
Integrating Nonlinear Arithmetic into ACL2

Warren A. Hunt, Jr., Robert Bellarmine Krug, and J Moore

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188, USA

E-mail: hunt@cs.utexas.edu, rkrug@cs.utexas.edu, moore@cs.utexas.edu

Abstract. In this paper we present an overview of the integration of a
nonlinear arithmetic reasoning package into ACL2. We provide a brief
operational description of the entire arithmetic package and describe how
it fits into ACL2’s operation, including what was needed for the successful
introduction of such a facility into an existing automated theorem prover.
We describe most of the changes we made to the previous version of ACL2
as well as a couple of recent improvements to the nonlinear package we
made based upon our experiences using the same. The resulting system
lessens the human effort required to construct a large arithmetic proof
by reducing the number of intermediate lemmas that must be proven.

1 Introduction

It is often desirable to verify the correct operation of computer hardware or
software. The use of a mechanical theorem prover such as ACL2 [7–9] provides
a rigorous methodology with which to do so. The operations we wish to reason
about may be arithmetic in nature; as in the floating-point hardware of a modern
microprocessor, a cryptographic routine in a web browser, or pointer arithmetic
in a C program. In this paper we describe our work to integrate a nonlinear
arithmetic reasoning facility into ACL2, highlighting what we needed to change
in ACL2 in order to use the additional reasoning power in a productive manner.
We also discuss some of the heuristic details of the arithmetic package itself, and
the considerations that led to those details. The arithmetic package’s algorithms
are described in the previous paper Linear and Nonlinear Arithmetic in ACL2 [3].

ACL2 is the successor to the Boyer-Moore theorem prover, NQTHM. Its orig-
inal linear arithmetic package’s algorithms were very similar to those in NQTHM
as described in Integrating Decision Procedures into Heuristic Theorem Provers:

A Case Study of Linear Arithmetic[1]. ACL2 has been under active develop-
ment since 1989 and has, for example, been used for verifying the correctness
of executable processor models at Rockwell-Collins, floating-point hardware at
AMD, and safety-critical software in Italy. These proof efforts, among others,
are presented in the ACL2 case studies volume [8].

We are working on bettering the integration of arithmetic reasoning into
ACL2. This work is directed by two, complementary, principles — 1. what is
obvious to the user, should be obvious to ACL2, and 2. to this end, use com-
puter cycles, rather than human effort. Note that we have not attempted to



identify a theory for which we can write a full decision procedure, nor one for
which we can write an efficient semi-decision procedure. Rather, we have taken
an engineering-based approach by, first, identifying a theory which a human
can easily reason about but which ACL2 was particularly poor at and, second,
building upon existing facilities in an incremental manner in order to strengthen
ACL2’s reasoning abilities. We believe that as computers get ever faster, algo-
rithms and ideas which were previously considered too inefficient will, under
appropriate limiting heuristics, become ever more practical and important.

In the next section of the paper, we present the arithmetic package’s oper-
ation by example. This package may be considered as being composed of three
loops. See Fig. 1. The innermost is based upon linear arithmetic. The middle one
allows the user to bring to ACL2’s attention some additional information about
the linear properties of arbitrary functions. Facilities similar to these two loop
were inherited from NQTHM and have been present in ACL2 from its inception.
The outer loop is our recent contribution and handles nonlinear reasoning. Hav-
ing presented the arithmetic package, we then describe how it fits into ACL2’s
overall operation. Section 3 thus provides the context in which the arithmetic
package operates. We conclude the paper by presenting some evidence for the
utility of a nonlinear reasoning facility and mentioning plans for future work.

Throughout the paper, we describe the changes made to ACL2 as well as
changes to the arithmetic package. These changes were determined by engineer-
ing, rather than theoretical, principles. That is, just as many of the details of the
nonlinear arithmetic algorithm were determined by experiment and observation
using a carefully selected suite of challenge problems; so the desirability of most
of the changes described in this paper were determined by profiling. As such,
the details are affected by the structure of ACL2 itself; but we strongly believe
that the overall outline and principles will apply to any (even semi-) automated
theorem prover.

2 Three Quick Examples

We give here an operational view of the arithmetic reasoning package. This
package can be considered to be composed of three loops1 — linear arithmetic,
partial interpretation, and nonlinear arithmetic — as shown in Fig. 1.

2.1 The Linear Arithmetic Loop

Suppose we want to prove that:

2 · x + 7 · y > 0 ∧ x < 1 =⇒ 2 · y ≥ −1.

1 For those familiar with our previous paper, we have slightly rearranged the bound-
aries of the arithmetic packages components as described there. In particular,
polys-from-type-set has been moved from the linear arithmetic to the partial
interpretation algorithm. The earlier arrangement more closely reflected the actual
code, but the present one is pedagogically superior.

2



Nonlinear Arithmetic

Partial Interpretation

Linear Arithmetic

Fig. 1. The Arithmetic Package — A Schematic View.

We could do so by assuming the two hypotheses and the negation of the
conclusion, and attempting to derive a contradiction. If one is found, the negation
of the theorem is unsatisfiable (false) and so the original theorem must be true.
We therefore start with the three normalized inequalities:

0 < y + 2/7 · x (1)

0 < −1 · x + 1 (2)

0 < −1 · y + −1/2. (3)

We now make our first pass through the loop. In a step similar to resolution,
the right-hand sides of inequalities (1) and (3) will be combined by addition,
yielding a new inequality which does not mention y:

0 < x + −7/2. (4)

This new inequality is set aside for the next pass through the loop where it will
be combined with (2), yielding

0 < −5/2 (5)

This last inequality is obviously false; we have found a contradiction and there-
fore our proof.

In order to discuss our above actions, we need to establish some vocabulary.
In the rest of the paper, the right-hand side of a normalized inequality such
as those numbered above will be referred to as polys. Abusing our vocabulary,
we will also speak of the entire inequality as a poly. Note that an equality can
be normalized to two polys. The equality x = 2 · y is normalized to the pair
0 ≤ y + −1/2 · x and 0 ≤ −1 · y + 1/2 · x. A poly is said to be about its heaviest

term. Terms are weighted using a lexicographic order based upon 1. the variables
used in the term, 2. the function symbols used, and 3. the size of any constants
used. Above, polys (1) and (3) are about y, and polys (2) and (4) are about x.

3



We write a poly such that the heaviest term is the left-most; we shall see some
more complicated examples shortly. Note that we combined, or cancelled, two
polys precisely when they were about the same term and this term appears with
opposite sign in the two polys. Note also that the new polys, (4) and (5), were
smaller than their parents — (1) and (3), and (2) and (4) respectively — in the
sense that they are about a lighter term.

In each pass through this innermost loop, we one-by-one insert the new polys
and cancel them with the appropriate previously inserted polys; gathering to-
gether the resulting polys for the next pass. Thus, above, in the first pass we
added polys (1), (2), and (3) in that order. Upon adding (3) we canceled it with
(1), and set the result, poly (4) aside for the next round. We repeat until a fixed
point is reached or, as above, a contradiction is found.

We remark here that, just as for BDDs, how we weight our variables or oth-
erwise choose the order in which to perform our cancellations — for example,
above we could have combined polys (1) and (2) — does not affect termination
or finding a contradiction when one exists. This procedure is complete for lin-
ear arithmetic over the rationals. (ACL2’s logic includes integers and rational
numbers, but no irrational numbers.)

Although the algorithm has a high worst-case run-time, overall it has demon-
strated to be cheap in practice. The seemingly naive algorithm hinted at here
was deliberately chosen for engineering, rather than theoretical, reasons. In par-
ticular, the following properties were all necessary:

– Incremental — Most of the time the above procedure terminates not with a
contradiction, but with a stable database of polys. As we will see shortly, this
database may be augmented by additional polys gathered from other sources
in an attempt to allow further cancellations and, perhaps, the derivation of
a contradiction.

– Non-destructive — In addition to being incrementally built up, this database
is used as part of the context in which ACL2’s main reasoning engine, its
rewriter, operates. This rewriter is based on conditional rewrite rules whose
hypotheses must be relieved before the rule can be used. If one of these
hypotheses is itself an inequality, the arithmetic reasoning facilities described
in this paper will be used to (attempt to) relieve that hypothesis. Whether
successful or not, any work done at this time must be undone in preparation
for the next rule/hypothesis.

– Quick start-up — Most of the time there are no more than a half-dozen polys
around and only a couple cancellations which can be performed. Thus, any
time saved by clever preprocessing or scoring potential cancellations would
(probably) be swamped by the cost of doing so.

Before proceeding, we pause here to comment further on the choice to use
a variant of Hodes’ algorithm [4]. This choice was made based upon the results
of experiments conducted during the implementation of NQTHM and should be
revisited in the near future. Although, as mentioned above, the current code is
usually “fast enough,” better can probably be done [5]. We must, however, stress
that any algorithm for deciding linear arithmetic over the rationals will have a

4



high worst-case run-time; what matters is how an algorithm behaves given the
types of problems commonly generated by ACL2 and there is little reason to
believe that their distribution is random in nature.

We now describe several of the optimizations we made to this innermost
loop’s implementation. There are certain situations in ACL2 in which tail-biting

can occur. From ACL2’s documentation2: “ ‘Tail-biting’ is our name for the
insidious phenomenon that occurs when one assumes p false while trying to
prove p and then, carelessly, rewrites the goal p to false on the basis of that
assumption. Observe that this is sound but detrimental to success. One way to
prevent tail-biting is to not assume p false while trying to prove it, but we found
that too weak. The way we avoid tail biting is to keep careful track of what
we’re trying to prove, which literal we are working on, and what assumptions
have been used to derive what results; we never use the assumption that p is
false (or anything derived from it) to rewrite p to false.”

The structure, a tag-tree, used to keep track of all this can grow to be quite
large3. This created problems because every poly had one of these associated
with it; and this tag-tree would have to be scanned every time the poly was
cancelled against a new poly. However, within the linear arithmetic loop only a
small fraction of the tag-tree was needed, so we now pull this fraction out and
store it separately in a new structure, a parent-tree. Under most circumstances,
this optimization has no affect on timing; but larger problems will now run to
completion in a shorter time than was possible before. This will also be the effect
of the other two changes described immediately below.

Previously, before adding a new poly to the database, ACL2 checked whether
an equal poly had already been added. If so, the new poly was not used. However,
it can be the case that ACL2 will generate sets of polys such as 0 < y+2 ·x+5/8,
0 < y + 2 · x + 3/4, and 0 < y + 2 · x + 7/8. Clearly, the first of these polys is
stronger than the other two in the sense that it implies their truth. Thus, if
the first poly is already present in the database, there is no need to add either
of the other two. If conditions are such that they could be used to generate a
contradiction, we would already have done so with the first.

Generalizing the above observation, we enhanced the function poly-member

to check not whether an equal poly is already present in the database, but
whether an equal or stronger poly is already present. Our notion of stronger is
no more complex than that implied above. We check whether there is a poly
with equal non-constant parts — the y + 2 · x above — and a lesser constant —
the 5/8, 3/4, or 7/8 above; and if so, do not use the new, weaker, poly. Above,
the first poly is stronger than the second, which in turn is stronger than the
third. None are related to 0 < y +3 ·x+1. Thus we can now recognize and filter
out a greater percentage of the polys that will lead nowhere.

2 ACL2’s code is fairly readable, and is wonderfully commented. Those interested are
strongly encouraged to use the source.

3 Tag-trees are also used to report back to the user what ACL2 has done during a
proof effort. This has been found to be an invaluable aid to debugging failed proofs.

5



We also changed the search for a proof (or contradiction) from depth-first to
breadth-first. That is, if we draw a graph of the cancellation process, where each
poly generated was a child of its parents, we previously explored this graph in a
depth-first manner — after a cancellation, any newly created polys were recur-
sively added to the arithmetic database before any older ones were examined.

We now collect these newly created polys into a list which we use as a push-
down stack. By collecting them together, we can use poly-member to ensure that
within any one round we only add the strongest polys. Before we push a poly
onto this stack, we check whether there is a stronger poly already present, and if
so discard the new one. This ensures that the stack is sorted with the strongest
polys at the front and so to be seen first. Weaker polys, deeper in the stack, will
be caught (as above) before being added to the database because the stronger
ones were added first. Thus (within any one round) we only add the strongest
polys, filtering out all the rest.

2.2 Partial Interpretation

Pure linear arithmetic is often insufficient. Suppose we wanted to prove:

x ∈ A =⇒ size(A) − size(delete(x , A)) + size(B) > 0

There is only one poly (the negation of the conclusion) to be derived from
this:

0 ≤ size(delete(x , A)) + −1 · size(B) + −1 · size(A) (6)

Clearly there is nothing linear arithmetic can do with this. But this does not
mean that we have to give up. Even without reasoning about the actual defini-
tions or details of the functions size and delete a contradiction can be derived, if
we knew a couple of simple linear facts about them. More concretely, if we could
use the facts that

x ∈ A =⇒ size(delete(x , A)) < size(A) (7)

and

0 ≤ size(A) (8)

a contradiction can be derived. This is the purpose for which partial interpreta-
tion was designed.

All the polys about a particular term are stored together in a pot which is
said to be labeled by the term which the polys are about. Thus, the single poly
above is stored in a pot labeled with size(delete(x , A)). We will also loosely
speak of a pot being about its label. A pot represents the conjunction of all the
polys in it.

When the arithmetic database has stabilized under the linear arithmetic loop
and no contradiction has been found, ACL2 will look for any newly created pots,
and see if it can gather any additional polys about the new pots’ labels. Here,

6



in the first pass through the partial interpretation loop, ACL2 will look for
additional information about size(delete(x , A)), and create the two new polys

0 < −1 · size(delete(x , A)) + size(A) (9)

0 ≤ size(delete(x , A)) (10)

and pass them on to linear arithmetic. Only the first of these can be cancelled
with poly (6), and the result is

0 < −1 · size(B). (11)

In the second pass through partial interpretation the only new pot is about
size(B) and so the poly

0 ≤ size(B) (12)

is created. This will be passed on to the linear arithmetic loop, and a contradic-
tion will be found.

As for linear arithmetic, partial interpretation will loop until either a fixed
point is reached, or a contradiction is found. At the top of each pass through this
loop ACL2 will have a list of polys. These are passed off to the linear arithmetic
loop where they are added to the arithmetic database. At the bottom of the
loop ACL2 attempts to gather together polys about any newly created pots, as
illustrated above. We do not further discuss the use or implementation of linear
lemmas or polys-from-type-set here. This has already been covered in earlier
literature [1, 3].

2.3 Nonlinear

Now suppose that we want to prove that:

3 · x · y + 7 · a < 4 ∧ 3 < 2 · x ∧ 1 < y

=⇒ a < 0

We start with the four polys:

0 < −3 · x · y + −7 · a + 4 (13)

0 < 2 · x + −3 (14)

0 < y + −1 (15)

0 ≤ a (16)

No two polys are about the same term so there are no cancellations to per-
form. Note however that poly (13) is about a product — x · y — and that polys
(14) and (15) are about the product’s factors — x and y. When nonlinear arith-
metic is active, ACL2 will therefore multiply the left-hand sides of (14) and (15)
obtaining the new poly

0 < 2 · x · y + −3 · y + −2 · x + 3. (17)

7



The addition of this poly will allow cancellation to continue4 and, in this
case, we will prove our goal. Thus, just as ACL2 adds two polys when they have
the same largest unknown of opposite signs in order to create a new smaller poly,
so ACL2 can now multiply polys when the product of their largest unknowns is
itself the largest unknown of another poly.

Conceptually, the nonlinear loop can be viewed as a generalization of the
partial interpretation loop, and is similarly based on examining lists of newly
created pots. At its simplest, if one of these new pots is about a product (x · y)
and there are pots about its factors (x and y) ACL2 will multiply the appropriate
polys together in all possible ways to generate polys about the product (all the
polys about x by all the polys about y, generating a set of polys about x · y).
We do not attempt to further describe the nonlinear loop here. See [3].

We do, however, mention two heuristics we use to control the size of the
search. In the Introduction to this paper we had said that we believe that as
computers get ever faster, algorithms and ideas which were previously consid-
ered too inefficient will, under appropriate limiting heuristics, become ever more
practical and important. The complexity of the algorithm hinted at above is (at
least) exponential. We do not mean to say that faster computers will alone ever
be able to overcome such obstacles. However, our goal in integrating this algo-
rithm into ACL2 was not to implement a complete decision procedure5. Rather,
we wished to render obvious to ACL2 what is obvious to the user. We therefore
attempted to achieve a balance between reasoning power and resource consump-
tion. Experimentation led us to the following two limiting heuristics. These have
both proved vital to making the algorithm of practical use. First, we limit the
number of passes through the nonlinear loop to three. Second, when nonlinear
arithmetic is active and the list of polys waiting to be added to the database
grows too large, we prune this list by keeping only the shortest polys — those
with the least number of addends. These heuristic limitations seem to be weak
enough to allow ACL2 to catch a sufficient number of nonlinear facts, but strong
enough to limit the time spent in a proof effort to a not unreasonable amount.
They should probably be revisited in a few years when computers are even more
powerful than they are today.

In order to support nonlinear arithmetic, we changed the partial interpre-
tation loop. When nonlinear arithmetic is disabled, the partial interpretation
loop behaves as described in the previous section. This is the original behavior.
However, when nonlinear arithmetic is active, ACL2 is a little more aggressive in
collecting information. When a new pot is about a product, say size(B)·size(A)·x,
ACL2 will attempt to gather information about each of the terms in the exploded

pot label; in this case each of the terms size(B), size(A), x, and size(B)·size(A)·x.

4 Poly (17) can be canceled with (13). The result can be canceled with (15), and so
on. The final cancellation will be with the negation of our goal

5 We couldn’t, even if we wanted to. ACL2’s logic does not include the irrational
numbers, and it has been proven that there is no complete algorithm for nonlinear
arithmetic over the rationals [6].

8



User

Simplify

Settled-down

Clause

Induct

Eliminate

Irrelevance

Eliminate

Destructors

Use

Equivalence

Generalize

Pool

Fig. 2. ACL2 — a high level view.

ACL2 thereby has a chance to gather polys about a products factors in prepa-
ration for nonlinear arithmetic6.

We conclude this section with a couple of examples of incompleteness in our
algorithm:

– It is a theorem in ACL2 that ∀x . x · x 6= 2 [2]. There is nothing that our
algorithm can do with this.

– Similarly, since there are no cancellations to perform nor factors to multiply,
there is nothing our algorithm can do with 0 < a · b ∧ 0 < c · d ∧ 0 <
a · c =⇒ 0 < b · d. (However, in conjunction with our library of arithmetic
rules, this is automaticly proven)

3 ACL2 — an Overview

We have described the arithmetic package. We now describe the architecture of
ACL2 and how the arithmetic package fits into this.

At a high level, ACL2 is organized as follows. At the center is a pool of
goals to be proved; see Fig. 2. Initially, the user’s submitted theorem is the only
goal in this pool. Surrounding the pool are seven proof procedures — Simplify,
Settled-down Clause, Eliminate Destructors, Use Equivalence, Generalize, Elim-
inate Irrelevance, and Induct. Each goal is successively withdrawn from the pool
and given to the first proof procedure, Preprocess. Each procedure either hits,
reducing the goal to n further (presumably simpler) goals and returns these to
the pool; or misses, and passes the goal on to the next procedure in line. If n is 0,
the goal has been proved by the procedure; when the pool is empty, the original

6 Consider x ∈ A ∧ y ∈ B =⇒ size(delete(x , A)) · size(delete(y , B)) > size(A) ·
size(B). This is a good example to work on one’s own.

9



theorem has been proved. If all the procedures miss (or the user interrupts the
proof process), the proof attempt has failed7.

As of the forthcoming ACL2 version 2.8, the activation of nonlinear arith-
metic will change. Previously, when the user enabled nonlinear arithmetic it was
active all the time. Under the new behavior, nonlinear arithmetic will not be
active until the goal has stabilized under simplification (rewriting). Before this
change was made, when nonlinear arithmetic was enabled ACL2 could easily get
swamped at certain points in a proof — most notably, at the very beginning and
just after destructor elimination or generalization. This is no longer a problem.
Thus, unlike some of the other changes described in this paper which make larger
problems more practical, this change has resulted in a general speedup of ACL2
when nonlinear arithmetic is enabled even for smaller problems.

We now briefly describe the implementation of this change. There is a flag,
stable-under-simplificationp, which can be considered to be true if and only
if the goal currently being examined had been given to the simplifier and subse-
quently passed on to Settled-down Clause unchanged. Toggling this flag is then
counted as a hit for this (rather simple) proof procedure8. This flag was originally
introduced in order to allow staged simplification of large microprocessor models.
By using computed-hints and this flag, we can prevent the microprocessor’s state
transition function from expanding the symbolic representation of a state until
that state has been maximally simplified. By using these same facilities to turn
on the use of nonlinear arithmetic, the easy work is accomplished cheaply just
as before nonlinear arithmetic was introduced; however, when this has achieved
as much as possible we then activate nonlinear arithmetic to (hopefully) finish
the job.

In this paper, our primary focus is the Simplifier. It can be divided into two
major pieces — the Lemma Library (ACL2’s evolving knowledge base), and the
Simplifier proper. See Fig. 3. The Simplifier proper can be further subdivided
into several component reasoning packages. There are three major packages — a
rewriter, a type-reasoning package9, and the arithmetic package. There is also a
tautology checker as well as a few other minor pieces which we will lump together
under the rubric “other”.

The rewriter, the arithmetic package, and the type-reasoning package are all
affected by the state of the lemma library as indicated by the dashed arrows.
This library contains the rules/lemmas which extend and guide the operations

7 Once a proof attempt has been started, the only interaction the user can have to
guide the proof is to interrupt it. In this sense, ACL2 is entirely automatic with no
user guidance possible. A user typically guides a proof in two ways — 1. A judicious
selection of rewrite rules or lemmas to enhance ACL2’s “knowledge base”; and 2.
The use of hints such as :case-split, :use, :do-not, or :induct. Hints must be attached
to the theorem at the time of its submission to ACL2.

8 Settled-down Clause is in charge of adjusting several other heuristic flags and set-
tings, primarily related to induction, not described here.

9 Although we do not describe the type-reasoning package here, we do wish to mention
that this package does not perform type-reasoning as it is commonly understood in
the functional programming community.

10



Type-reasoning Package

Tautology Checker Other

Lemma Library

Rewriter

Arithmetic Package

Fig. 3. The Simplifier.

Use Rewrite Rules Relieve Hypotheses

Partial Interpretation

Rewrite

Nonlinear Arithmetic

Linear Arithmetic

Arithmetic Wrapper

Add Disjuncts

Fig. 4. Arithmetic and the Rewriter.

of these three packages. It is through the judicious use of these rules that the
user can guide ACL2’s operations. For the purposes of this paper, only two types
of rules are relevant — rewrite rules which guide (are used by) the rewriter, and
linear lemmas which guide the partial interpretation loop.

The solid arrows in Fig. 3 indicate which packages can call another package.
Note that the rewriter and the arithmetic package are mutually recursive. In this
paper we are concerned with the arithmetic package and its relationship to the
rewriter10.

10 We remark here that the arithmetic package has since the beginning been able to call
the type-reasoning package. Although not further discussed here, we have recently
added the ability of the type-reasoning package to call the linear arithmetic part of
the arithmetic package. This latter fact is not represented in the figure.

11



We now describe the relationship between the Rewriter and the Arithmetic
Package. See Fig. 4. We first discuss the rewriter and arithmetic package sepa-
rately, and then the arrows linking them.

We divide the rewriter into three parts — Use Rewrite Rules, Relieve Hy-
potheses, and Rewrite which should be considered to be the main entry point
or wrapper function.11 These three pieces form a mutually recursive clique of
functions as indicated in the figure.

ACL2’s rewriter is based upon the use of conditional rewrite rules. Given a
term to rewrite, ACL2 will find all the applicable rewrite rules for the term and
successively try to apply these rules until one succeeds. A rule succeeds when all
of its hypotheses have been relieved. A hypothesis is relieved by instantiating any
free variables and rewriting it to true. Thus, the mutual recursion in the rewriter.
Note here that if a hypothesis is an inequality or an arithmetic equality, the
rewriter hands it over to the arithmetic package to decide. This will be touched
upon again shortly.

We divide the arithmetic package into five parts — the three loops already
presented, a main entry point/wrapper function labeled Arithmetic Wrapper,
and a piece labeled Add Disjuncts. This last piece is concerned with negated
equalities. Just as an equality is equivalent to the conjunction of two polys, so
a negated equality is equivalent to the disjunction of two polys — e.g., x 6= y is
equivalent to x < y ∨ y < x. The arithmetic package finds a proof by looking
for a contradiction. Thus, if each of the two disjuncts lead to a contradiction
when added individually to the arithmetic database, the original negated equal-
ity leads to a contradiction and we have found our proof. If neither disjunct leads
to a contradiction, there is nothing we can do and we return our original arith-
metic database unchanged. (Recall that the arithmetic database represents the
conjunction of the polys in it.) If only one disjunct leads to a contradiction, we
can return the augmented arithmetic database to which the other disjunct was
added. Add Disjuncts handles the general situation in which there may be more
than one of these negated equalities. Clearly, this can suffer from exponential
blowup.12 We therefore prevent the use of nonlinear arithmetic in this situation.

The arithmetic package’s entry point normalizes the inequalities and equal-
ities passed in by the rewriter, and passes the resultant polys off to the ap-
propriate place. All of the polys stemming from inequalities and (un-negated)
equalities are handed off first — to the nonlinear arithmetic or partial interpre-
tation loops as determined by whether nonlinear arithmetic is currently being
used. It is only after the database has stabilized under these operations that the
polys resulting from negated equalities are handed off to add disjuncts.

All that is left to describe now are the calls from the arithmetic package to
the rewriter. There are five of these as shown in Fig. 4. We first describe the
call from Rewrite to the Arithmetic Wrapper. When ACL2 is rewriting a term

11 ACL2’s rewriter is rather complex. We ignore almost all of this complexity here, and
instead present only what is needful for this paper.

12 There is one theorem in ACL2’s regression suite which leads to a goal in which there
are sixty-four negated equalities.

12



it keeps track of the objective for that term — approximately, what it wants
to rewrite that term to. This objective can be any one of three values; “true”,
“false”, or “unknown.” In general the objective is “unknown”, but there are a
few situations in which it is known. The simplest of these is that a hypothesis
of a rule needs to be rewritten to true for the rule to be relieved. When ACL2
is rewriting a term which is an inequality or an arithmetic equality and the
objective is either “true” or “false”, it will pass the (posssibly negated) term off
to the arithmetic package.

We now move on to discuss the calls from the arithmetic package to the
rewiter. Recall that the partial interpretation loop is in charge of using linear
lemmas to generate additional polys. These lemmas may include hypotheses
which need to be relieved. This accounts for the arrow from Partial Interpreta-
tion to Relieve Hypotheses. Note that if one of a linear lemma’s hypotheses is an
inequality, then it will be passed back to the arithmetic package by the rewriter.
We see here another example of why the algorithms used in the arithmetic pack-
age must be incremental and non-destructive.

The conclusions of these linear lemmas are equalities and inequalities. The
right- and left-hand sides of these conclusions are rewritten before being nor-
malized and passed on to the linear arithmetic loop. This is represented by the
arrow from Partial Interpretation to Rewrite. We comment here that this is done
to enforce the use of any desired normal forms. A somewhat contrived example
is the following. In lisp, and therefore ACL2, floor is a binary function which
returns the greatest integer less than or equal to the ratio of its arguments. That
is, we have the relationship:

floor(a, b) <= a/b. (18)

Let us assume that we have encoded this as a linear-lemma and the partial
interpretation loop has just encountered a newly created pot about floor(c·x, x).
Let us also assume that x 6= 0. Without rewriting, we would add the poly

0 ≤ −1 · floor(c · x, x) + c · x/x. (19)

This is not nearly as desirable as

0 ≤ −1 · floor(c · x, x) + c. (20)

Moving on, the multiplication of polys done by the nonlinear arithmetic loop
is accomplished by passing the problem off to the rewriter, and letting it sim-
plify the product. This is the arrow from nonlinear arithmetic to the rewriter.
It is also the source of an obvious potential optimization. One could write some
special-purpose code which did the job much more efficiently. We have not yet
done so because the increased flexibility of the current method has greatly aided
our experiments. When the nonlinear arithmetic algorithms and their integra-
tion with ACL2 has stabilized, we will almost certainly take advantage of this
optimization.

However, the situation mentioned above is not as dire as it might seem.
Previously, the calls to the rewriter from within the arithmetic package would use

13



whatever (often large) set of rewrite rules was being used for general rewriting.
We now allow the use of a specially constructed minimal theory for this rewriting,
when nonlinear arithmetic is active. This allows the rewriting to proceed more
quickly. It also allows us to use a different normal form within the arithmetic
package than outside it. This has proven very useful — for instance, nonlinear
arithmetic can reason about xy ·xz better than it can about the equivalent xy+z .
This latter form, however, is often better for the rewriter. With the introduction
of this new minimal theory, we needed to allow the arithmetic package to rewrite
equalities and inequalities before normalizing them into polys. Thus the final
arrow, from the Arithmetic Wrapper to Rewrite.

4 Conclusion

The combination of the new nonlinear package and improved arithmetic libraries
has allowed us to prove more theorems more automatically. Initial feedback from
early users has been generally positive. In particular, users felt that the amount
of thought and effort that they had to put into completing a proof involving
arithmetic was often reduced. We continue to improve the heuristics and further
integrate the arithmetic libraries with these new facilities.

A couple of pieces of evidence of the increased power now available are:

– In conjunction with our library of arithmetic lemmas, we can automatically
prove that rotating an i-bit wide register through a carry flag fits back into
the i-bit wide register:

integer i ∧ i > 0

∧ integer x ∧ 0 ≤ x < 2i

∧ (c = 0 ∨ c = 1)

=⇒ floor(x/2) + c · 2i−1 < 2i

– Experiments showed that more than one-half of the helper lemmas — those
used merely to prove one of the desired theorems, but not otherwise useful —
and three-quarters of the (nontrivial) hints in the IHS books were no longer
needed. IHS stands for Integer Hardware Specification. These books are a
collection of theorems and rules designed to facilitate reasoning about bit-
level machine operations as if they were arithmetic operations on integers.
These books involve much use of arithmetic and have been used as a source
of challenge problems during our work.

References

1. R. Boyer and J Moore. Integrating Decision Procedures into Heuristic Theorem
Provers: A Case Study of Linear Arithmetic. Machine Intelligence, Volume 11, pp.
83-124, 1988.

14



2. R. Gamboa. Square Roots in ACL2: A Study in Sonata Form. UTCS Tech Report
TR96-34, November, 1996.

3. W. Hunt, Jr., R. Krug, and J Moore. Linear and Nonlinear Arithmetic in ACL2.
CHARME 2003.

4. L. Hodes. Solving Problems by Formula Manipulation in Logic and Linear Inequal-
ities. Proceedings of the Second International Conference on Aritficial Intelligence,
pp. 553-59, 1971.

5. P. Janic̆ić, I. Green, A. Bundy. A Comparison of Decision Procedures in Presburger
Arithmetic. Research Paper #872, Division of Informatics, Univ. of Edinburgh,
October 97.

6. J. Robinson. Definability and Decision Problems in Arithmetic. Journal of Sym-
bolic Logic, Volume 14(2), pp. 98-114, 1949.

7. M. Kaufmann, P. Manolios, and J Moore. Editors. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

8. M. Kaufmann, P. Manolios, and J Moore. Editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Publishers, 2000.

9. M. Kaufmann and J Moore. ACL2: An Industrial Strength Version of Nqthm. Pro-
ceedings of the Eleventh Annual Conference on Computer Assurance (COMPASS-
96), pp. 23-34, IEEE Computer Society Press, June 1996.

15


