using and
reasoning about stobjs is more complicated than using and reasoning about
regular ACL2 objects.

7 Conclusion

Since the dominant programming paradigm of the day is object-oriented pro-
gramming, we believe it is important that ACL2 support reasoning about object-
oriented programs. We face two major challenges in doing so: Object-oriented
programs embody object state and behavior based on type. The �rst issue can
be addressed with a global memory of objects, and ACL2 stobjs provide an
e�cient mechanism for this. To support the dynamic binding of behavior based
on type requires us to address polymorphism.

We have seen how it is possible to provide support for polymorphism in
ACL2. Our current implementation uses a translator which works with an
entire ACL2 proof script. In particular, it is impossible to build the translation
incrementally. In the future, we plan to add support for polymorphism directly
into ACL2.

An interesting aspect of polymorphism is that it can be seen as a replace-
ment for encapsulate. In this view, it o�ers some advantages; in particular,

12



it provides for executable constrained functions, and it does away with the
need to rebuild special de�nitions and theorems for each functional instance of
a constrained function. However, the major drawback is that our solution to
polymorphism requires using stobjs. While the syntactic restrictions on the use
of stobjs do not apply to our object references, we are still forced to use the
somewhat awkward stobj notation to refer to the global memory.

Acknowledgments

We would like to thank John Cowles for helping us �nd the proper mv-let form
to add new objects to the memory stobj.

References

[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. In Proceedings of
the ACM Conference on Principles of Programming Languages, 1991.

[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,
Orlando, 1979.

[3] S. Drossopoulou and S. Eisenbach. Describing the semantics of java and
proving type soundness. In Formal Syntax and Semantics of Java. Springer,
1999.

[4] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer's reduction
semantics for classes and mixins. In Formal Syntax and Semantics of Java.
Springer, 1999.

[5] W. Georigk. Compiler veri�cation revisited. In M. Kaufmann, P. Manolios,
and J S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies,
chapter 15. Kluwer Academic Press, 2000.

[6] M. Kaufmann and J S. Moore. An industrial strength theorem prover for a
logic based on Common Lisp. IEEE Transactions on Software Engineering,
23(4):203�213, April 1997.

[7] B. Meyer. Ei�el: The Language. Prentice Hall, 1992.

[8] J Moore. Proving theorems about Java-like byte code. Correct System
Design � Issues, Methods and Perspectives, 1999.

[9] D. Russino�. A mechanically checked proof of IEEE compliance of a register-
transfer-level speci�cation of the AMD-K7 �oating-point multiplication, di-
vision, and square root instructions. London Mathematical Society Journal
of Computation and Mathematics, 1:148�200, December 1998.

13


