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Abstract 
The use of formal models of security policies are required for high assurance 
security systems. One benefit of formal methods is that it allows for a precise 
presentation of items, allowing for analysis by others and subsequent discussion. In 
this paper we examine the presentation and use of the formal security policy 
developed in ACL2 as presented by Greve, Wilding and Vanfleet in 2003. We found 
that the ACL2 model and corresponding textual description left some points 
ambiguous. We clarify these points in this paper.  

 
 
1 Introduction 
 
The need for computer systems that operate safely and securely has never been greater. 
Society increasingly relies on computers for a wide range of services from simple 
communication to delivery of electricity, water and other essential services. Yet, the 
specification and verification of nonfunctional system properties such as safety or 
security is not straightforward and a number of methods have been proposed for insuring 
that computers exhibit desired behavior (safety) plus exhibit no behavior that is not 
specifically allowed (security).  
 
The process of evaluating software for nonfunctional properties involves assessment that 
the software demonstrates the stated properties. For military systems and avionics 
systems on commercial aircraft, assessment is typically accomplished through external 
review and certification. 
 
For software avionics systems, the FAA is the certifying authority. They have adopted a 
document, DO-178B [RTCA92], that specifies how software should be developed that is 
part of a commercial aircraft. While it is not a requirement that avionics system software 
follow DO-178B, developers must demonstrate to the FAA that their software meets the 
same high level of development criteria if they choose an alternate development process. 
 
In guaranteeing security, the security community has adopted the Common Criteria (CC) 
[Nis99] as its assurance standard. The CC ensures product security through independent 
verification against seven predefined assurance levels, Evaluation Assurance Levels 
(EAL1 – EAL7). At the highest assurance levels, EAL6 and 7, formal specification of a 
product’s security policy is required. The high level design of the target component must 
then be mathematically proven to satisfy the formal policy specification.  
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In this paper, we present a clarification of a security policy modeled in ACL2 presented 
by Greves, Wilding and Vanfleet [GWV03]. The security policy presented in GWV 
models a separation kernel, which enforces partitioning between applications running on 
a single processor system. Separation is a concept that was introduced by John Rushby as 
a way to build and specify secure systems [Rus81]. A separation kernel forms the basis 
for an architecture that handles Multiple Independent Levels of Security (MILS). MILS1 
is an on-going collaborative effort between government, academia and industry to build a 
high assurance architecture for real-time embedded systems. The MILS architecture is a 
three-tiered architecture consisting of a separation kernel, middleware and applications 
where each layer enables the higher layers to enforce their own security policies 
[ATO04]. The overall security policy of the MILS architecture is one of data isolation 
and information flow in order to support data and applications at different classification 
levels.2  
 
Implementations of a separation kernel will need to be certified at a CC level of at least 
EAL 6. Since certification at that level requires a formal mapping between the separation 
security policy and an implementation, it is important that the separation security policy 
used in the certification be clearly stated so that the full intent of the policy is supported 
by the implementation. While the GWV policy clearly defines the basic separation 
axioms of non-exfiltration and non-infiltration3, other concepts involving definitions of 
state and the active partition are somewhat ambiguous. We found that a reader of the 
original GWV paper could possibly misapply the presented policy. This paper is an 
attempt to prevent such misuse. 
 
In our discussion of the GWV policy, we present several underlying concepts that were 
left out of the original paper but are important to understanding how the policy enforces 
separation. The main benefit of a separation kernel is the control of direct communication 
between applications running in separate partitions. In military systems another concern 
is implicit information flow via covert channels. Non-interference is a security policy that 
enables assessment of covert channels. A covert channel is when implicit signaling 
occurs between users such as through a shared resource or as a result of process timing. 
Showing that a separation kernel prevents covert channels requires that the separation 
policy be at least as strong as non-interference. Non-interference was originally proposed 
in the 80’s by Goguen and Meseguer [GM82], and states that if two users are non-
interfering then actions by one user do not affect the outputs seen by the other user. We 
include a proof that GWV maps to noninterference. 
 
The paper is organized into six sections. In section 2 we review the GWV policy as 
presented in [GWV03]. Section 3 discusses the underlying assumptions and clarifies the 
intent of GWV. Support for noninterference by GWV is presented in section 4. 
                                                 
1 Information about MILS can be found in [ATO04]. 
2 Current emphasis in the MILS architecture is support for traditional government classification levels such 
as unclassified, secret, classified and top secret. However, MILS can also support commercial security 
classifications. 
3 Non-exfiltration indicates that an executing partition will not influence memory segments outside of its 
permitted set of segments, and non-infiltration indicates that the executing partition can only use 
information from its permitted set of segments to affect its execution behavior. 
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Limitations of the GWV policy are discussed in section 5 and we conclude the paper in 
section 6. 
 
2 The GWV Policy 
 
In this section we provide an overview of the GWV policy and restate the policy function 
definitions. The GWV policy formally specifies a policy that will be used in certifying a 
separation kernel implementation. A separation kernel implementation must demonstrate 
that it correctly provides application separation on a single processor system. In general, 
a security policy is deliberately written abstractly in order to capture the main ideas of the 
policy without system specific details. The goal is to create a policy specification that can 
be re-used for multiple implementations. 
 
2.1 GWV Definitions 
 
An actual separation kernel supports multiple partitions each containing a fixed memory 
size. The following functions define a model of multiple partitions, with memory 
segments permanently assigned to partitions. The current function returns the identifier 
of the current partition given a machine state as input.  
 
((current *) ⇒*) 
 
Associated with partitions are a fixed number of memory segments. The memory 
segments are assigned names and can be distinguished from each other. The function segs 
accepts a partition name as input and returns a list of segments associated with the 
partition. 
 
((segs *) ⇒*) 
 
There are also values associated with a memory segment given a particular machine state. 
The function select accepts two inputs, a memory segment and a machine state and 
returns the value associated with a memory segment in that state. 
 
((select * *) ⇒*) 
 
A separation policy requires constraints on direct communication between system 
entities. Entities will be allowed or denied communication according to a policy based on 
government classification level or some other grouping scheme. The communication 
policy will be enforced by a separation kernel. GWV models these communication 
constraints through a function, direct interaction allowed (dia), which represents the set 
of memory segments that are allowed to communicate to the specified segment. 
 
((dia *) ⇒*) 
 
Another function necessary to model a state based policy is next which accepts as input a 
machine state and returns the next machine state representing one step of computation.  
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((next *) ⇒*) 
 
GWV defines three more functions that are used in their policy model. Selectlist accepts a 
memory segment list and returns a list of values associated with the segments. Segslist 
takes a list of partitions and returns the memory segments mapped to that set of partitions. 
Run accepts an initial machine state, st plus a number, n, representing the number of 
computation steps and returns the machine state after execution of n steps. These 
functions are defined as follows: 
 
(defun selectlist (segs st) 
    (if (consp segs) 
        (cons 
             (select (car segs) st) 
             (selectlist cdr segs) st)) 
     nil)) 
 
(defun segslist (partnamelist) 
     (if (consp partnamelist) 
          (append 
               (segs (car partnamelist)) 
               (segslist (cdr partnamelist))) 
      nil)) 
 
(defun run (st n) 
    (if (zp n) 
         st 
      (run (next st) (1 – n))) 
 

The GWV policy is shown in Figure 1, expressed in ACL2 [KMM00]. 

 

(let ((srcsegs (intersection-equal (dia seg) (segs (current st1))))) 
    (implies 
     (and 
      (equal (selectlist srcsegs st1) (selectlist srcsegs st2)) 
      (equal (current st1) (current st2)) 
      (equal (select seg st1) (select seg st2))) 
     (equal 
      (select seg (next st1)) 
      (select seg (next st2)))))) 

 
        Figure 1. GWV Separation Policy in ACL2 
 
GWV is modeled at the level of memory segment interactions. It is a state based model 
where the advancement of system state is through the next function. In their paper, the 
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authors state that the advancement to the next state is a single step of computation. The 
policy says that for any given segment, seg, the values of the segment are only affected 
by memory segments that are allowed to communicate with it and that are part of the 
currently executing partition. If separation is preserved, then the only apparent way that a 
given segment could change is from interaction with segments that are allowed to affect it 
and that are in dia (seg). 
 
3 Clarification of the GWV Policy 
 
Since the GWV policy represents the formal policy description used in certifying a 
separation kernel, it must be clearly written with little chance of misinterpretation. 
Unfortunately, as presented in [GWV03], the policy is vague in several areas and has 
unstated assumptions. In this section we define precisely what GWV is saying and 
discuss underlying concepts critical to understanding the policy.  
 
Three concepts in need of further clarification include the current partition, the next state 
functions and the mapping of segments to segs and dia functions. As part of our research 
with the MILS architecture, we compared GWV with other security information flow 
policies. The mapping between GWV and other policies highlighted the interpretation 
difficulties. One problem we encountered was how to define the content of the currently 
executing partition. An executing process usually has an associated program counter and 
stack. These are typically stored in locations allocated by the operating system and they 
must be accounted for in a model of interacting memory segments. Yet, no mention was 
made of these details in the GWV paper. Another question concerns the next function. 
Does next include one instruction or multiple instructions and what is a precise definition 
of the state argument, st which is input to next? Our final questions include the intent of 
the segs and dia functions. What restrictions, if any, are placed on these functions? The 
authors of GWV were contacted and provided details which were not included in the 
original paper. Highlights from the discussion are presented in the following paragraphs. 
 
3.1 Current Partition State 
 
The separation policy is to be applied at what is called a cut point. A cut point is the point 
in the execution of the separation kernel where the previous partition microprocessor 
state has been saved to a kernel partition save area. At the cut point, the next partition 
has not been loaded into the microprocessor and all partition microprocessor saved states 
are stored in the partition save area inside of kernel-protected memory. At this point 
there is no partition-specific microprocessor state. The program counter, registers, and 
other microprocessor-specific information is stored in memory segments for the specific 
partition. Therefore, it is appropriate for the GWV security policy to not address the 
microprocessor state, a concern that was not addressed in the original paper. However, 
the placement of these values in a segment, require that this segment be addressed 
appropriately by the dia and segs functions (see Section 3.3). 
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3.2 The Next Function 
 
At the cut point, the next partition to be executed is called the current partition. When we 
execute the function, next, several steps are performed. First, the saved microprocessor 
state of current is loaded into the microprocessor. Current is then executed until a 
partition event occurs which has been termed, run-until-partition-event (rupe). At the 
partition-event, the state of the microprocessor is saved back into memory and finally the 
microprocessor is sanitized of any user information within the microprocessor (Figure 2). 
 
 

 
Figure 2. Current partition load, save and execution in St1 and St2 

 
There is no requirement that the next function be a single microprocessor instruction or a 
set of instructions. In the cut point model of the world, it is more realistic to assume that 
the next function implements many microprocessor instructions. However, this 
assumption forces an additional implicit assumption, that externally visible changes to the 
state between cut-points will not be security relevant. A classic security bypass attack is 
to violate a security policy temporarily and then fix it before a check. Here that would 
refer to a write to an I/O memory segment incorrectly and then write over it correctly. A 
system that did this would not violate GWV, but could violate the intent of the security 
policy. 
 
3.3 DIA and SEGS functions. 
 
According to GWV, the segs function refers to the memory segments of a partition. 
Specifically, this means the memory segments that are readable by code in a partition. 
These are the segments that include any data that affects a partitions behavior, including 
code segments and the saved state segments. 
 
The dia function is the instantiation of the security policy in the separation kernel. If seg1 
is not a member of seg(seg2) then data values stored in seg1 are not allowed to influence 
the change in the values in seg2. What does this mean? This means that the following 
must hold: 
 

 

          
Rupe Save Load 

  St1    Current   Partition Event               Next  St1 

          
Rupe Save Load 

  St2    Current Partition Event         Next St2 
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• If seg0 is the memory segment corresponding to the portion of the kernel partition 
save area of partition A, then segs(A) should be equal to dia(seg0) and seg0 is in 
dia(seg) for every segment, seg, where A is permitted by the policy to modify the 
contents of seg. This prevents other partitions from accessing (reading or writing) 
this partition-specific save space. The only exception may be a special purpose 
partition (such as a loader) that will be in dia(seg0) so that it can initialize the 
partition.  

• If the policy states that partition B can modify segment seg in segs(A), then 
segs(B) must be a subset of dia(seg). We place this restriction since commodity 
microprocessors can not follow the flow of information from a source segment, 
through registers, to a destination segment. Therefore, if a partition can use 
information from one segment to modify seg then we allow it to use information 
from any of the segments it can access to modify seg. One caveat with this is that 
a multi-level secure (MLS) partition can not use the kernel to help it prevent 
internal violations of the security policy (e.g., the kernel will not prevent a MLS 
partition from copying top secret data to a secret segment). This is acceptable 
since the intent of the MILS architecture is to use the kernel to support the 
application level security policy, but not to fully implement it. Separation within 
an MLS partition needs to be enforced by the code executing within that partition. 

 
3.4 GWV Non-interference view of the world  
 
In the GWV separation policy, we examine different hypothetical universes, st1 and st2 
with respect to a particular memory segment seg. If these universes have the same current 
partition and, if the memory segments of current that can interact with seg contain the 
same values, and if seg itself is the same in both states, then we can deduce the 
conclusion of the implication in this theorem. The conclusion is that the values of 
memory segments that can not interact with seg are not relevant to the value of seg after 
the step, in other words they can not interfere.  
 
The policy looks at the state of memory at a cut point, steps the microprocessor in two 
different universes, st1 and st2, and then looks at the resulting state of memory again. All 
actions of the security policy are with respect to before and after cut points. When 
executing a run-until-partition-event, multiple instructions will be executed.  
 
Between the two universes, st1 and st2, the value of seg must be consistent at the point 
that memory is examined, both before and after execution. While it is obvious that 
segments in the dia function can change the value of seg, what can be overlooked from 
the GWV paper is that events outside machine execution can also affect the value of seg. 
This allows for the modeling of a machine counter which can be detected by the partition 
of seg or DMA which can change the value of memory segments independently of 
partition execution.   This differs from traditional views of non-interference and must be 
addressed appropriately, as we discuss in a later section.  
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4 Modification of the GWV Policy 
 
In the previous section we presented a clarification of the use of the GWV model. One 
crucial point that we covered, is the use of the dia and segs functions. Assume system s 
has been proven to satisfy GWV policy. As presented in the original paper, it appears that 
a user could take system s and instantiate it with any choice of dia or segs that they 
desire. However, reality is much different.  
 
4.1 Limiting Flow Based on Source Segments 

 
Assume seg1 and seg2 are in segs(B), and seg1 is also in dia(seg), but seg2 is not. The 
intent of these memberships is that information in seg1 and seg2 be readable by code 
executing in partition B and that the information contained in seg1 is authorized to flow 
into seg. A GWV system is expected to enable the information flow from seg1 and 
prevent the flow from seg2.  

 
For commercial microprocessors and operating systems, this capability is too powerful. 
Special purpose hardware, or emulation software, is needed to provide the ability to 
restrict information flow both from a particular memory segment to a destination 
segment. For example, consider the cutpoint-to-cutpoint verification approach discussed 
in the previous section. During a partition’s execution window it could copy information 
from either seg1 or seg2 into a register and then write the results into seg. The only way 
to stop the copy from seg2 is to tag the information based on its original source. This is 
not a capability of modern commercial microprocessors. Therefore, we specified the 
following theorem in the encapsulation model of separation: 

 
(defthm dia-complete 
   (implies  
        (member-equal seg (segs part)) 
   (subsetp-equal (segs part) (dia seg))) 
 

Any full system specification will necessarily have to satisfy the theorem along with the 
separation theorem. 
 
4.2 Limiting Flow Based on Trustworthiness of Code 
 
High assurance systems typically are built from a combination of trustworthy and 
untrustworthy components. The trustworthy components are responsible for control of 
the critical aspects of the system, and as such must be rigorously evaluated to perform 
their operations correctly. The purpose of a separation kernel is to enable the secure and 
safe deployment of trusted and un-trusted components within a single computing system. 
The separation kernel maintains data separation, fault-containment and controlled 
information flow. As stated, the GWV policy does not specifically provide for this 
capability unless the user of the policy precisely implements the cut-point model of 
verification. All state aspects of a partition must be represented by the segments. If a 
portion of state is not mapped to a segment then we can have some problems. 
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Figure 3. A firewall example with an untrusted audit process 
 
 
Consider the system depicted in Figure 3, derived from the original GWV paper. In this 
system, as graphically depicted, we wish to allow the ‘firewall to take information from a 
memory segment seg1 and transfer it to the outbox memory segment, only after 
“blackening” it.  Assume we wish to have an auditing process, untrusted, that monitors 
information that is sent from seg1 an creates an audit record of it in seg2. If the user of 
the GWV policy does not specify microprocessor state and code in a memory segment, 
there is nothing to prevent untrusted from writing to the outbox (since information flow is 
specified only in terms of sources of information, which in this case is seg1, and not who  
is transferring the information). If we follow the GWV example and use the defaxiom 
approach of specifying the mapping of segs and dia, we can define the following 
mappings. 
 

dia(outbox)  = {seg1}  
dia(seg1)  = { } 
dia(seg2)  = {seg1}  
segs(firewall)  = { seg1 } 
segs(b)  =  { outbox } 
segs(untrusted) = { seg1, seg2 } 

 
With these mappings and an abstract definition of next, we have shown that it is possible 
for untrusted to modify outbox; in other words, it does not have to be ‘firewall executing 
code to modify outbox. 
 
(defthm untrusted-writing 
   (implies     
     (and  
         (not (equal (select outbox (next st1)) (select outbox (next st2))) 
         (equal (current st1) (current st2))) 
     (equal (current st1) ‘firewall))) 

seg1 

seg1 

firewall

untrusted

outbox

b 
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A modification to the dia function to include partition identification information would 
correct the problem of unauthorized writing.  
 
Note that the corrections we are suggesting to GWV are important for creating a strong, 
non-bypassable security policy that can assist in the certification of a separation kernel. 
We are not suggesting that GWV needs substantial rewriting or has major flaws. 
 
5 GWV and Non-interference 
 
In this section we discuss the application of the GWV policy in the context of a desired 
non-interference policy. For the purposes of this paper we will use the state-machine 
model of non-interference as proposed by Bevier and Young [BY94].  
 
In the state-machine model of non-interference there are two specific theorems that must 
be proven. If these theorems hold true of the system, which are based on the security of 
single steps in the systems, then when the system starts in a secure state, it stays in a 
secure state. These theorems are the inductive steps of an inductive proof of the security 
of the system during a run. For details of the proof, the reader is referred to Bevier and 
Young’s paper [BY94]. 
 
For our purposes in this paper we are only concerned about mapping GWV to the 
inductive steps. Specifically, we wish to map to the steps defined for deterministic 
systems that support an intransitive security policy4, which we will call BY in the 
following.  These steps are WSC (weakly step consistent) and LR (locally respects).  
 
5.1 Weakly Step Consistent 
 
A system that is weakly step consistent is one that exhibits non-infiltration. The results of 
executing a partition will be consistent with its view of the world. In the notation of BY: 
 

),(~),(~~ 212121 bsStepbsStepssssab
aba

⇒∧⇒α  
 
This equation states that if b is allowed to communicate with a, then if two states s1 and 
s2 are similar with respect to a’s view of the world and b’s view of the world, then a’s 
view of the world remains consistent after stepping b one step.  
 
How do we map GWV to this policy? First, we need to notice that GWV has a finer 
granularity of permission than BY.  GWV specifies information flow from b to specific 
segments of a. We have two choices here: 

                                                 
4 A transitive policy requires that if information can flow from a to b, and from b to c, then it must be able 
to flow from a to c. The GWV policy’s dia function does not require transitivity. The GWV policy allows 
for specification of a policy that forces information flow between entities to be routed through a specific 
intermediary – which is at the heart of the MILS approach to security. 
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• If we want BY precisely specified we require that if b can communicate with a 

then all segments in b are in the dia of each segment in a. 
• When instantiating the security domains of BY, we specify them in terms of 

modifiable segments. So instead of specifying b can communicate with a, we can 
say b can communicate with aj, where j is the index of the memory segment in a 
that b can write to.  

 
These solutions are easy to implement in ACL2. 
 
5.2 Locally Respects 
 
A system locally respects the policy if it satisfies non-exfiltration. The results of 
execution of partition b should not modify the state of partition a if b can not 
communicate with a.  In the notation of BY this is: 
 

sbsStepabnot
a
~),()( ⇒α  

 
Therefore if b cannot communicate with a then executing b does not modify the state in 
a’s view of the world. This can not be directly implemented by GWV, since GWV allows 
spontaneous influences of the state. We need to modify this requirement as follows: 

),(~),(~)( 2121 bsStepbsStepssabnot
aa

⇒⇒α  
 
This states that if b can not communicate with a then if s1 and s2 are the same in a’s view 
of the world then a’s view changes consistently irregardless of b’s view of the world.  
 
These solutions are easy to implement in ACL2. 
 
6 Conclusion 
Formal models can be used to communicate the desired behavior of a system, and the 
assumptions of that system. Using the formal models represented by GWV we hav\] 
+e been able to raise some questions concerning the use of the models, and discuss these 
with the authors. In any formal system we find that you must be careful about your 
assumptions, especially when you use a system with axiomatization behavior (such as the 
ACL2 encapsulation model). Encapsulation allows you to prove theorems about an 
exemplary model and then export those theorems without restrictions on the specification 
of the functions that are implicit in the model. We demonstrated this with an example. 
 
Mapping GWV to the BY non-interference policy proved doable through modification of 
the non-interference equations. These changes were necessary to accommodate the 
differences between GWV and BY notions of system state change and entity 
identification. We proved that GWV is at least as strong as general non-interference and 
supports intransitive non-interference, which is useful for correctness proofs of 
downgraders and encryption components.  
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