ACdinNg a t)
mechanis

\/ernon Austel
BV




uitline
Vl/hat a typed ACL2 might look like

Vague proposal concerning

how to change ACL2 to allow
experimentation with type systems
>

-allow macros to take the ACL2 worl
and state as parameters

> that would be boring anyway

d

> this could also be used for other purposes

There Is no time to describe my type system




o ty/pe o not to type?

Let's avoid the question...

It is unreasonable for ACL2 to suddenly
start requiring functions to be typed

It is probably not useful to have a typed and untyped mode
(where either all functions are typed or none are).

Untyped functions and theorems must be interoperable
with typed ones.

Internal representation must be the same
(aside from some extra information). |




How Woeuld types affect me?

ost of the time, the type system will infer a type
for your functions; you may occasionally have to
add type-annotations or change functions to help
the type system infer their type

If the type system infers hypotheses for theorems,
u may be able to stop writing (true-listp |)
and (integerp n) all the time

If the type system filters such type hypotheses
from the proof output, you don't have to look at them

This is all up to you and your type system -




=URICLION LY PES

uldn't need to think about
iInk about type-prescription

erive one for a function,
oerhaps using a new xargs

V)

list 0) (list 0) (list 0))))

pend (cdr xX) y))))




dding type hypotheses to theorems

This event falils:
(defthm myappend-nil
(equal (myappend x nil) x))

But as a typed theorem, it might succeed:
(defthmt myappend-nil
(equal (myappend x nil) x))

That's because the type system
Ight generate this as the goal to prove:

(equal (myappend x nil) x)




pat's i

Type-checking functions helps catch annoyil
little bugs quickly.

Al type system takes care of adding type hyg
to theorems, so you can forget about them.

This doesn't affect the proof engine or the lo
It can have no affect on soundness.

Al typed theorem or function is no different fr
untyped one; they are interoperable.

A type system may not be able to work with
functions, but you can always assign a type
function after it was defined.

ng

jotheses

gic.

om an

untyped
to a




e goal: allewing an untrusted type system

No one knows what kind of type system would be
acceptable to the ACL2 community. It woul
probably take a lot of experimentation to find out.

The ACL2 maintainers don't have time for this.

The hope is that there is a way that the maintainers
could modify ACL2 so that ordinary users could
experiment with types without compromisin

the soundness of the system.

The system changes must not involve a lot of work.
|




e can aliready almost do that

The problem is that a type system needs access to the
orld (and to state for efficient macro expansion).

That means the type system cannot be implemented
just using macros; macros do not have access

to the world or state, only functions do.

(Macros can expand into function calls that

take state as a parameter, though).

However, user-defined functions cannot occur
ithin encapsulate and inside books; only

embedded events (and macros) are permitted.

Let us review why this is. |




N

clude-book

events inside a book are processed twice:
> during certification (in certify-book)
> during execution of include-book

Roughly speaking, certify-book checks that th
theorem events are true, and include-book
just modifies the current world by processing
the events in the book.

Include-book will execute using a different wo

than certify-book; the system must ensure that

the same functions and theorems
are added when include-book I1s executed.

e

rid




oj

[cCtur

C

o Include-book processing

)00k

00k events

some other world

/

L~




I
tr

gS In the two passes

(if (Id-skip-proofsp state)

(defthm thm-for-second-pass nil) ;;
(defthm thm-for-first-pass t)) i,

So: we can only use code that is trus

ght thing in both passes. Embedde

ut how would we be sure?) |
|

preplem - code may do different

nis Is slightly modified from the example in the
ACL2 documentation. It must not be

allowed.

Include-book
certify-book

ted to do the
events are

usted to do this. (Other code may as well,




Wi

.
b
0

T

at about macros?

(defmacro unsound (state)

ne ACI2 documentation does not sa)
ut macros are not allowed access to
r to the world for the same reasons.

(if (Id-skip-proofsp state)
'(defthm thm-for-second-pass nil)
'(defthm thm-for-first-pass t)))

y SO,
state

nis would cause problems because
(unsound state)

would expand to different things in the two passes.




CSan we avoid that problem?

es. The guestion is how much work it would
require, and how clean the result would be.

he central problem is that macros might expand
to different things in the two passes.

e could avoid that if we save the expansion from
the first pass and re-use it in the second pass.

Include-book would not read the events in the

book, but rather a file that certify-book generates. -
|




—

book events

certiky-book

ert
1ew theorems from book

certification world

l

USing the macro expansion

expand

some other world

\
_ Mmacro-expanded

Ification world +

Macros

book events

Include-book

some other world +

new theorems from book




lem?

0Ses the same

pass; the macro-expa
syntactic checks
e themselves macros).

ite ...)

dded event.

\nded




ossSible solutions

Drop these checks in the second pass?
After all, the code passed the check once already.
There remains the sensative problem of ensuring
that the macro expansion saved from certification
really does correspond to the book (file system security).

> Just use the expansions as a check in the second pass?
That Is, expand macros as usual in the second pass,

but check the result of the expansion with

the saved expansion; if there is a difference, fall.

There must be a 1-1 correspondence. All event macros

ust expand the same way in both passes (“local").
|

Don't expand embedded event macros?

omplicates macro expansion.




ounds like a lot of work...

...for something you really don't care about?
This would be useful for any system that needs
access to function bodies to generate theorems.

Example: inferring measure theorems
(defun parse-type-pointers (basetype input)
If (eq (car input) '*)

(parse-type-pointers (mk-ptr-type basetype) (cdr input))
(mv basetype input)))

fer-measure-thm parse-type-pointers)

(defthm acl2-count-parse-type-pointers
<= (acl2-count (mv-nth 1 (parse-type-pointers types input)))
(acl2-count input)) |

:rule-classes (:linear))




uT

>

nmany.

dding a type system would inconve

nience no one

> Typed and untyped code would be interoperable

>

he type system need not be trusted
> It only poses a soundness concern for

mbedded events

> non-trivial changes to include-book and

> the change would also be useful for ¢

ncapsulate would be required

> | don't know what kind of change

ould be acceptable

bther purposes




