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Abstract
At the November 2002 ACL2 users group meeting Rockwell Collins

submitted a set of problems concerning reasoning about data structures
embedded in a linear address space[2]. These problems are not mere aca-
demic exercises. Rather, they are generalizations of the sort of problems
that needed to be solved in order to verify formally the intrinsic partition-
ing mechanism of the AAMP7[1]. In this paper we discuss how address
enumeration was used in the AAMP7 proofs to solve the problem of linear
address space reasoning.

1 AAMP7 GACC Library

The AAMP7 is a microcoded microprocessor designed for use in embedded
systems. The AAMP7 provides a novel architectural feature, intrinsic parti-
tioning, that enables the microprocessor to enforce an explicit communication
policy between applications. We used ACL2 to show that the AAMP7 intrinsic
partitioning mechanism works as expected. To do this, we created a number of
partitioning models, ranging from a high level speci�cation to a low level design
model of the AAMP7[6].

The low level design model of the AAMP7 takes a microcoder's view of the
system. This is done to ease the labor-intensive process of validating the formal
model against the microcode. While the AAMP7 employs well-de�ned data
structures to implement intrinsic partitioning, the data structures are embedded
in a linear address space and are available to the microcoder only via primitive
read and write operations on memory. For the microcoder, accessing a particular
�eld of a data structure typically means adding an appropriate o�set value to
the base pointer of the structure and then reading from memory an appropriate
number of bytes starting at the computed address. Because our model remains
true to the microcoder's view of the system, we are forced to describe and reason
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about the operations of the microcode as it manipulates these data structures
at this level of detail.

There are a variety of techniques that one might use to reason about data
structures in a linear address space[4, 5]. We chose to reason about them using
address enumeration. In address enumeration, one or more functions are used
to crawl through a memory space and construct a list (actually, a bag) of all
of the address locations that are used to implement a particular data structure.
That list is then used to construct hypotheses (such as disjointness) concerning
the data structure of interest. A library was developed to facilitate this kind
of reasoning on the AAMP7 project. The library provides a simple language
for describing data structures and a methodology for simplifying expressions
that manipulate them. We call this library the AAMP7 GACC (Generalized
ACCessor) library.

1.1 Primitive Operations

The memory of the AAMP7 is speci�ed using the defrecord[3] macro.

(defrecord memory

:rd rd

:wr wr

:typep wint8

:fix wfix8)

The defrecordmacro is a wrapper around the standard records library available
in the ACL2 distribution. The defrecord macro de�nes two operations: a read
operation (rd) for accessing a particular memory location and a write operation
(wr) that can be used to update the values of memory locations. The macro
also provides a number of theorems to aid in reasoning about these primitive
operations over memory. The primary advantage of the defrecord macro is
that the read operation is coerced to return a value of a particular type. In the
example above, the function wfix8 is used to coerce values to wint8, which is
just a byte (an 8-bit integer).

It is trivial to show the following non-interference property of rd and wr:

(defthm rd-over-wr

(implies

(not (equal ra wa))

(equal (rd ra (wr wa v ram))

(rd ra ram))))

1.2 Multi-Byte Operations

While the AAMP7 employs a byte addressable memory, most of the data struc-
ture �elds it manipulates are words composed of multiple bytes. To accom-
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modate this, we extend the primitive accessors (rd/wr) and de�ne functions
(rx/wx) that manipulate words of arbitrary1 size.

In conjunction with the rx/wx functions, we also introduce a function that
enumerates all of the primitive byte-address locations touched by a given rx or
wx function. This function is called SBLK (sized block). Here we show how we
use SBLK to enumerate all of the atomic memory address locations needed to
state the non-interference property for rx/wx:

(defthm rx-over-wx

(implies

(disjoint (sblk wsize wptr)

(sblk rsize rptr))

(equal (rx rsize rptr (wx wsize wptr ram))

(rx rsize rptr ram))))

1.3 Data Structures

A relatively simple data structure description language was developed for use
in the AAMP7 proofs. The language allows the user to specify, in a consistent
manner, all of the data structures used by the AAMP7.

1.3.1 Skels and Specs

A particular data structure can be de�ned by a skel (or skeleton - think of it
as the skeleton upon which the data structure is implemented), which includes
a base pointer to the data structure of interest and a list of slots. The list of
slots is called a spec (or speci�cation) where each slot represents a particular
�eld of the data structure.

(defstructure skel

base

spec)

A slot is de�ned as follows:

(defstructure slot

name

off

size

val

type

skel)

1The functions rx and wx accept a size argument specifying the number of bits they return.
This value is rounded to the next largest, non-zero multiple of 8 to enable the use of the
primitive rd/wr operations.
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A slot describes a particular �eld of the data structure. The name entry is a
symbolic name for the �eld in the data structure. The o� entry is the o�set of
the �eld from the base (or root) pointer for the data structure. The size entry
indicates how large the value of this �eld is in bits. The val entry is used to
store the value of the �eld. The type entry tells us whether this is a pointer
�eld or a data value �eld. If the slot is of type pointer, then the skel �eld is
expected to contain the skel representation of the data structure to which this
�eld points. If the slot is not of type pointer, the skel �eld is ignored. Note
that the existence of the skel �eld enables us to create recursive descriptions of
recursive data structures.

An example spec for a recursive schedule data structure with 3 �elds (Next,
Time_Count, and Saved_State) might appear as follows:

(defun schedule-spec (n)

(list

(slot :Next #x00 32 0 :ptr

(skel 0 (schedule-spec (1- n))))

(slot :Time_Count #x04 32 0 :int (skel 0 nil))

(slot :Saved_State #x08 32 0 :ptr

(skel 0 (state-spec))))

1.3.2 Reading and Writing using specs

We can use a spec to read information out of a memory or to write information
into a memory. To read information from a memory, we use the g*-spec (g for
get) function. This function takes an op argument2, a pointer to the base of the
data structure of interest, a spec for the data structure, and a memory. From
those arguments, g*-spec returns a spec whose value �elds have been updated
as governed by the op argument.

(g*-spec op ptr spec ram) -> spec

A partial example of the behavior of g*-spec follows:

(g*-spec op ptr (cons slot spec) ram) =

(let ((skel (slot-skel slot))

(size (slot-size slot)) ; size

(addr (+ ptr (slot-off slot)))) ; address

(let ((val (rx size addr ram)) ; read

(gspec (g*-spec op (skel-base skel) ; recurse

(skel-spec skel)

ram)))

(cons (update-slot slot

:val val

2The op argument is used to tune the behavior of the various *-spec functions. For example,
the op argument can be used to dictate which types of �elds from the spec to operate on:
pointer �elds, value �elds, or both.

4



:skel (update-skel skel :spec gspec))

(g*-spec op ptr spec ram)))

The function s*-spec (s for set) allows us to write information from a spec into
memory. The s*-spec function takes an op argument, a pointer to the base
of the data structure of interest, a spec for the data structure, and a memory.
From those arguments, s*-spec returns a memory that has been updated to
re�ect the values stored in the spec.

(s*-spec op ptr spec ram) -> ram

A partial example of the behavior of s*-spec follows:

(s*-spec op ptr (cons slot spec) ram) =

(let ((skel (slot-skel slot))

(size (slot-size slot))

(addr (+ ptr (slot-off slot)))

(val (slot-val slot)))

(let ((ram (wx size addr val ram))) ; write

(let ((ram (s*-spec op (skel-base skel) ; recurse

(skel-spec skel)

ram)))

(s*-spec op ptr spec ram))))

Note that g*-spec and s*-spec play roles similar in nature to rx and wx with
respect to memory except that g*-spec and s*-spec operate on entire data
structures, rather than on individual values.

One other function useful in reasoning about the behavior of g*-spec and
s*-spec is f*-spec (f for �atten). The function f*-spec takes an op argument,
a pointer, and a data structure spec and returns a bag containing all of the
primitive byte-address locations that would be touched by a g*-spec or s*-spec
function given those same arguments3.

(f*-spec op ptr spec) -> list

A partial example of the behavior of f*-spec follows:

(f*-spec op ptr (cons slot spec)) =

(let ((skel (slot-skel slot))

(addr (+ ptr (slot-off slot)))

(size (slot-size slot)))

(append (list (sblk size addr))

(f*-spec op (skel-base skel)

(skel-spec skel))

(f*-spec op ptr spec))))

3To be precise, f*-spec returns a bag of bags of such addresses; the desired bag is obtained
using (flat (f*-spec ..))
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Here we use f*-spec to enumerate the addresses used by the two data structures
of interest and, ultimately, to state the non-interference theorem for g*-spec

and s*-spec:

(defthm g*-spec-over-s*-spec

(implies

(disjoint (flat (f*-spec gop gptr gspec))

(flat (f*-spec sop sptr sspec)))

(equal (g*-spec gop gptr gspec

(s*-spec sop sptr sspec ram))

(g*-spec gop gptr gspec ram))))

This theorem states that the addresses composing the data structure speci�ed
by (gptr,gspec) are disjoint from those composing (sptr,sspec) and, as a
result, modi�cations of the second data structure (manipulated by s*-spec) do
not change the values stored in the �rst data structure (accessed by g*-spec).

The use of specs and a relatively small set of associated functions (g*-spec,
s*-spec, f*-spec, etc) enables us to specify the various data structures em-
ployed by the AAMP7 microcode and to verify the correctness of the AAMP7
intrinsic partitioning mechanism.

2 Reasoning Techniques

The AAMP7 GACC library provides the ability to extract a data structure
representation from memory (using g*-spec) and the ability to enumerate all
of the memory addresses used by that structure (using f*-spec). The next
step is to enable e�cient reasoning about these enumerations. We found that
the most appropriate data structure for representing and reasoning about these
enumerations were bags (multi-sets). The bag relationships most commonly
used to describe the properties of addresses and bags of addresses are perm

(permutation), memberp, subbagp, disjoint, and unique.
Unfortunately, the standard approach of simply expanding and normalizing

terms expressing such relationships results in logical expressions whose size is
quadratic in the number of interesting elements. Another di�culty with reason-
ing about data structures is that establishing certain relationships may require
existential reasoning (i.e., free variables in the hypothesis). Both of these issues
plagued the AAMP7 veri�cation e�ort. In light of these issues, two ACL2 capa-
bilities that proved crucial to the successful deployment of the AAMP7 GACC
library were meta rules and bind-free[7].

2.1 Meta Rules

Because the uniqueness predicate compares each element of the bag with every
other element of the bag, a straighforward simpli�cation of a uniqueness state-
ment produces a quadratic number of sub terms. For small examples this is
acceptable, but it becomes more of an issue as the size of the data structures
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being reasoned about increases. Our solution to this problem is to avoid expand-
ing such terms and, instead, to employ meta rules. Meta rules are rules that
extend the ACL2 simpli�er with user-provided functions to perform syntactic
simpli�cation of speci�ed terms. This meta rule simpli�cation is proven sound
for some speci�c set of functions, upon which the rule can then be programmed
to �re.

For the AAMP7 program we developed meta rules that are able to simplify
expressions involving subbagp, memberp and a handful of other related functions.
For example, it is obvious from inspection that the following is true:

(memberp c (list a b c w x y))

To simplify this expression, the meta evaluator simply searches the list for an
occurrence of the symbol c. If it �nds one, it signals success and rewrites the
expression to true. The use of such syntactic evaluation enables us to turn o�
the de�nitions of all of the functions of interest (memberp, subbagp, disjoint,
unique) and to use meta rules to simplify such expressions.

2.2 Bind-Free

In order to reason about data structures we must establish the independence
(non-interference) of the various functions that operate on those data structures.
The most pressing questions are usually of the form (disjoint x y). How does
one establish (non-trivial) disjointness? One possible rule is the following:

(defthm disjoint-from-disjoint

(implies

(and

(disjoint a b)

(subbagp x a)

(subbagp y b))

(disjoint x y)))

This rule says that if there exists an a and b such that a and b are disjoint and
one can show that x and y are subbags of a and b, then one can conclude that
x and y are disjoint. Another rule might be:

(defthm disjoint-from-unique

(implies

(and

(unique bag)

(unique-subbagsp x y bag))

(disjoint x y)))

This rule says that, if there exists a unique bag, bag, and one can establish that
x and y are both (unique) subbags of bag, then one can conclude that x and y

are disjoint.
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What is interesting about these rules is that they both require existential
reasoning: they say �if there exists some arbitrary bag or pair a,b such that
..�. Using such a rule requires ACL2 to perform free variable matching. Un-
fortunately, for the sake of completeness we must include a number of other,
similar cases, with x and y separated from either bag or a and b by varying num-
bers of subbag relationships. By the time we are done, we have accumulated a
set of very expensive rules that will be evaluated many thousands of times for
reasoning about data structure operations of even moderate complexity.

To solve this problem, the AAMP7 GACC library employs ACL2's bind-
free facility. Rather than have a large set of rules for establishing disjointness,
the GACC library provides a single rule that searches the hypotheses for a
suitable argument for why x and y might be disjoint. It employs heuristics
suggested by the two rules above, and is able to resolve abitrarily deep nestings of
relationships of this form. Once it discovers a suitable argument for why the two
values are disjoint, it binds all of the relevant formulae to the arguments of the
disjointness hypothesis. ACL2 then expands the hypothesis and employs simple
reasoning techniques, including meta rules, to satisfy the resulting expression.

(defthm disjoint-computation

(implies

(and

(bind-free

(bind-disjoint-argument

nil 'key 'xlist 'x0

'ylist 'y0 'z 'zlist

'z0 x y acl2::mfc acl2::state)

(key xlist x0 ylist y0 z zlist z0))

(disjoint-hyp

key x xlist x0 y ylist y0 z zlist z0))

(disjoint x y))

The disjoint-hyp term re�ects the logical reasoning employed by bind-disjoint-
-argument. Without further explaination the body of disjoint-hyp has the
following form, wherein the two key cases correspond to generalizations of the
disjoint-from-disjoint and disjoint-from-unique lemmas:

(defun disjoint-hyp (key x xlist x0 y ylist

y0 z-syn zlist-p z0-q)

(cond

((equal key ':disjoint)

(and (subset-pair x0 y0 zlist-p z0-q)

(hide-disjoint zlist-p z0-q)

(subset-chain x xlist x0)

(subset-chain y ylist y0)))

((equal key ':unique)

(and (unique-subset-chain

x0 y0 z-syn zlist-p z0-q)
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(subset-chain x xlist x0)

(subset-chain y ylist y0)))

(t nil)))

3 Address Enumeration and Re�exive Functions

In his paper[5], J Moore describes a memory tagging technique for reasoning
about data structures in a linear address space. In memory tagging, a data
structure is maintained that describes, for each memory location of interest,
how that location will be interpreted by functions of interest. This information
is then used to prove the essential non-interference theorems.

The AAMP7 GACC library, on the other hand, uses address enumeration for
describing data structures. Hanbing Liu's solution to the Rockwell challenge, for
example, employed address enumeration techniques[4]. Hanbing used address
enumeration to de�ne equivalence relationships over memories and to re-factor
functions over memory to separate data structure traversal from data structure
modi�cation.

An early concern with the address enumeration technique was that it was not
su�ciently general to enable non-interference proofs about re�exive (multiply
recursive) functions. An example re�exive function might be mark-raw, shown
here:

(defun mark-raw (n ptr ram)

(if (zp n) ram

(let ((p1 (g (+ ptr 1) ram))

(v2 (g (+ ptr 2) ram))

(v3 (g (+ ptr 3) ram))

(p4 (g (+ ptr 4) ram)))

(let ((ram (s (+ ptr 3) (+ v2 v3) ram)))

(let ((ram (mark-raw (1- n) p1 ram)))

(mark-raw (1- n) p4 ram))))))

Our various attempts to reason about such functions met with frustration as
we found ourselves needing to use the very rule we were trying to prove as
we attempted to induct over the re�exive function. While we identi�ed this
concern early in the AAMP7 program, we did not anticipate it being of practical
importance in the AAMP7 proofs since the intrinsic partitioning mechanism did
not involve the use of such functions. Nonetheless, our early failures in trying
to reason about re�exive functions threatened the general applicability of the
address enumeration approach.

The solution, it turns out, is to use �access guards� to simplify and generalize
reasoning about re�exive functions. Access guards play a role similar to what
we �nd in recursion guards. A recursion guard is an additional, natural number
argument added to the signature of a recursive function. The recursion guard
is checked in each recursive call. If the guard is zero, the function terminates.
If not, the body of the function is applied to the arguments and any recursive
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calls decrement the recursion guard. The recursion guard provides a short-cut
for admitting functions with otherwise arbitrarily complex measures. One may
then chose (or be driven) to formulate the arbitrarily complex measure funcation
and use it to prove the equivalence of the guarded function and a version of the
same function without the recursion guard.

An access guard, likewise, is an additional argument added to the signature
of a function. At the beginning of the function the access guard is checked
against all of the memory transactions that may be performed by the body of
the function. If any of the transactions are not allowed according to the access
guard, the function returns an unmodi�ed memory. If all of the transactions
are allowed, the body of the function is applied to its arguments and the access
guard is passed on to any recursive calls. Here is a version of mark-raw with an
access guard:

(defun mark-body-defs (ptr)

(list (+ ptr 3)))

;

(defun mark-guard (defs n ptr ram)

(if (subbagp (mark-body-defs ptr) defs)

(if (zp n) ram

(let ((p1 (g (+ ptr 1) ram))

(v2 (g (+ ptr 2) ram))

(v3 (g (+ ptr 3) ram))

(p4 (g (+ ptr 4) ram)))

(let ((ram (s (+ ptr 3) (+ v2 v3) ram)))

(let ((ram (mark-guard defs (1- n) p1 ram)))

(mark-guard defs (1- n) p4 ram)))))

ram))

The access guard thus greatly simpli�es proofs of non-interference, allowing read
over write and commuting theorems to be proven relative to the access guard.

(defthm rd-over-mark-guard

(implies

(not (member a defs))

(equal (g a (mark-guard defs n ptr ram))

(g a ram)))

In this way, the access guard decouples the access protection question from
the behavior of the function of interest. This decoupling provides precisely the
generality we need to prove our fundamental non-interference theorems for re-
�exive functions. With these theorems in hand, we are then able to instantiate
the generic access guard with a function that computes the actual access re-
quirements of the function in question and show that the instantiated, guarded
function reduces to a version of the same function without the access guard.
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4 Conclusion

We have described how address enumeration techniques have been used in the
AAMP7 proofs to solve the problem of linear address space reasoning. The use of
specs as a data structure description language enables us to write clear, concise
descriptions of the AAMP7 data structures, the *-spec functions enables us
to use those descriptions to help characterize the AAMP7 intrinsic partitioning
functionality, and the meta and bind-free rules help to automate the veri�cation
of AAMP7 system correctness. We have also assuaged our concerns regarding
the applicability of address enumeration techniques to the problem of reasoning
about re�exive functions.

Future e�orts will focus on improving the general applicability of the GACC
library. The AAMP7 GACC library was developed in an ad-hoc manner to solve
a speci�c problem and there are a number of design limitations that should be
addressed. Our ultimate objective, however, is the development of a general
purpose GACC library that enables e�cient reasoning about a wide variety of
data structures. There is, however, almost always a trade-o� between utility
(e�ciency) and generality (scope). An indication of the utility of a library is its
successful application in solving a large problem. A measure of the generality
of a library is in solving a large number of small problems. It is our hope that
a future GACC library succeeds on both counts.
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