
 1

An Analysis of the GWV Security Policy

Jim Alves-Foss and Carol Taylor

Center for Secure and Dependable Systems
University of Idaho
Moscow, ID 83844

{jimaf, ctaylor@cs.uidaho.edu}

Abstract
The use of formal models of security policies are required for high assurance
security systems. One benefit of formal methods is that it allows for a precise
presentation of items, allowing for analysis by others and subsequent discussion. In
this paper we examine the presentation and use of the formal security policy
developed in ACL2 as presented by Greve, Wilding and Vanfleet in 2003. We found
that the ACL2 model and corresponding textual description left some points
ambiguous. We clarify these points in this paper.

1 Introduction

The need for computer systems that operate safely and securely has never been greater.
Society increasingly relies on computers for a wide range of services from simple
communication to delivery of electricity, water and other essential services. Yet, the
specification and verification of nonfunctional system properties such as safety or
security is not straightforward and a number of methods have been proposed for insuring
that computers exhibit desired behavior (safety) plus exhibit no behavior that is not
specifically allowed (security).

The process of evaluating software for nonfunctional properties involves assessment that
the software demonstrates the stated properties. For military systems and avionics
systems on commercial aircraft, assessment is typically accomplished through external
review and certification.

For software avionics systems, the FAA is the certifying authority. They have adopted a
document, DO-178B [RTCA92], that specifies how software should be developed that is
part of a commercial aircraft. While it is not a requirement that avionics system software
follow DO-178B, developers must demonstrate to the FAA that their software meets the
same high level of development criteria if they choose an alternate development process.

In guaranteeing security, the security community has adopted the Common Criteria (CC)
[Nis99] as its assurance standard. The CC ensures product security through independent
verification against seven predefined assurance levels, Evaluation Assurance Levels
(EAL1 – EAL7). At the highest assurance levels, EAL6 and 7, formal specification of a
product’s security policy is required. The high level design of the target component must
then be mathematically proven to satisfy the formal policy specification.

 2

In this paper, we present a clarification of a security policy modeled in ACL2 presented
by Greves, Wilding and Vanfleet [GWV03]. The security policy presented in GWV
models a separation kernel, which enforces partitioning between applications running on
a single processor system. Separation is a concept that was introduced by John Rushby as
a way to build and specify secure systems [Rus81]. A separation kernel forms the basis
for an architecture that handles Multiple Independent Levels of Security (MILS). MILS1
is an on-going collaborative effort between government, academia and industry to build a
high assurance architecture for real-time embedded systems. The MILS architecture is a
three-tiered architecture consisting of a separation kernel, middleware and applications
where each layer enables the higher layers to enforce their own security policies
[ATO04]. The overall security policy of the MILS architecture is one of data isolation
and information flow in order to support data and applications at different classification
levels.2

Implementations of a separation kernel will need to be certified at a CC level of at least
EAL 6. Since certification at that level requires a formal mapping between the separation
security policy and an implementation, it is important that the separation security policy
used in the certification be clearly stated so that the full intent of the policy is supported
by the implementation. While the GWV policy clearly defines the basic separation
axioms of non-exfiltration and non-infiltration3, other concepts involving definitions of
state and the active partition are somewhat ambiguous. We found that a reader of the
original GWV paper could possibly misapply the presented policy. This paper is an
attempt to prevent such misuse.

In our discussion of the GWV policy, we present several underlying concepts that were
left out of the original paper but are important to understanding how the policy enforces
separation. The main benefit of a separation kernel is the control of direct communication
between applications running in separate partitions. In military systems another concern
is implicit information flow via covert channels. Non-interference is a security policy that
enables assessment of covert channels. A covert channel is when implicit signaling
occurs between users such as through a shared resource or as a result of process timing.
Showing that a separation kernel prevents covert channels requires that the separation
policy be at least as strong as non-interference. Non-interference was originally proposed
in the 80’s by Goguen and Meseguer [GM82], and states that if two users are non-
interfering then actions by one user do not affect the outputs seen by the other user. We
include a proof that GWV maps to noninterference.

The paper is organized into six sections. In section 2 we review the GWV policy as
presented in [GWV03]. Section 3 discusses the underlying assumptions and clarifies the
intent of GWV. Support for noninterference by GWV is presented in section 4.

1 Information about MILS can be found in [ATO04].
2 Current emphasis in the MILS architecture is support for traditional government classification levels such
as unclassified, secret, classified and top secret. However, MILS can also support commercial security
classifications.
3 Non-exfiltration indicates that an executing partition will not influence memory segments outside of its
permitted set of segments, and non-infiltration indicates that the executing partition can only use
information from its permitted set of segments to affect its execution behavior.

 3

Limitations of the GWV policy are discussed in section 5 and we conclude the paper in
section 6.

2 The GWV Policy

In this section we provide an overview of the GWV policy and restate the policy function
definitions. The GWV policy formally specifies a policy that will be used in certifying a
separation kernel implementation. A separation kernel implementation must demonstrate
that it correctly provides application separation on a single processor system. In general,
a security policy is deliberately written abstractly in order to capture the main ideas of the
policy without system specific details. The goal is to create a policy specification that can
be re-used for multiple implementations.

2.1 GWV Definitions

An actual separation kernel supports multiple partitions each containing a fixed memory
size. The following functions define a model of multiple partitions, with memory
segments permanently assigned to partitions. The current function returns the identifier
of the current partition given a machine state as input.

((current *) ⇒*)

Associated with partitions are a fixed number of memory segments. The memory
segments are assigned names and can be distinguished from each other. The function segs
accepts a partition name as input and returns a list of segments associated with the
partition.

((segs *) ⇒*)

There are also values associated with a memory segment given a particular machine state.
The function select accepts two inputs, a memory segment and a machine state and
returns the value associated with a memory segment in that state.

((select * *) ⇒*)

A separation policy requires constraints on direct communication between system
entities. Entities will be allowed or denied communication according to a policy based on
government classification level or some other grouping scheme. The communication
policy will be enforced by a separation kernel. GWV models these communication
constraints through a function, direct interaction allowed (dia), which represents the set
of memory segments that are allowed to communicate to the specified segment.

((dia *) ⇒*)

Another function necessary to model a state based policy is next which accepts as input a
machine state and returns the next machine state representing one step of computation.

 4

((next *) ⇒*)

GWV defines three more functions that are used in their policy model. Selectlist accepts a
memory segment list and returns a list of values associated with the segments. Segslist
takes a list of partitions and returns the memory segments mapped to that set of partitions.
Run accepts an initial machine state, st plus a number, n, representing the number of
computation steps and returns the machine state after execution of n steps. These
functions are defined as follows:

(defun selectlist (segs st)
 (if (consp segs)
 (cons
 (select (car segs) st)
 (selectlist cdr segs) st))
 nil))

(defun segslist (partnamelist)
 (if (consp partnamelist)
 (append
 (segs (car partnamelist))
 (segslist (cdr partnamelist)))
 nil))

(defun run (st n)
 (if (zp n)
 st
 (run (next st) (1 – n)))

The GWV policy is shown in Figure 1, expressed in ACL2 [KMM00].

(let ((srcsegs (intersection-equal (dia seg) (segs (current st1)))))
 (implies
 (and
 (equal (selectlist srcsegs st1) (selectlist srcsegs st2))
 (equal (current st1) (current st2))
 (equal (select seg st1) (select seg st2)))
 (equal
 (select seg (next st1))
 (select seg (next st2))))))

 Figure 1. GWV Separation Policy in ACL2

GWV is modeled at the level of memory segment interactions. It is a state based model
where the advancement of system state is through the next function. In their paper, the

 5

authors state that the advancement to the next state is a single step of computation. The
policy says that for any given segment, seg, the values of the segment are only affected
by memory segments that are allowed to communicate with it and that are part of the
currently executing partition. If separation is preserved, then the only apparent way that a
given segment could change is from interaction with segments that are allowed to affect it
and that are in dia (seg).

3 Clarification of the GWV Policy

Since the GWV policy represents the formal policy description used in certifying a
separation kernel, it must be clearly written with little chance of misinterpretation.
Unfortunately, as presented in [GWV03], the policy is vague in several areas and has
unstated assumptions. In this section we define precisely what GWV is saying and
discuss underlying concepts critical to understanding the policy.

Three concepts in need of further clarification include the current partition, the next state
functions and the mapping of segments to segs and dia functions. As part of our research
with the MILS architecture, we compared GWV with other security information flow
policies. The mapping between GWV and other policies highlighted the interpretation
difficulties. One problem we encountered was how to define the content of the currently
executing partition. An executing process usually has an associated program counter and
stack. These are typically stored in locations allocated by the operating system and they
must be accounted for in a model of interacting memory segments. Yet, no mention was
made of these details in the GWV paper. Another question concerns the next function.
Does next include one instruction or multiple instructions and what is a precise definition
of the state argument, st which is input to next? Our final questions include the intent of
the segs and dia functions. What restrictions, if any, are placed on these functions? The
authors of GWV were contacted and provided details which were not included in the
original paper. Highlights from the discussion are presented in the following paragraphs.

3.1 Current Partition State

The separation policy is to be applied at what is called a cut point. A cut point is the point
in the execution of the separation kernel where the previous partition microprocessor
state has been saved to a kernel partition save area. At the cut point, the next partition
has not been loaded into the microprocessor and all partition microprocessor saved states
are stored in the partition save area inside of kernel-protected memory. At this point
there is no partition-specific microprocessor state. The program counter, registers, and
other microprocessor-specific information is stored in memory segments for the specific
partition. Therefore, it is appropriate for the GWV security policy to not address the
microprocessor state, a concern that was not addressed in the original paper. However,
the placement of these values in a segment, require that this segment be addressed
appropriately by the dia and segs functions (see Section 3.3).

 6

3.2 The Next Function

At the cut point, the next partition to be executed is called the current partition. When we
execute the function, next, several steps are performed. First, the saved microprocessor
state of current is loaded into the microprocessor. Current is then executed until a
partition event occurs which has been termed, run-until-partition-event (rupe). At the
partition-event, the state of the microprocessor is saved back into memory and finally the
microprocessor is sanitized of any user information within the microprocessor (Figure 2).

Figure 2. Current partition load, save and execution in St1 and St2

There is no requirement that the next function be a single microprocessor instruction or a
set of instructions. In the cut point model of the world, it is more realistic to assume that
the next function implements many microprocessor instructions. However, this
assumption forces an additional implicit assumption, that externally visible changes to the
state between cut-points will not be security relevant. A classic security bypass attack is
to violate a security policy temporarily and then fix it before a check. Here that would
refer to a write to an I/O memory segment incorrectly and then write over it correctly. A
system that did this would not violate GWV, but could violate the intent of the security
policy.

3.3 DIA and SEGS functions.

According to GWV, the segs function refers to the memory segments of a partition.
Specifically, this means the memory segments that are readable by code in a partition.
These are the segments that include any data that affects a partitions behavior, including
code segments and the saved state segments.

The dia function is the instantiation of the security policy in the separation kernel. If seg1
is not a member of seg(seg2) then data values stored in seg1 are not allowed to influence
the change in the values in seg2. What does this mean? This means that the following
must hold:

Rupe Save Load

 St1 Current Partition Event Next St1

Rupe Save Load

 St2 Current Partition Event Next St2

 7

• If seg0 is the memory segment corresponding to the portion of the kernel partition
save area of partition A, then segs(A) should be equal to dia(seg0) and seg0 is in
dia(seg) for every segment, seg, where A is permitted by the policy to modify the
contents of seg. This prevents other partitions from accessing (reading or writing)
this partition-specific save space. The only exception may be a special purpose
partition (such as a loader) that will be in dia(seg0) so that it can initialize the
partition.

• If the policy states that partition B can modify segment seg in segs(A), then
segs(B) must be a subset of dia(seg). We place this restriction since commodity
microprocessors can not follow the flow of information from a source segment,
through registers, to a destination segment. Therefore, if a partition can use
information from one segment to modify seg then we allow it to use information
from any of the segments it can access to modify seg. One caveat with this is that
a multi-level secure (MLS) partition can not use the kernel to help it prevent
internal violations of the security policy (e.g., the kernel will not prevent a MLS
partition from copying top secret data to a secret segment). This is acceptable
since the intent of the MILS architecture is to use the kernel to support the
application level security policy, but not to fully implement it. Separation within
an MLS partition needs to be enforced by the code executing within that partition.

3.4 GWV Non-interference view of the world

In the GWV separation policy, we examine different hypothetical universes, st1 and st2
with respect to a particular memory segment seg. If these universes have the same current
partition and, if the memory segments of current that can interact with seg contain the
same values, and if seg itself is the same in both states, then we can deduce the
conclusion of the implication in this theorem. The conclusion is that the values of
memory segments that can not interact with seg are not relevant to the value of seg after
the step, in other words they can not interfere.

The policy looks at the state of memory at a cut point, steps the microprocessor in two
different universes, st1 and st2, and then looks at the resulting state of memory again. All
actions of the security policy are with respect to before and after cut points. When
executing a run-until-partition-event, multiple instructions will be executed.

Between the two universes, st1 and st2, the value of seg must be consistent at the point
that memory is examined, both before and after execution. While it is obvious that
segments in the dia function can change the value of seg, what can be overlooked from
the GWV paper is that events outside machine execution can also affect the value of seg.
This allows for the modeling of a machine counter which can be detected by the partition
of seg or DMA which can change the value of memory segments independently of
partition execution. This differs from traditional views of non-interference and must be
addressed appropriately, as we discuss in a later section.

 8

4 Modification of the GWV Policy

In the previous section we presented a clarification of the use of the GWV model. One
crucial point that we covered, is the use of the dia and segs functions. Assume system s
has been proven to satisfy GWV policy. As presented in the original paper, it appears that
a user could take system s and instantiate it with any choice of dia or segs that they
desire. However, reality is much different.

4.1 Limiting Flow Based on Source Segments

Assume seg1 and seg2 are in segs(B), and seg1 is also in dia(seg), but seg2 is not. The
intent of these memberships is that information in seg1 and seg2 be readable by code
executing in partition B and that the information contained in seg1 is authorized to flow
into seg. A GWV system is expected to enable the information flow from seg1 and
prevent the flow from seg2.

For commercial microprocessors and operating systems, this capability is too powerful.
Special purpose hardware, or emulation software, is needed to provide the ability to
restrict information flow both from a particular memory segment to a destination
segment. For example, consider the cutpoint-to-cutpoint verification approach discussed
in the previous section. During a partition’s execution window it could copy information
from either seg1 or seg2 into a register and then write the results into seg. The only way
to stop the copy from seg2 is to tag the information based on its original source. This is
not a capability of modern commercial microprocessors. Therefore, we specified the
following theorem in the encapsulation model of separation:

(defthm dia-complete
 (implies
 (member-equal seg (segs part))
 (subsetp-equal (segs part) (dia seg)))

Any full system specification will necessarily have to satisfy the theorem along with the
separation theorem.

4.2 Limiting Flow Based on Trustworthiness of Code

High assurance systems typically are built from a combination of trustworthy and
untrustworthy components. The trustworthy components are responsible for control of
the critical aspects of the system, and as such must be rigorously evaluated to perform
their operations correctly. The purpose of a separation kernel is to enable the secure and
safe deployment of trusted and un-trusted components within a single computing system.
The separation kernel maintains data separation, fault-containment and controlled
information flow. As stated, the GWV policy does not specifically provide for this
capability unless the user of the policy precisely implements the cut-point model of
verification. All state aspects of a partition must be represented by the segments. If a
portion of state is not mapped to a segment then we can have some problems.

 9

Figure 3. A firewall example with an untrusted audit process

Consider the system depicted in Figure 3, derived from the original GWV paper. In this
system, as graphically depicted, we wish to allow the ‘firewall to take information from a
memory segment seg1 and transfer it to the outbox memory segment, only after
“blackening” it. Assume we wish to have an auditing process, untrusted, that monitors
information that is sent from seg1 an creates an audit record of it in seg2. If the user of
the GWV policy does not specify microprocessor state and code in a memory segment,
there is nothing to prevent untrusted from writing to the outbox (since information flow is
specified only in terms of sources of information, which in this case is seg1, and not who
is transferring the information). If we follow the GWV example and use the defaxiom
approach of specifying the mapping of segs and dia, we can define the following
mappings.

dia(outbox) = {seg1}
dia(seg1) = { }
dia(seg2) = {seg1}
segs(firewall) = { seg1 }
segs(b) = { outbox }
segs(untrusted) = { seg1, seg2 }

With these mappings and an abstract definition of next, we have shown that it is possible
for untrusted to modify outbox; in other words, it does not have to be ‘firewall executing
code to modify outbox.

(defthm untrusted-writing
 (implies
 (and
 (not (equal (select outbox (next st1)) (select outbox (next st2)))
 (equal (current st1) (current st2)))
 (equal (current st1) ‘firewall)))

seg1

seg1

firewall

untrusted

outbox

b

 10

A modification to the dia function to include partition identification information would
correct the problem of unauthorized writing.

Note that the corrections we are suggesting to GWV are important for creating a strong,
non-bypassable security policy that can assist in the certification of a separation kernel.
We are not suggesting that GWV needs substantial rewriting or has major flaws.

5 GWV and Non-interference

In this section we discuss the application of the GWV policy in the context of a desired
non-interference policy. For the purposes of this paper we will use the state-machine
model of non-interference as proposed by Bevier and Young [BY94].

In the state-machine model of non-interference there are two specific theorems that must
be proven. If these theorems hold true of the system, which are based on the security of
single steps in the systems, then when the system starts in a secure state, it stays in a
secure state. These theorems are the inductive steps of an inductive proof of the security
of the system during a run. For details of the proof, the reader is referred to Bevier and
Young’s paper [BY94].

For our purposes in this paper we are only concerned about mapping GWV to the
inductive steps. Specifically, we wish to map to the steps defined for deterministic
systems that support an intransitive security policy4, which we will call BY in the
following. These steps are WSC (weakly step consistent) and LR (locally respects).

5.1 Weakly Step Consistent

A system that is weakly step consistent is one that exhibits non-infiltration. The results of
executing a partition will be consistent with its view of the world. In the notation of BY:

),(~),(~~ 212121 bsStepbsStepssssab
aba

⇒∧⇒α

This equation states that if b is allowed to communicate with a, then if two states s1 and
s2 are similar with respect to a’s view of the world and b’s view of the world, then a’s
view of the world remains consistent after stepping b one step.

How do we map GWV to this policy? First, we need to notice that GWV has a finer
granularity of permission than BY. GWV specifies information flow from b to specific
segments of a. We have two choices here:

4 A transitive policy requires that if information can flow from a to b, and from b to c, then it must be able
to flow from a to c. The GWV policy’s dia function does not require transitivity. The GWV policy allows
for specification of a policy that forces information flow between entities to be routed through a specific
intermediary – which is at the heart of the MILS approach to security.

 11

• If we want BY precisely specified we require that if b can communicate with a

then all segments in b are in the dia of each segment in a.
• When instantiating the security domains of BY, we specify them in terms of

modifiable segments. So instead of specifying b can communicate with a, we can
say b can communicate with aj, where j is the index of the memory segment in a
that b can write to.

These solutions are easy to implement in ACL2.

5.2 Locally Respects

A system locally respects the policy if it satisfies non-exfiltration. The results of
execution of partition b should not modify the state of partition a if b can not
communicate with a. In the notation of BY this is:

sbsStepabnot
a
~),()(⇒α

Therefore if b cannot communicate with a then executing b does not modify the state in
a’s view of the world. This can not be directly implemented by GWV, since GWV allows
spontaneous influences of the state. We need to modify this requirement as follows:

),(~),(~)(2121 bsStepbsStepssabnot
aa

⇒⇒α

This states that if b can not communicate with a then if s1 and s2 are the same in a’s view
of the world then a’s view changes consistently irregardless of b’s view of the world.

These solutions are easy to implement in ACL2.

6 Conclusion
Formal models can be used to communicate the desired behavior of a system, and the
assumptions of that system. Using the formal models represented by GWV we hav\]
+e been able to raise some questions concerning the use of the models, and discuss these
with the authors. In any formal system we find that you must be careful about your
assumptions, especially when you use a system with axiomatization behavior (such as the
ACL2 encapsulation model). Encapsulation allows you to prove theorems about an
exemplary model and then export those theorems without restrictions on the specification
of the functions that are implicit in the model. We demonstrated this with an example.

Mapping GWV to the BY non-interference policy proved doable through modification of
the non-interference equations. These changes were necessary to accommodate the
differences between GWV and BY notions of system state change and entity
identification. We proved that GWV is at least as strong as general non-interference and
supports intransitive non-interference, which is useful for correctness proofs of
downgraders and encryption components.

 12

References

[ATO04] Alves-Foss, J., C. Taylor and P. Oman. “A multi-layered approach to security

in high assurance system development”. In Proceedings of 37th Annual
Hawaii Int. Conf. on System Science (HICSS-37), Jan. 5-8, 2004, Hawaii,
2004.

[BY94] Bevier, W. and Young, W. “A state-based approach to noninterference”,

Journal of Computer Security, Vol 3. pp. 55-70, 1994.

[GM82] Goguen, J.A. and J. Meseguer. “Security policies and security models”. In

Proceedings of IEEE Symposium on Security and Privacy, pg. 11-20,
Oakland, CA 1982.

[GWV03] Greve, D. and M. Wilding and W.M. Vanfleet. “A Separation Kernel Formal

Security Policy”, In Proceedings of the ACL2 Workshop 2003, July 2003.

[KMM00] Kaugman, M., P. Maniolios, J.S. Moore. Computer-aided Reasoning: An

Approach. Kluwar Adademic Publ., 2000.

[MWTG00] Martin W., P.White, F.S. Taylor and A. Goldberg. “Formal construction of

the mathematically analyzed separation kernel”. In Proc. of 15th IEEE Int.
Conf. on Automated Software Eng. (ASE ’00), 2000.

[Nis99] NIST. Common Criteria for Information Security Evaluation. Parts 1, 2, 3.

1999. http://csrc.nist.gov/cc/ccv20/ccv2list.htm, NIST, 1999.

[RTC92] RTCA. DO-178B/ED-12B. “Software Considerations in Airborne Systems

and Equipment Certification”. RTCA, 1992.

[Rus81] Rushby, J. “Design and verification of secure systems,” In Proc. ACM

Symposium on Operating System Principles, Vol. 15, pp. 12-21, 1981.

