
A Case Study in Using ACL2 A Case Study in Using ACL2
for Featurefor Feature--Oriented Oriented

VerificationVerification

KathiKathi FislerFisler and Brian Robertsand Brian Roberts
WPI Computer ScienceWPI Computer Science

Configurations of FeaturesConfigurations of Features

decrypt
encrypt

auto-respond

filter

signing

forward

verify signature

mailhost

remail

addressbook

[Hall, 2000]

FeatureFeature--Oriented DesignOriented Design

Modules encapsulate features, not objectsModules encapsulate features, not objects

Command Command
looploop

User User PrefPref
DatabaseDatabase

Incoming Incoming
MessagesMessages

Outgoing Outgoing
MessagesMessages

autoauto--replyreply setset--msgmsg, ,
enableenable

responseresponse check/send check/send
replyreply

encryptionencryption setset--key, key,
enableenable

keykey check check
encryptedencrypted

encrypt encrypt
messagemessage

Components

F
e
a
t
u
r
e
s

FeatureFeature--Rich SystemsRich Systems

Telecommunications industryTelecommunications industry
NASANASA’’s nexts next--generation software basegeneration software base
SymbianSymbian
AspectsAspects

Still greatly lacking in verification toolsStill greatly lacking in verification tools

Verification ChallengesVerification Challenges

Exponential number of possible products!Exponential number of possible products!
–– verify individual features onceverify individual features once
–– verify compositions cheaplyverify compositions cheaply

Feature interactionsFeature interactions
–– does voice mail always engage after 4 rings?does voice mail always engage after 4 rings?

Features can share data Features can share data

The Case StudyThe Case Study

Model an email system with four featuresModel an email system with four features
–– Host/postmaster (report unknown users)Host/postmaster (report unknown users)
–– AutoAuto--response (response (akaaka vacationvacation))
–– EncryptionEncryption
–– DecryptionDecryption

Determine lemmas to modularlyDetermine lemmas to modularly
–– prove properties of individual featuresprove properties of individual features
–– confirm properties and detect interactions confirm properties and detect interactions

A Basic Email SystemA Basic Email System

simulate-network (hostenv, userenv, actions)

do-actions (…) do-mail

Modeling FeaturesModeling Features

Command Command
looploop

User User PrefPref
DatabaseDatabase

Incoming Incoming
MessagesMessages

Outgoing Outgoing
MessagesMessages

autoauto--replyreply setset--msgmsg, ,
enableenable

responseresponse check/send check/send
replyreply

encryptionencryption setset--key, key,
enableenable

keykey check check
encryptedencrypted

encrypt encrypt
messagemessage

One function for each extension to the systemOne function for each extension to the system
add new actionsadd new actions
add user infoadd user info
add processing on incoming messagesadd processing on incoming messages
add processing on outgoing messagesadd processing on outgoing messages

A Basic Email SystemA Basic Email System

simulate-network (hostenv, userenv, actions)

do-actions (…) do-mail

do-init do-send do-deliverdo-command

email-auto-init email-auto-incoming

… …

host-incoming

Customizing ProductsCustomizing Products

((defconstdefconst *features*features--present* '(auto encrypt))present* '(auto encrypt))

((defunddefund dodo--init (user)init (user)
(let(let--seqseq useruser

((fiffif encrypt (emailencrypt (email--encryptencrypt--init user) user)init user) user)
((fiffif decrypt (emaildecrypt (email--decryptdecrypt--init user) user) init user) user)
((fiffif auto (emailauto (email--autoauto--init user) user)init user) user)
user))user))

Verifying FeaturesVerifying Features

If user has autoIf user has auto--response enabled and response enabled and
sender not in sender not in prevprev--reciprecip list, send messagelist, send message

Needs Needs ––init and init and --incoming functions incoming functions

Verify against product containing base Verify against product containing base
system and autosystem and auto--response featureresponse feature
–– theorem refers to theorem refers to simulatesimulate--networknetwork
–– not really modularnot really modular

Lightweight Product VerificationLightweight Product Verification

Add host to product with autoAdd host to product with auto--response: response:
prove autoprove auto--response property still holdsresponse property still holds
build (new) product including host featurebuild (new) product including host feature
prove prove simulatesimulate--networknetwork theorem againtheorem again

Lightweight means proof shouldn’t
require unanticipated lemmas

Ideally warn of likely feature interactions

Detecting Feature InteractionsDetecting Feature Interactions

Sample interaction:Sample interaction:
AutoAuto--reply message sent to postmasterreply message sent to postmaster

Often violates no properties of featuresOften violates no properties of features
Incompleteness makes more difficultIncompleteness makes more difficult
Capture interaction as theorem, determine Capture interaction as theorem, determine
lemmas needed to confirmlemmas needed to confirm
–– Hope: failure to prove under lemmas indicates Hope: failure to prove under lemmas indicates

likely interactionlikely interaction

Supporting Modular VerificationSupporting Modular Verification

Lemmas about individual features crucialLemmas about individual features crucial
–– make product verification lightweightmake product verification lightweight
–– help detect feature interactionshelp detect feature interactions

Four kinds of lemmas helpfulFour kinds of lemmas helpful
–– type/format of inputs and outputstype/format of inputs and outputs
–– environment info that might/wonenvironment info that might/won’’t changet change
–– conditions characterizing changesconditions characterizing changes
–– lifting lemmas through calllifting lemmas through call--graph hierarchygraph hierarchy

Ideally automate lemma creationIdeally automate lemma creation

Why Modularity?Why Modularity?

Reviewer: modularity irrelevant for ACL2Reviewer: modularity irrelevant for ACL2

We disagreeWe disagree
modularity key part of design processmodularity key part of design process
features provide new form of modularityfeatures provide new form of modularity
Research goal goes beyond ACL2Research goal goes beyond ACL2

Reflections on ACL2Reflections on ACL2

ProceduralProcedural--style natural match for featuresstyle natural match for features
–– features capture functional/behavioral informationfeatures capture functional/behavioral information

FirstFirst--order limitation inhibits plugorder limitation inhibits plug--andand--playplay
–– Implementations use higherImplementations use higher--order functions/classesorder functions/classes

Macros crucial Macros crucial
–– generate products and standard lemmasgenerate products and standard lemmas

Books too restrictive for some feature lemmasBooks too restrictive for some feature lemmas
HandsHands--offoff and and disabledisable hints simulate modular hints simulate modular
environmentenvironment

Questions for ExpertsQuestions for Experts

Better way to achieve plugBetter way to achieve plug--andand--play?play?

Way to use books for all feature lemmas?Way to use books for all feature lemmas?

Results on lemma generation that we Results on lemma generation that we
should know about?should know about?

	A Case Study in Using ACL2 for Feature-Oriented Verification
	Configurations of Features
	Feature-Oriented Design
	Feature-Rich Systems
	Verification Challenges
	The Case Study
	A Basic Email System
	Modeling Features
	A Basic Email System
	Customizing Products
	Verifying Features
	Lightweight Product Verification
	Detecting Feature Interactions
	Supporting Modular Verification
	Why Modularity?
	Reflections on ACL2
	Questions for Experts

