A Solution to the Rockwell Challenge

Hanbing Liu
June 30, 2003

0-0



Outline
e The Rockwell “challenge”

e Key observations and my approach

e Proof sketch

e (eneralization




The Rockwell Challenge

e Data structure represented as memory cells

— Two kinds of information encoded:

* Relations between nodes
*+ Information in data fields of nodes

e Reasoning about “dynamic” updates

e The bigger picture: getting abstraction back




In particular:

e Data structure: a “tree” of A-type node
“A” nodes have 4 words. Words 0 and 3 are scalars. Words 1

and 2 point to “A” nodes.

e Operation a-collect, which collect all cells.

e We need to show:

(defthm rd-over-a-mark-objects
(let ((list (a-collect ptr n ram)))
(implies (and (not (member addr list))
(unique list))
(equal (g addr (a-mark-objects ptr n ram))

(g addr ram)))))

e Other properties similar to above




Key Observations

o “Link” cells vs. “data” cells

e Data structure: “shape” decided by “link” cells

“Shape” vs. values of “data” fields

e Update during travesal “shape” may change:
Imagine ram’ is after updating ram

(a-collect ptr n ram’) not equal (a-collect ptr n ram)

e However, given unique condition, “shape” should not change.




Proot Sketch and Key Lemmas

e Main goal:
(defthm rd-over-a-mark-objects
(let ((1list (a-collect ptr n ram)))
(implies (and (not (member addr list))
(unique list))
(equal (g addr (a-mark-objects ptr n ram))
(g addr ram)))))

where a-mark-objects is
(defun a-mark-objects (addr n ram)
(if (zp n) ram
(if (zp addr) ram
(let ((ram’ (s addr *somevalue* ram)))

(a-mark-objects (g (+ addr 2) ram’) (1- n) ram’)))))




First Attempt: Direct Proof by Induction

Obvious choice of induction hint is (a-mark-objects ptr n ram)
Let

ram’ be (s addr *the-value* ram)

ptr’ be (g (+ ptr 2) ram’)
and n' be (- n 1)

We assume:

(let ((1list’ (a-collect ptr’ n’ ram’)))
(implies (and (not (member addr list’))
(unique 1list’))
(equal (g addr (a-mark-objects ptr’ n’ ram’))

(g addr ram’)))))




e Complications:

— No obvious relation between (a-collect ptr’ n’ ram’) and
(a-collect ptr n ram)
— This theorem is not “strong” enough!

Only about cells outside the structure do not change. We
also know (and need the fact) that “link” cells do not
change!

— Without knowing “shape” not change, recursion pattern in

(a-collect ptr' n’ ram’) can be different from (a-collect ptr n

ram)

o Attempt failed!




Nth Attempt: Distinguish “Link” and “Data”
Cells

N: somewhere between 3-5.

e (unique (a-collect ptr n ram))

“Link” cells are not overlapping with “data” cells

Update to any non “link” cell

“Shape” does not change. Classification of cells do not change.

(a-mark-objects ptr n ram)
The first update is to the “data” cell.

Subsequent updates are also to original “data” cells

“Data” cells are subset of cells used to represent the object

Final goal proved.




Variation in Actual Proof

e Group ptr, n, ram into one entity RC, RAM configuration
e Reduce a-mark-objects to (apply-A-updates certain-sequence RC)

e Prove certain-sequence is a subset of “data” cells from the
original structure, where certain-sequence is
(collect-a-updates-dynamic rc)

To prove the third point above:
— (collect-a-updates-static rc) is a subset.
— unique implies non-intersect between “data” and “link” cells

— Relate (collect-a-updates-static rc) and
(collect-a-updates-dynamic rc)




Key Lemmas

e a-mark-objects-alt-definition
(defthm a-mark-objects-alt-definition
(equal (a-mark-objects addr n ram)
(apply-a-updates (collect-a-updates-dynamic (make-ram-config addr n ram))
ram))

:rule-classes :definition)

44 7 : :

Shape” remain unchanged, if ...
(defthm set-non-link-cells-collect-equal

(implies (not (member x (a-collect-link-cells-static rc)))

(struct-equiv-A-ram-config (rc-s x v rc) rc)))

First updated cell is not a link cell under certain hypothesis
(defthm addr-not-a-member-a-collect-link-cells-static
(let ((n (n rc))
(addr (addr rc)))

(implies (and (not (zp n))
(not (zp addr))
(not (overlap (a-collect-data-cells-static rc)
(a-collect-link-cells-static rc))))

(not (member addr (a-collect-link-cells-static rc))))))

More ...




Other Challenge Problems

e Operations on independent objects
(defthm read-over-bab
(implies
(let ((list (append (b-collect ptrl nl ram)
(a-collect ptr2 n2 ram)
(b-collect ptr3 n3 ram)
)))
(and
(not (member addr list))
(unique list)))
(equal
(g addr (compose-bab ptrl nl ptr2 n2 ptr3 n3 ram))
(g addr ram))))

e Permutation of operations

(defthm a-mark-over-b-mark

(implies
(let ((list (append (a-collect ptrl nl ram)
(b-collect ptr2 n2 ram))))
(unique list))
(equal
(a-mark-objects ptrl nl (b-mark-objects ptr2 n2 ram))

(b-mark-objects ptr2 n2 (a-mark-objects ptrl nl ram)))))




(Generalization

e The generalized concept of structurally equivalent memory
configuration

More data types: theorems like read-over-bab

J’s map idea: introduce a map from type of node to structure
of a node.

Generalize “update” (a-mark-object) and “crawl” (a-collet)
operations to work on objects of different type.
Arbitary composition of different operations

Generalize update and “crawl” operations to work on sequence
of “independent” objects.

Prove permutation does not matter, if objects do not share
structures.

e Operations that changes the “link” cells




Summary

e Two kinds of information are encoded by a complex data

structure.
First kind is captured by a structural equivalence.

We reduce dynamic updates of “data” fields to apply a
corresponding sequence of updates.

The sequence can be decided by statically for certain dynamic

update operations.

The approach is being generalized.




