
A Weakest Precondition Model for Assembly Language Programs January 28, 2003 1

A Weakest Precondition Model for
Assembly Language Programs

Wilfred J. Legato

1.0 Acknowledgments

I am indebted to Prof. Edsgar Dijkstra for introducing me to weakest preconditions, Prof. J
Moore for identifying early work of John McCarthy in transforming imperative programs
to their functional counterparts, and to Dr. Frank Rimlinger for many fruitful discussions
on the implementation of the ideas in this paper.

2.0 Overview

This paper describes a formal model, based upon Dijkstra’s weakest preconditions [4], for
reasoning about assembly language programs. The model applies more generally to any
finite state machine. It extends earlier work of Floyd [5], Hoare [10] and Dijkstra [4], by
automatically generating closed form expressions for the weakest precondition of
arbitrary loops.

Section 3 provides an informal introduction to the subject matter, followed by a more
rigorous treatment in sections 4 and 5. Finally, section 6 briefly compares this to other
work.

3.0 Preliminaries

3.1 Functional Programs

Reasoning about computer programs requires that program variables have well defined
meaning. An imperative program may associate different values with a variable X
depending on the state of its execution. This is not true of purely functional programs,
which model computation using a composition of state-to-state transformations. By way
of illustration, consider a program which sums the first N natural numbers.

X = 0
LOOP X = X + N

N = N - 1
IF N>0 GOTO LOOP

A functional representation of the computation on X occurring within the loop body is

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 2

SUM(N,X) = IF N>0 SUM(N-1,X+N) ELSE X

Notice that the arguments in the recursive call of SUM are computed by applying the
composition of all state to state transformations occurring within the body of LOOP to the
formal parameters of SUM. Since every occurrence of N and X within the formula have
the same meaning, we may treat the equality symbol “=” as a true logical equality and use
it as a basis for both computation and reasoning. Properties about the functional program,
such as SUM(N,0) = N*(N+1)/2 may be directly stated and proved using the tools of
mathematical logic.

McCarthy [13] showed that any flow chart program may be mechanically transformed to a
purely functional form. One could, in theory, reason about imperative programs using
their functional equivalents. In fact, this is routinely done both when using interpreter1
models for program execution and when using the techniques of this paper. Our approach,
based upon Dijkstra’s weakest preconditions [4], blends the functional representation for
state into the functional representation for predicates on state. We then derive the state
valued functions from the predicate valued functions as the need arises.

3.2 Substitutions

Our basis for capturing programming language semantics is the substitution operator
[e1/x1, e2/x2, ... , en/xn]. When applied to a term (at the purely syntactic level), this
operator simultaneously replaces each occurrence of xi with ei, i = 1, 2, ... , n. The xi and
ei represent, respectively, state variables (registers, memory, flags, program counter, etc.)
and expressions in the state variables. When used to model state transformations, ei
expresses the new value of xi in terms of the old state. Applying a substitution σ =
[e1/x1, e2/x2, ... , en/xn] to a function of state f(x1,x2, ... ,xn), transforms it to an equivalent
function σ f(x1,x2, ... ,xn) = f(e1,e2, ... ,en) in the preceding state.

Substitutions σ and τ may be composed, so that (στ)f(x1,x2, ... ,xn) = σ(τf(x1,x2, ... ,xn)).
A substitution may also represent a state, in which case ei describes the value of state
component xi. Composing several substitutions, each representing a state transformation,
describes values of state components after the final transformation in terms of state
components before the first (leftmost) transformation.

For example, applying the substitution [(N-1)/N, (X+N)/X] to the term

IF N>0 SUM(N-1,X+N) ELSE X

yields

1 An interpreter is a function which takes a state, a program, and a sequence of external (e.g. interrupts,
input data, etc.) events as arguments, and returns a new state which represents the effect of running the
program for a number of steps equal to the length of the event (also called an “oracle”) sequence.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 3

IF N-1>0 SUM((N-1)-1,(X+N)+(N-1)) ELSE (X+N).

Composing [(N-1)/N, (X+N)/X] with [(N-1)/N, (X+N)/X] yields

[((N-1)-1)/N, ((X+N)+(N-1))/X].

3.3 Modeling Computation

There are two conceptually different approaches to modeling program execution. The
“natural” method is to move forward through the program, successively expressing each
new state in terms of the original state. This is commonly called symbolic execution.
Alternatively, one may move backwards through the program, expressing the final state in
terms of successively earlier states. In the absence of branch instructions, both
computations yield identical results. Forward execution is commonly used with
interpreter models, whereas backward execution is typical of weakest precondition
models.

We illustrates the similarities between forward and backward execution by way of an
example. In the following table, we describe the semantics of each instruction using
substitutions. The state component PC represents an instruction counter.

Instruction Substitution

X = 0 [(1+PC)/PC, 0/X]
LOOP X = X + N [(1+PC)/PC, (X+N)/X]

N = N - 1 [(1+PC)/PC, (N-1)/N]
IF N>0 GOTO LOOP [(IF N>0 2 ELSE (1+PC))/PC]

The following table shows the sequence of states obtained by symbolic execution
beginning with the state [0/PC,X/X,N/N]. Each entry in column 2 is the state following
execution of the corresponding instruction in column 1.

Computation State

X = 0 [1/PC, 0/X, N/N]
LOOP X = X + N [2/PC, (0+N)/X, N/N]

N = N - 1 [3/PC, (0+N)/X, (N-1)/N]
IF N>0 GOTO LOOP [(IF N-1>0 2 ELSE 5)/PC, (0+N)/X, (N-1)/N]

States are computed by applying the previous state to the substitution associated with the
current instruction, e.g. [1/PC, 0/X, N/N] = [0/PC, X/X, N/N] [(1+PC)/PC, 0/X]. The
intuition guiding these computations is that the state transformation associated with an
instruction execution expresses the new state (“denominator”) in terms of the old
(“numerator”). The previous state expresses the old state in terms of the initial state.
Composing the two, gives the current state in terms of the initial state.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 4

We do not continue the execution beyond instruction 4, since the state at each instruction
no longer uniquely depends on the initial state. For example, the state at instruction 3
depends on how many iterations of the loop have occurred, whereas the state at location 5
is uniquely defined as a recursive function 2of the initial state. We shall see that the
backward execution provides a much more natural context for dealing with loops.

Consider now backward execution of this same program, beginning with the state at
location 5. We omit PC from the state, since each state will be uniquely associated with
an instruction. When performing a backward execution step over a branch instruction, we
need the states at each of the branch targets. We compute these in a demand driven
fashion. So, the computation of the state at location 4 demands that we know the state at
location 2, which in turn demands that we know the state at location 3, which demands
that we know the state at location 4. We are now back where we started, so we invent a
function S(X,N) which represents the state at location 4. We use S(X,N) to complete the
calculation, deriving the following equation for S(X,N).

S(X,N) = IF N>0 S(X+N,N-1) ELSE [X/X,N/N]

The following graph shows this computation in greater detail.

2 For example, [5/PC, SUM(N,X)/X, 0/N].

1

2

3

4

t

t

t

5

N≤0

[X/X,N/N]

S(X,N) = IF Ν>0 S2(X,N) ELSE [X/X,N/N]

Ν>0 S3(X,N) = [(N-1)/N] S(X,N) = S(X,N-1)

S2(X,N) = [(X+N)/X] S3(X,N) = S(X+N,N-1)

S1(X,N) = [0/X] S2(X,N) = S(0+N,N-1) = S(N,N-1)

Backward Computation for the Sum Program

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 5

Each node is labelled by its corresponding instruction. The arcs are labelled with
predicates on the state which specify the conditions under which one instruction transits to
another. S1, S2 and S3 define the state at location 5 in terms of the state at locations 1, 2
and 3 respectively.

Since S1(X,N) returns a substitution, it may in fact be applied to an arbitrary function of
state at location 5, transforming it into an equivalent function of the state at location 1.

3.4 Weakest Preconditions

Much of what we have done with backward execution, has been done previously in the
context of Floyd-Hoare program semantics and Dijkstra’s weakest preconditions. We
review here briefly the foundations laid by John McCarthy[13], Robert Floyd [5], Tony
Hoare[10] and Edsgar Dijkstra [4]. We begin with the notion of a correctness
specification {P} C {Q}, where P (the precondition) and Q (the postcondition) are
predicates about the state of a program, and C is a code fragment from the program. The
specification is true, provided that whenever the program C begins execution in a state
satisfying P, then if C terminates the resulting state will satisfy Q. This is called a partial
correctness specification because it does not require that the program terminate. The
notation [P] C [Q] is used to describe a total correctness specification which in addition to
the above requires that the program C terminate. If P is the weakest predicate (meaning
that it restricts the state the least) such that C terminates in a state satisfying Q, then P is
called the weakest precondition. In the case of partial correctness specifications, P is
called the weakest liberal precondition. When we use the term weakest precondition, we
will in fact mean weakest liberal precondition.

Given an instruction with semantics (substitution) σ and postcondition Q, the weakest
precondition is σQ. The intuition here states that if Q is a function of the state following
the transformation σ, then replacing each state variable in Q by its representation in terms
of the previous state, we derive an equivalent predicate in the preceding state. Dijkstra
labelled such substitutions predicate transformers. Predicate transformers may be chained
by repeatedly applying the substitution for an instruction to the weakest precondition of its
successor.

A correctness specification for the sum program is

Specification

{NS = N ∧ N>0}
X = 0

LOOP X = X + N
N = N - 1
IF N>0 GOTO LOOP
{X = NS×(NS+1)/2}

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 6

where NS is a “ghost” variable (not part of the program state) used to reference the initial
value of N within the postcondition Q(X,NS) ≡ (X = NS×(NS+1)/2).

The following graph demonstrates the computation of weakest preconditions for the sum
program.

S(X,N,NS) represents the weakest precondition at location 4. S1, S2 and S3 are the
weakest preconditions at instructions 1, 2 and 3 respectively. The correctness theorem is

(NS = N ∧ N>0) ⇒ S1(X,N,NS)

which simplifies to

N>0 ⇒ S(N,N-1,N)

The important thing to bear in mind, is that the correctness statement for the program is
totally embodied in a single predicate referring to its beginning state.

In summary, we compute the weakest precondition using the following algorithm. Given
an assignment statement x = e with postcondition Q, the weakest precondition is simply
[e/x]Q. For a branch instruction (which except for PC does not change the state) with
branch conditions b and ¬b and associated postconditions Q1 and Q2, the weakest
precondition is (b ∧ Q1) ∨ (¬b ∧ Q2). Notice that this is logically equivalent to

1

2

3

4

t

t

t

5

N≤0

Q(X,NS)

S(X,N,NS)=IF Ν>0 S2(X,N,NS) ELSE Q(X,NS)

Ν>0 S3(X,N,NS)=[(N-1)/N]S(X,N,NS)=S(X,N-1,NS)

S2(X,N,NS)=[(X+N)/X]S3(X,N,NS)=S(X+N,N-1,NS)

S1(X,N,NS)=[0/X]S2(X,N,NS)=S(0+N,N-1,NS)

Weakest Preconditions for the Sum Program

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 7

IF b Q1 ELSE Q2. The invention of recursive functions defining weakest preconditions is
treated in full generality later.

4.0 Transforming Programs to Directed Graphs

Given an assembly language program, we generate a forward control flow graph as
follows. Associate with each instruction in the program a unique node. If the instruction
n transits to the instruction n’ upon the branch condition Bn,n’, then connect n to n’ with a
directed arc labelled with the predicate Bn,n’. Notice that sequential non-branch
instructions are connected with an arc labelled t (true). Associated with each node n is a
substitution σn which is the predicate transformer for the instruction at node n. Our
execution model assumes that each node performs any state transformation actions prior
to testing the branch conditions exiting the node. Thus the branch predicates share state
with the target of the branch.

We illustrate the construction of control flow graphs using a simple program which
multiplies two 8-bit numbers on the early Mostek 6502 microprocessor. The 6502 has a
single 8-bit accumulator A and two 8-bit index registers X and Y. It has a carry flag C and
zero flag Z, which remembers whether the last arithmetic calculation produced a zero
result. In the following code F1, F2, and LOW represent single byte memory locations.
Initially F1 and F2 hold the two numbers to be multiplied. At the end of the computation
LOW will hold the low order 8-bits of the product, and A will hold the high order 8-bits.
LOOP and ZCOEF are arbitrary labels used as targets of jump instructions. F1SAVE is a
ghost variable which preserves the initial value of F1.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 8

A Program to Multiply Two 8-bit Numbers

{ F1 = F1SAVE }

LDX #8 ; load X immediate with the integer 8

LDA #0 ; load A immediate with the integer 0

LOOP ROR F1 ; rotate F1 right circular through C

BCC ZCOEF ; branch to ZCOEF if C = 0

CLC ; set C to 0

ADC F2 ; set A to A+F2+C and C to the carry

ZCOEF ROR A ; rotate A right circular through C

ROR LOW ; rotate LOW right circular through C

DEX ; set X to X-1

BNE LOOP ; branch to LOOP if Z = 0

{ F1SAVE × F2 = 256 × A + LOW }

Directed Graph for the Multiply Program

1

2

4

5

6 7 8

9

10 11
3

t

t

t

C=1

t

t t

t

t

Z=0 Z=1

C=0

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 9

5.0 Calculation of Weakest Preconditions

5.1 Overview

Rather than have a single postcondition for a block of code, we begin with a collection of
predicates Qn, each of which must be satisfied at their respective nodes n. Our goal is to
find the weakest predicates Pn such that any state satisfying Pn at node n will, when at
node n’, satisfy Qn’ for any node n’ reachable from n (including n itself). We show how to
construct such Pn by first deriving a set of equations that the Pn must satisfy, and then
solving these equations for concrete representations of the Pn.

5.2 Deriving Equations

Let S(n) be the set of all successor nodes for n. If S(n) ≠ ∅ we say n is an internal node,
otherwise it is terminal. We say that an execution is legal beginning at node n provided:
(1) for all nodes n’ on the execution path following node n, the state immediately prior to
execution of the instruction at node n’ satisfies Pn’, and (2) the execution does not halt at
an internal node. Notice that the definition of legal is relative to the set of predicates Pn.
We now constrain Pn to be the weakest predicate implying Qn which allows only legal
executions beginning at node n. The following theorem shows that this constraint creates
a (generally co-recursive) system of defining equations for the Pn.

Theorem: If for all n, Pn is the weakest predicate implying Qn which allows only legal
executions beginning at node n, then3

Pn = Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)) if n is internal (1)

Pn = Qn if n is terminal

Proof: We show first that Pn ⇒ Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)) for internal nodes n, and

Pn ⇒ Qn for terminal nodes n. Since Pn is the weakest predicate implying Qn, we
obviously have Pn ⇒ Qn for all n. Suppose n is an internal node, and s is the beginning
state for a legal execution starting at node n. Since Pn ⇒ Qn, we need only show that s

satisfies σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)). From property (2) of a legal execution, s has a

successor state s’, which must satisfy Pn’ ∧ Bn,n’ for some node n’. Since σn(Pn’ ∧ Bn,n’)
is the weakest precondition for the postcondition Pn’ ∧ Bn,n’ it must include the state s.
Since substitutions on terms distribute over logical connectives, s indeed satisfies

3. The symbol ∨ represents the logical disjunction (“or”) over the range described by its subscript.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 10

Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)).

We show now that Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)) ⇒ Pn for internal nodes n, and

Qn ⇒ Pn for terminal nodes n. If n is terminal, all executions beginning at node n are legal
and therefore Pn is simply the weakest predicate implying Qn, which is Qn. Consider now

the case where n is internal, and let s satisfy Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)). Distributing

σn over ∨, s must satisfy σn(Pn’ ∧ Bn,n’) for some n’. Furthermore Pn’ ∧ Bn,n’ ≠ false,

otherwise s could not satisfy σn(Pn’ ∧ Bn,n’). So there exists a state s’ satisfying
Pn’ ∧ Bn,n’. Since Pn’ allows only legal executions, there is a legal execution beginning in
state s’ at node n’ which satisfies Pn’. Prepending s to this execution sequence, we have a
legal execution beginning in state s at node n. Since s satisfies Qn, and Pn is the weakest
predicate implying Qn and allowing only legal executions beginning at node n, s must
satisfy Pn. This completes the proof.

5.3 Solving the Equations

We describe an algorithm which uses the equations (1) to derive closed form expressions
for the Pn in terms of the set of predicates Qn. These expressions will in general involve
co-recursive routines, which may be algorithmically converted (see below) to simply
recursive routines. If termination properties can be proved for all simply recursive
routines, then the existence of a unique solution to the system of equations (1) is assured.
Our goal is to incrementally compute the weakest precondition WP(n) at node n, by
accumulating (using logical “or”) Qn ∧ σn(WP(n’) ∧ Bn,n’) for all successor nodes n’. We
arrange our computation to process first those nodes with the fewest active successors.
This avoids unnecessary introduction of new function symbols. In addition to WP(n), the
algorithm makes use of counters M(n), which give the number of currently active
successors of the node n, a list of yet to be processed nodes L, and the set A(n’) of
predecessors of the node n’. The algorithm proceeds as follows.

Initialize the variables.

M(n) = |S(n)|

WP(n) = Qn if n is a terminal node, false otherwise

L = the set of all nodes

A(n’) = { n : n’ ε S(n) }

Iterate the following while L ≠ ∅.

(a) Choose an n’ in L with minimal M(n’).
(b) If M(n’) = 0, then for each n ε A(n’) accumulate (using disjunction)

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 11

 Qn ∧ σn(WP(n’) ∧ Bn,n’) into WP(n) and then decrement M(n).
(c) If M(n’) > 0, manufacture a new function symbol fn’ whose arguments
 consist of all state variables a1, a2, ... , ak,4 then for each n ε A(n’) accumulate
 Qn ∧ σn(fn’(a1, a2, ... , ak) ∧ Bn,n’) into WP(n), and finally decrement M(n).
(d) Delete n’ from L.

Upon termination WP(n) = Pn. For each manufactured fn set up the equation

fn(a1, a2, ... , ak) = WP(n)

These equations may be simplified by removing from the formal argument list of fn any ai

that occurs within WP(n) solely in the ith argument position of calls to fn. The resulting
equations define, in general, a co-recursive set of function definitions which explicitly
represent the Pn in terms of the Qn.

The co-recursive functions may be converted into simply recursive functions by collecting
all co-recursive calls which are mutually dependent, and creating a simple recursion
whose body performs a case split on a new parameter which identifies which of the co-
recursive functions is being called. Once in this form, termination arguments may be
rigorously pursued using, for example, the Boyer-Moore theorem prover NQTHM[1,2] or
the Kaufmann-Moore theorem prover ACL2[11].

It is worth observing that the functions generated with the above algorithm are tail
recursive. This follows from the fact that all occurrences of fn within the WP(i) are at the
outermost (logical) level. There are no pending operations that need to be performed on
results returned from calls to fn within any of its co-recursive routines. Panagiotis
Manolios and J Moore have shown [12] that such functions may be safely introduced into
NQTHM or ACL2 without affecting the soundness of the Boyer-Moore logic.

5.4 Weakest Preconditions for the Multiply Program

We show the output (after simplification using arithmetic and logic rules) of the above
algorithm when applied to the multiply program. The syntax is that of NQTHM, which is
similar to the lisp programming language. (f x1 x2 ... xn) represents the function f applied
to the arguments x1, x2, ... , xn. “defn” plays the role of the common lisp “defun,” which
defines a function. “defvar” defines lisp variables corresponding to weakest preconditions
at various lines of the program. “equal,” “lessp,” and “zerop” are predicates which return
true if their arguments satisfy the relations that their names suggest. “sub1,” “difference,”
“plus,” “times,” and “remainder” also perform the operations that their names suggest on
the natural numbers. “quotient” returns the integer part of a quotient. All functions are
total, returning 0 where they would otherwise be undefined or not a natural number.

4. One may avoid listing all state variables by selecting only those occurring in the domain of substitutions
applied to fn’(a1, a2, ... , ak) in the course of computing the WP(n).

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 12

Notice that the postcondition is represented by the weakest precondition of a fictitious 11th
instruction. In order to prove termination, the definition of “dec” was added as well as the
final line of the definition of wp-zcoef, which instructs NQTHM to use (lessp (dec x)) as a
decreasing measure function. The correctness statement for this program is

((f1save = f1) ∧ (f1 < 256) ∧ (f2 < 256) ∧ (low < 256)) ⇒ wp-1.

Output of the Equation Solving Algorithm

(defn dec (x)
 (if (zerop x)
 255
 (sub1 x)))

(defvar wp-1
 ‘(wp-zcoef (plus (times c 128) (quotient f1 2))
 8
 0
 low
 (times (remainder f1 2) f2)
 f1save
 f2)

(defvar wp-loop
 ‘(wp-zcoef (plus (times c 128) (quotient f1 2))
 x
 (times (remainder f1 2) (quotient (plus a f2) 256))
 low
 (plus (times (difference 1 (remainder f1 2)) a)
 (times (remainder f1 2) (remainder (plus a f2) 256)))
 f1save
 f2))

(defvar wp-5
 ‘(wp-zcoef f1
 x
 (quotient (plus a f2) 256)
 low
 (remainder (plus a f2) 256)
 f1save
 f2))

(defn wp-zcoef (f1 x c low a f1save f2)
 (if (equal (dec x) 0)
 (equal (plus (times (plus (times c 128) (quotient a 2)) 256)

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 13

 (plus (times (remainder a 2) 128)
 (quotient low 2)))
 (times f1save f2))
 (wp-zcoef
 (plus (times (remainder low 2) 128) (quotient f1 2))
 (dec x)
 (times (remainder f1 2)
 (quotient (plus (plus (times c 128) (quotient a 2)) f2)
 256))
 (plus (times (remainder a 2) 128) (quotient low 2))
 (plus (times (difference 1 (remainder f1 2))
 (plus (times c 128) (quotient a 2)))
 (times (remainder f1 2)
 (remainder (plus (plus (times c 128) (quotient a 2)) f2)
 256)))
 f1save
 f2))
 ((lessp (dec x))))

(defvar wp-11
 ‘(equal (plus (times a 256) low)
 (times f1save f2)))

6.0 Concluding Remarks

When proving correctness theorems using weakest preconditions, it is often desirable to
have available recursive definitions of state components. These may be derived
mechanically from the weakest preconditions by simply replacing the exit predicates with
the desired state variable. For example, to derive a recursive function for state component
X from the weakest precondition at location 4 of the sum loop program

S(X,N,NS) = IF N>0 S(X+N,N-1,NS) ELSE Q(X,NS)

we define the function

X-S(X,N) = IF N>0 X-S(X+N,N-1) ELSE X.

It is a trivial verification effort (using induction) to prove5

S(X,N,NS) = Q(X-S(X,N),NS)

5 Notice that the term-valued recursive functions are in fact components of predicate transformers. For an
example of a complete predicate transformer see S1(X,N) at the end of section 3.3.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 14

Direct representation of state components by recursive functions makes possible the
creation of lemmas which rewrite expressions into normal form. This in turn contributes
to higher degrees of proof automation.

We now compare the use of interpreters to weakest preconditions. An interpreter models
all aspects of program execution directly within a formal system. It makes use of the same
information as do weakest preconditions (σn and Bn,n’) to form a model for program
execution. The model, when provided with a “clock” function steps forward from an
initial state to a final state. The postcondition is then applied to the final state, which
through the interpreter, becomes a function of the initial state. If the interpreted program
contains loops, it is generally necessary to manufacture recursive functions similar to X-S
above and prove that the state transformations effected by the loops is the same as that
given by the recursive functions. This activity is repeated (if for example there are loops
within loops) until one arrives roughly at the same point at which weakest preconditions
begin.

The advantage of using interpreters is increased rigor.6 Program execution semantics are
captured entirely within a formal logic, whereas weakest preconditions embody the
execution semantics in their calculation.

When implementing the algorithm for computation of weakest preconditions described in
this paper, careful consideration must be given to program efficiency. Without due care,
the size of the expressions Pn will grow exponentially with the length of the target
program, and even with linear growth the size of the predicates generated on moderate
size programs will exceed the capabilities of popular theorem provers which use “bottom
up”7 rewriting. Effective use of the techniques described in this paper may require
redesign of currently available theorem provers.

Finally, it is interesting to note that in the context of finite state automata, this paper
provides a concrete example of Church’s Thesis, which states that any computation
possible with a Turing Machine is also possible using the Lambda Calculus.

6 Some would claim that interpreters have the additional advantage of being executable, but the same holds
true of weakest precondition models provided the system clock is part of the state. Each of the Qn would
simply state that the clock has the desired value. Each of the state components may then be derived by
executing the term-valued functions referenced above.

7. “Bottom up” rewriting transforms the innermost terms of an expression prior to rewriting the
encompassing expression. It performs a depth first exploration of the expression tree.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 15

Bibliography

1. Robert S. Boyer and J Strother Moore, “A Computational Logic”, Academic Press,
ACM Monograph Series, 1979. ISBN 0-12-122950-5.

2. Robert S. Boyer and J Strother Moore, “A Computational Logic Handbook”, Academic
Press, Perspectives in Computing, volume 23, 1988. ISBN 0-12-122952-1

3. D. L. Clutterbuck and B. A. Carré, “The Verification of Low-level Code,” Software
Engineering Journal, May 1988.

4. E. W. Dijkstra, “A Discipline of Programming,” Prentice-Hall Series on Automatic
Computation, 1976.

5. R. W. Floyd, “Assigning Meaning to Programs,” Proceedings of the American
Mathematics Society (Symposia on Applied Mathematics), volume 19, 1967, pp. 19-
31.

6. G. C. Gannod and B. H. C. Cheng, “Abstraction of Formal Specifications from Program
Code,” Proceedings of the 1991 IEEE International Conference on Tools for AI, San
Jose, CA, Nov. 1991.

7. G. C. Gannod and B. H. C. Cheng, “Strongest Postcondition Semantics as the Formal
Basis for Reverse Engineering,” Proceedings for the Second Working Conference on
Reverse Engineering, Toronto, Ontario, pp. 188-197, July 14-16, 1995.

8. Allen Goldberg and Tie-Cheng Wang, “Integration of Linear Arithmetic and Goal-
Oriented Resolution,” Frontiers in Combining Systems, (FroCos 1998), Amsterdam,
Netherlands, Oct. 1998.

9. J. M. Hart, “Experience with Logical Code Analysis in Software Maintenance,
Software Practice and Experience, 1995.

10. C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communications
of the ACM, volume 12, number 10, October 1969, pp. 576-583.

11. Kaufmann, Manolios, Moore, “Computer-Aided Reasoning: An Approach,” Kluwer
Academic Publishers, 2000, ISBN 0-7923-7744-3.

12. Manolios, Moore, “Partial Functions in ACL2,” (to be published) http://
www.cs.utexas.edu/users/moore/publications, Feb. 2001.

13. John McCarthy, “Towards a Mathematical Science of Computation,” Proceedings of
IFIP Congress 1962, North Holland Pub. Co., Amsterdam, 1963. Also available on
John McCarthy’s web site at http://www-formal.stanford.edu/jmc.

14. A. Pizzarello, “A New Method for Location of Software Defects,” Peritus Software
Services, Inc., 1993.

A Weakest Precondition Model for Assembly Language Programs January 28, 2003 16

15. A. Pizzarello, “Formal Techniques for Understanding Programs,” Proceedings of the

8th International Software Quality Week, San Francisco, May 30 - June 2, 1995.

