A Case Study In Using ACL?2
for Feature-Oriented
Verification

Kathi Fisler and Brian Roberts
WPI Computer Science



Configurations of Features

verify signature

encrypt

mailhost

[Hall, 2000]

/ remail

addressbook \

decrypt
/
filter
/ signing
auto-respond
forward




w ®© = Cc F O d® TI

Feature-Oriented Design

Modules encapsulate features, not objects

Command | User Pref | Incoming | Outgoing
loop Database | Messages | Messages
auto-reply | set-msg, | response | check/send
enable reply
encryption | set-key, key check encrypt
enable encrypted | message

Components




Feature-Rich Systems

B Telecommunications industry

m NASA'’s next-generation software base
E Symbian

m Aspects

Still greatly lacking in verification tools



Verification Challenges

m Exponential number of possible products!
— verify individual features once
— verify compositions cheaply

m Feature interactions
— does voice malil always engage after 4 rings?

m Features can share data



The Case Study

m Model an email system with four features
— Host/postmaster (report unknown users)
— Auto-response (aka vacation)
— Encryption
— Decryption

m Determine lemmas to modularly
— prove properties of individual features
— confirm properties and detect interactions



A Basic Emall System

simulate-network (hostenv, userenv, actions)

l

do-actions (...) —— do-mall



Modeling Features

Command User Pref Incoming Outgoing
loop Database Messages Messages
auto-reply set-msg, response check/send
enable reply
encryption set-key, key check encrypt
enable encrypted message

One function for each extension to the system
m add new actions

H aC

H acC

d user Info
m add processing on incoming messages
d processing on outgoing messages




A Basic Emall System

simulate-network (hostenv, userenv, actions)

l

do-actions (...) —— do-mall

e

do-Init do-command do-send do-deliver

+
emall-auto-init email-auto-incoming host-incoming



Customizing Products

(defconst *features-present™ '(auto encrypt))

(defund do-init (user)
(let-seq user
(fif encrypt (email-encrypt-init user) user)
(fif decrypt (email-decrypt-init user) user)
(fif auto  (email-auto-init user) user)
user))



Verifying Features

If user has auto-response enabled and
sender not in prev-recip list, send message

m Needs —init and -incoming functions

m Verify against product containing base
system and auto-response feature

— theorem refers to s/mulate-network
— not really modular



Lightweight Product Verification

Add host to product with auto-response:
prove auto-response property still holds

m build (new) product including host feature
B prove s/mulate-network theorem again

Lightweight means proof shouldn’t
require unanticipated lemmas

Ideally warn of likely feature interactions



Detecting Feature Interactions

B Sample interaction:
Auto-reply message sent to postmaster

m Often violates no properties of features
B Incompleteness makes more difficult

m Capture interaction as theorem, determine
lemmas needed to confirm

— Hope: failure to prove under lemmas indicates
likely interaction



Supporting Modular Verification

® Lemmas about individual features crucial
— make product verification lightweight
— help detect feature interactions

m Four kinds of lemmas helpful

* — type/format of inputs and outputs

* — environment info that might/won’t change
2 — conditions characterizing changes

B - |ifting lemmas through call-graph hierarchy

m |deally automate lemma creation



Why Modularity?

Reviewer: modularity irrelevant for ACL2

We disagree

® modularity key part of design process

m features provide new form of modularity
m Research goal goes beyond ACL2



Reflections on ACL2

Procedural-style natural match for features

— features capture functional/behavioral information
First-order limitation inhibits plug-and-play

— Implementations use higher-order functions/classes

Macros crucial
— generate products and standard lemmas

Books too restrictive for some feature lemmas

Hands-off and disable hints simulate modular
environment



Questions for Experts

m Better way to achieve plug-and-play?
m \Way to use books for all feature lemmas?

m Results on lemma generation that we
should know about?



	A Case Study in Using ACL2 for Feature-Oriented Verification
	Configurations of Features
	Feature-Oriented Design
	Feature-Rich Systems
	Verification Challenges
	The Case Study
	A Basic Email System
	Modeling Features
	A Basic Email System
	Customizing Products
	Verifying Features
	Lightweight Product Verification
	Detecting Feature Interactions
	Supporting Modular Verification
	Why Modularity?
	Reflections on ACL2
	Questions for Experts

