A Tool for Simplifying Files of
ACL2 Definitions

July 13, 2003

Matt Kaufmann

(Advanced Micro Devices, Inc.)



| Introduction |

GOALS:

e To simplify files of function definitions

e 'To transfer proofs of lemmas from the origi-
nal to the simplified functions

This talk describes a tool that accomplishes
these goals.

e Tool input: File of “raw” (unsimplified)
definitions with optional files of lemmas about
them.

e Tool output: File of simplified definitions
with (optional) files of lemmas about them.

e Bells and whistles are ignored in this talk.

A secondary goal is to say enough about the
tool to help users to customize it for their pur-
poses.



| A Trivial Example |

Original definitions:

(defun a (n)
0)
(defun %b (n)
(if (equal (a n) 1) 1 (inputl n)))

Simplified definition of %b:

(defun b (n)
(inputl n))

The new definition saves the rewriter some ef-
fort.

Analogy: program optimization at compile-
time to save run-time computation.



| Outline of the rest of this talk |

This talk will focus on small examples.

Details are in the paper and in the supporting
materials.



| Files for first small example |

Input files:
inputs.lisp
defs—-in.lisp
lemmas—-in.lisp

Output files:

defs-out.lisp
defs-eq.lisp
lemmas-out.lisp

AV N ]

- o - e

- o

basic definitions
definitions to simplify
lemmas to transfer

simplified defuns
proof of equivalence
transferred lemmas



| Running the tool |

(include-book '"defs-in")
(include-book ".../simplify-defuns")
(transform-defuns
"defs-in.lisp"
:out-defs "defs-out.lisp"
:equalities "defs-eq.lisp"
:thm-file-pairs
’(("lemmas-in.lisp" "lemmas-out.lisp"
; Initial events for lemmas-out.lisp:
(include-book "defs-out")
(local (include-book "lemmas-in"))
(local (include-book "defs-eq"))
(local
(in-theory
(theory ’J%-removal-theory))))))



| A bit of small example #1, p. 1 |

From inputs.lisp (from portcullis of book
defs-in):

(defun f1 (x)
(+ x x))

From defs-in.lisp:

(defun %gl (x y)
(cond
((zp x) x)
((< 0 (f1 x)) vy)
(t 23)))

(in-theory (disable %gl %g2 ...))
From defs-out.lisp:

(DEFUND G1 (X Y) (IF (ZP X) X Y))



| A bit of small example #1, p. 2 |

Strategy for model-eq: control the proof!

(LOCAL (DEFTHEORY THEORY-0
(THEORY ’MINIMAL-THEQRY)))
(LOCAL
(DEFTHM G1-BODY-IS-%G1-BODY_S
(EQUAL (IF (ZP X) X Y)
(COND ((ZP X) X)
(<0 (F1L X))V
(T 23)))
:HINTS (("Goal" :DO-NOT ’ (PREPROCESS)))
:RULE-CLASSES NIL))
(DEFTHM G1-IS-%G1
(EQUAL (G1 X Y) (%G1 X Y))
:HINTS
(("Goal" :EXPAND
((:FREE (X V) (%G1 X Y))
(:FREE (X Y) (G1 X Y)))
: IN-THEORY (THEORY ’THEORY-0)
:DO-NOT °’ (PREPROCESS)
:USE G1-BODY-IS-%G1-B0ODY_S)))

8



| A bit of small example #1, p. 3 |

Next consider recursion.
From defs-in.lisp:

(defun %g2 (x y)
(if (atom x)
(%gl x y)
(%g2 (cdr x) y)))

From defs-out.lisp:

(DEFUND G2 (X Y)

(IF (CONSP X)
(G2 (CDR X) Y)

(GL X Y)))



| A bit of small example #1, p. 4 |

Let’s look at how model-eq.1isp proves equal-
ity of %g2 and g2. First set up the appropriate
small theory:

(LOCAL (DEFTHEORY THEORY-1
(UNION-THEORIES
) (G1-IS-%G1)
(THEORY °’THEORY-0))))

Next define a recursive function, %%G2, whose
body is derived tfrom the simplified body by us-
ing the % tunctions, except that calls of %G2 have
been replaced by %%G2.

(LOCAL (DEFUN %%G2 (X Y)
(IF (CONSP X)
(%%G2 (CDR X) Y)
(%G1 X Y))))

10



| A bit of small example #1, p. 5 |

This leads to a lemma whose proof is trivial
for ACL2.

(LOCAL
(DEFTHM %7%G2-1IS-G2
(EQUAL (%%G2 X Y) (G2 X Y))
-HINTS
(("Goal" :IN-THEORY
(UNION-THEORIES
» ((: INDUCTION %%G2))
(THEORY ’THEORY-1))
:DO-NOT °’ (PREPROCESS)
:EXPAND ((%%G2 X Y) (G2 X Y))
: INDUCT T))))

11



| A bit of small example #1, p. 6 |

ACL2 now proves the following, provided it
can prove the goal shown below it.

(DEFTHM G2-IS-%G2

(EQUAL (G2 X Y) (%G2 X Y))

:HINTS

(("Goal" :BY
(:FUNCTIONAL-INSTANCE
%5hG2-1S-G2
(%%G2 %G2))
:DO-NOT ’ (PREPROCESS)
:EXPAND ((%G2 X Y)))))

The aforementioned goal is as follows, and is
proved by rewriting, just as in the non-recursive
case, when (%4G2 X Y) is expanded.

(EQUAL (%G2 X Y)
(IF (CONSP X)
(%G2 (CDR X) Y)
(G1 X Y)))

12



| A bit of small example #1, p. 7 |

The paper gives more detail, including an ex-
ample that illustrates how the tool handles mu-
tual recursion. Here is an example of how lem-
mas are translated.

Original lemma from lemmas-in.1lisp:

(defthm %lemma-1
(implies (true-listp x)
(equal (%g2 x y) nil))
:hints (("Goal"
:in-theory
(enable %gl %g2))))

Here is the corresponding generated lemma,
from lemmas-out.lisp. The proof takes ad-
vantage of the rewrite rule G2-IS-%G2.

(DEFTHM LEMMA-1
(IMPLIES (TRUE-LISTP X)
(EQUAL (G2 X Y) NIL))
:HINTS (("Goal" :USE %LEMMA-1)))

13



| Rtl example (intro) |

The tool can be used to support verification
of hardware descriptions expressed in register-
transfer logic (rtl). Several changes were made
in the tool in support of that goal, notably the
use of packages.

The following slides show a couple of exam-
ples. See the paper and supporting materials
for details.

14



| Rtl example #1 |

rtl:

case (sel[1:0])
2’°b00: outl = in0;
2°b01: outl inl;
2°b10: outl = 1in2;
2’°bll: outl = 1in3;
endcase

original definition:

FOOSRAW: :
(defun outl$ (n $path)
(declare ...)

(bind case-select
(bits (sel n) 1 0)
(if1 (log= (n! 0 2) case-select)
(bitn (in0 n) 0)
(if1 (log= (n! 1 2) case-select)
(bitn (inl n) 0)
o))

15



| Rtl example #1 (cont.) |

simplified definition:

(defun outl$ (n $path)

(declare ...)

(cond ((equal 0 (sel
((equal 1 (sel
((equal 2 (sel
((equal 3 (sel

(t 0)))

16

n)) (inO
n)) (inl
n)) (in2
n)) (in3

n))
n))
n))
n))



| Rtl example #2 |

rtl:

out2[3:0] <=
{1°b0, ww[2:0]} + 4°b0001;

original definition:

FOO$RAW: :

(defun out2$ (n $path)
(declare ...)
(if (zp n)

(reset ’ACL2::0UT2 4)
(mod+ (cat (n! 0 1) 1
(bits (ww (1- n)) 2 0) 3)
(n! 1 4)
4)))

17



| Rtl example #2 (cont.) |

simplified definition:
(defun out2$ (n $path)
(declare ...)
(if (zp n)
(reset ’out2 4)
(bits (+ 1 (ww (+ -1 n))) 3 0)))

18



