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2.0  Overview

This paper describes a formal model, based upon Dijkstra’s weakest preconditions [4], for 
reasoning about assembly language programs.  The model applies more generally to any 
finite state machine.  It extends earlier work of Floyd [5], Hoare [10] and Dijkstra [4], by 
automatically generating closed form expressions for the weakest precondition of 
arbitrary loops.

Section 3 provides an informal introduction to the subject matter, followed by a more 
rigorous treatment in sections 4 and 5.  Finally, section 6 briefly compares this to other 
work.

3.0  Preliminaries

3.1  Functional Programs

Reasoning about computer programs requires that program variables have well defined 
meaning.  An imperative program may associate different values with a variable X 
depending on the state of its execution.  This is not true of purely functional programs, 
which model computation using a composition of state-to-state transformations.  By way 
of illustration, consider a program which sums the first N natural numbers.

X = 0
LOOP X = X + N

N = N - 1
IF N>0 GOTO LOOP

A functional representation of the computation on X occurring within the loop body is
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SUM(N,X) = IF N>0 SUM(N-1,X+N) ELSE X

Notice that the arguments in the recursive call of SUM are computed by applying the 
composition of all state to state transformations occurring within the body of LOOP to the 
formal parameters of SUM.  Since every occurrence of N and X within the formula have 
the same meaning, we may treat the equality symbol “=” as a true logical equality and use 
it as a basis for both computation and reasoning.  Properties about the functional program, 
such as SUM(N,0) = N*(N+1)/2  may be directly stated and proved using the tools of 
mathematical logic.

McCarthy [13] showed that any flow chart program may be mechanically transformed to a 
purely functional form.  One could, in theory, reason about imperative programs using 
their functional equivalents.  In fact, this is routinely done both when using interpreter1 
models for program execution and when using the techniques of this paper.  Our approach, 
based upon Dijkstra’s weakest preconditions [4], blends the functional representation for 
state into the functional representation for predicates on state.  We then derive the state 
valued functions from the predicate valued functions as the need arises.

3.2  Substitutions

Our basis for capturing programming language semantics is the substitution operator
[e1/x1, e2/x2, ... , en/xn].  When applied to a term (at the purely syntactic level), this 
operator simultaneously replaces each occurrence of xi with ei, i = 1, 2, ... , n.  The xi and 
ei represent, respectively, state variables (registers, memory, flags, program counter, etc.) 
and expressions in the state variables.  When used to model state transformations, ei 
expresses the new value of  xi in terms of the old state.  Applying a substitution σ =
[e1/x1, e2/x2, ... , en/xn] to a function of state f(x1,x2, ... ,xn), transforms it to an equivalent 
function σ f(x1,x2, ... ,xn) = f(e1,e2, ... ,en) in the preceding state.

Substitutions σ and τ may be composed, so that (στ)f(x1,x2, ... ,xn) = σ(τf(x1,x2, ... ,xn)).  
A substitution may also represent a state, in which case ei describes the value of state 
component xi.  Composing several substitutions, each representing a state transformation, 
describes values of state components after the final transformation in terms of state 
components before the first (leftmost) transformation.

For example, applying the substitution [(N-1)/N, (X+N)/X] to the term

IF N>0 SUM(N-1,X+N) ELSE X

yields

1 An interpreter is a function which takes a state, a program, and a sequence of external (e.g. interrupts, 
input data, etc.) events as arguments, and returns a new state which represents the effect of running the 
program for a number of steps equal to the length of the event (also called an “oracle”) sequence.
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IF N-1>0 SUM((N-1)-1,(X+N)+(N-1)) ELSE (X+N).

Composing [(N-1)/N, (X+N)/X] with [(N-1)/N, (X+N)/X] yields

[((N-1)-1)/N, ((X+N)+(N-1))/X].

3.3  Modeling Computation

There are two conceptually different approaches to modeling program execution.  The 
“natural” method is to move forward through the program, successively expressing each 
new state in terms of the original state.  This is commonly called symbolic execution.  
Alternatively, one may move backwards through the program, expressing the final state in 
terms of successively earlier states.  In the absence of branch instructions, both 
computations yield identical results.  Forward execution is commonly used with 
interpreter models, whereas backward execution is typical of weakest precondition 
models.

We illustrates the similarities between forward and backward execution by way of an 
example.  In the following table, we describe the semantics of each instruction using 
substitutions.  The state component PC represents an instruction counter.

Instruction Substitution

X = 0 [(1+PC)/PC, 0/X]
LOOP X = X + N [(1+PC)/PC, (X+N)/X]

N = N - 1 [(1+PC)/PC, (N-1)/N]
IF N>0 GOTO LOOP [(IF N>0 2 ELSE (1+PC))/PC]

The following table shows the sequence of states obtained by symbolic execution 
beginning with the state [0/PC,X/X,N/N].  Each entry in column 2 is the state following 
execution of the corresponding instruction in column 1.

Computation State

X = 0 [1/PC, 0/X, N/N]
LOOP X = X + N [2/PC, (0+N)/X, N/N]

N = N - 1 [3/PC, (0+N)/X, (N-1)/N]
IF N>0 GOTO LOOP [(IF N-1>0 2 ELSE 5)/PC, (0+N)/X, (N-1)/N]

States are computed by applying the previous state to the substitution associated with the 
current instruction, e.g. [1/PC, 0/X, N/N] = [0/PC, X/X, N/N] [(1+PC)/PC, 0/X].  The 
intuition guiding these computations is that the state transformation associated with an 
instruction execution expresses the new state (“denominator”) in terms of the old 
(“numerator”).  The previous state expresses the old state in terms of the initial state.  
Composing the two, gives the current state in terms of the initial state.
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We do not continue the execution beyond instruction 4, since the state at each instruction 
no longer uniquely depends on the initial state.  For example, the state at instruction 3 
depends on how many iterations of the loop have occurred, whereas the state at location 5 
is uniquely defined as a recursive function 2of the initial state.  We shall see that the 
backward execution provides a much more natural context for dealing with loops.

Consider now backward execution of this same program, beginning with the state at 
location 5.  We omit PC from the state, since each state will be uniquely associated with 
an instruction.  When performing a backward execution step over a branch instruction, we 
need the states at each of the branch targets.  We compute these in a demand driven 
fashion.  So, the computation of the state at location 4 demands that we know the state at 
location 2, which in turn demands that we know the state at location 3, which demands 
that we know the state at location 4.  We are now back where we started, so we invent a 
function S(X,N) which represents the state at location 4.  We use S(X,N) to complete the 
calculation, deriving the following equation for S(X,N).  

S(X,N) = IF N>0 S(X+N,N-1) ELSE [X/X,N/N]

The following graph shows this computation in greater detail.

2 For example, [5/PC, SUM(N,X)/X, 0/N].
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[X/X,N/N]

S(X,N) = IF Ν>0 S2(X,N) ELSE [X/X,N/N] 

Ν>0 S3(X,N) = [(N-1)/N] S(X,N) = S(X,N-1)

S2(X,N) = [(X+N)/X] S3(X,N) = S(X+N,N-1) 

S1(X,N) = [0/X] S2(X,N) = S(0+N,N-1) = S(N,N-1) 

Backward Computation for the Sum Program
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Each node is labelled by its corresponding instruction.  The arcs are labelled with 
predicates on the state which specify the conditions under which one instruction transits to 
another.  S1, S2 and S3 define the state at location 5 in terms of the state at locations 1, 2 
and 3 respectively.

Since S1(X,N) returns a substitution, it may in fact be applied to an arbitrary function of 
state at location 5, transforming it into an equivalent function of the state at location 1.

3.4  Weakest Preconditions

Much of what we have done with backward execution, has been done previously in the 
context of Floyd-Hoare program semantics and Dijkstra’s weakest preconditions.  We 
review here briefly the foundations laid by John McCarthy[13], Robert Floyd [5], Tony 
Hoare[10] and Edsgar Dijkstra [4].  We begin with the notion of a correctness 
specification {P} C {Q}, where P (the precondition) and Q (the postcondition) are 
predicates about the state of a program, and C is a code fragment from the program.  The 
specification is true, provided that whenever the program C begins execution in a state 
satisfying P, then if C terminates the resulting state will satisfy Q.  This is called a partial 
correctness specification because it does not require that the program terminate.  The 
notation [P] C [Q] is used to describe a total correctness specification which in addition to 
the above requires that the program C terminate. If P is the weakest predicate (meaning 
that it restricts the state the least) such that C terminates in a state satisfying Q, then P is 
called the weakest precondition.  In the case of partial correctness specifications, P is 
called the weakest liberal precondition.  When we use the term weakest precondition, we 
will in fact mean weakest liberal precondition.

Given an instruction with semantics (substitution) σ and postcondition Q, the weakest 
precondition is σQ.  The intuition here states that if Q is a function of the state following 
the transformation σ, then replacing each state variable in Q by its representation in terms 
of the previous state, we derive an equivalent predicate in the preceding state.  Dijkstra 
labelled such substitutions predicate transformers.  Predicate transformers may be chained 
by repeatedly applying the substitution for an instruction to the weakest precondition of its 
successor.

A correctness specification for the sum program is

Specification

{NS = N ∧ N>0}
X = 0

LOOP X = X + N
N = N - 1
IF N>0 GOTO LOOP
{X = NS×(NS+1)/2}



A Weakest Precondition Model for Assembly Language Programs   January 28, 2003 6

where NS is a “ghost” variable (not part of the program state) used to reference the initial 
value of N within the postcondition Q(X,NS) ≡  (X = NS×(NS+1)/2).

The following graph demonstrates the computation of weakest preconditions for the sum 
program.

S(X,N,NS) represents the weakest precondition at location 4.  S1, S2 and S3 are the 
weakest preconditions at instructions 1, 2 and 3 respectively.  The correctness theorem is

(NS = N ∧ N>0) ⇒ S1(X,N,NS)

which simplifies to

N>0 ⇒ S(N,N-1,N)

The important thing to bear in mind, is that the correctness statement for the program is 
totally embodied in a single predicate referring to its beginning state.

In summary, we compute the weakest precondition using the following algorithm.  Given 
an assignment statement x = e with postcondition Q, the weakest precondition is simply 
[e/x]Q.  For a branch instruction (which except for PC does not change the state) with 
branch conditions b and ¬b and associated postconditions Q1 and Q2, the weakest 
precondition is (b ∧ Q1) ∨ (¬b ∧ Q2).  Notice that this is logically equivalent to
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Q(X,NS)

S(X,N,NS)=IF Ν>0 S2(X,N,NS) ELSE Q(X,NS) 

Ν>0 S3(X,N,NS)=[(N-1)/N]S(X,N,NS)=S(X,N-1,NS)

S2(X,N,NS)=[(X+N)/X]S3(X,N,NS)=S(X+N,N-1,NS) 

S1(X,N,NS)=[0/X]S2(X,N,NS)=S(0+N,N-1,NS) 

Weakest Preconditions for the Sum Program
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IF b Q1 ELSE Q2.  The invention of recursive functions defining weakest preconditions is 
treated in full generality later.

4.0  Transforming Programs to Directed Graphs

Given an assembly language program, we generate a forward control flow graph as 
follows.  Associate with each instruction in the program a unique node.  If the instruction 
n transits to the instruction n’ upon the branch condition Bn,n’, then connect n to n’ with a 
directed arc labelled with the predicate Bn,n’.  Notice that sequential non-branch 
instructions are connected with an arc labelled t (true).  Associated with each node n is a 
substitution σn which is the predicate transformer for the instruction at node n.  Our 
execution model assumes that each node performs any state transformation actions prior 
to testing the branch conditions exiting the node.  Thus the branch predicates share state 
with the target of the branch.

We illustrate the construction of control flow graphs using a simple program which 
multiplies two 8-bit numbers on the early Mostek 6502 microprocessor.  The 6502 has a 
single 8-bit accumulator A and two 8-bit index registers X and Y.  It has a carry flag C and 
zero flag Z, which remembers whether the last arithmetic calculation produced a zero 
result.  In the following code F1, F2, and LOW represent single byte memory locations.  
Initially F1 and F2 hold the two numbers to be multiplied.  At the end of the computation 
LOW will hold the low order 8-bits of the product, and A will hold the high order 8-bits.  
LOOP and ZCOEF are arbitrary labels used as targets of jump instructions.  F1SAVE is a 
ghost variable which preserves the initial value of F1.
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A Program to Multiply Two 8-bit Numbers

{ F1 = F1SAVE }

LDX #8               ; load X immediate with the integer 8

LDA #0               ; load A immediate with the integer 0

LOOP       ROR F1              ; rotate F1 right circular through C

BCC ZCOEF      ; branch to ZCOEF if C = 0

CLC                    ; set C to 0

ADC F2              ; set A to A+F2+C and C to the carry

ZCOEF     ROR A               ; rotate A right circular through C

ROR LOW        ; rotate LOW right circular through C

DEX                   ; set X to X-1

BNE LOOP       ; branch to LOOP if Z = 0

{ F1SAVE × F2 = 256 × A + LOW }

Directed Graph for the Multiply Program
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5.0  Calculation of Weakest Preconditions

5.1  Overview

Rather than have a single postcondition for a block of code, we begin with a collection of 
predicates Qn, each of which must be satisfied at their respective nodes n.  Our goal is to 
find the weakest predicates Pn such that any state satisfying Pn at node n will, when at 
node n’, satisfy Qn’ for any node n’ reachable from n (including n itself).  We show how to 
construct such Pn by first deriving a set of  equations that the Pn must satisfy, and then 
solving these equations for concrete representations of the Pn.

5.2  Deriving Equations

Let S(n) be the set of all successor nodes for n.  If S(n) ≠ ∅ we say n is an internal node, 
otherwise it is terminal.  We say that an execution is legal beginning at node n provided: 
(1) for all nodes n’ on the execution path following node n, the state immediately prior to 
execution of the instruction at node n’ satisfies Pn’, and (2) the execution does not halt at 
an internal node.  Notice that the definition of legal is relative to the set of predicates Pn.  
We now constrain Pn to be the weakest predicate implying Qn which allows only legal 
executions beginning at node n.  The following theorem shows that this constraint creates 
a (generally co-recursive) system of defining equations for the Pn.

Theorem:  If for all n, Pn is the weakest predicate implying Qn which allows only legal 
executions beginning at node n, then3  

Pn = Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)) if n is internal (1)

Pn = Qn if n is terminal

Proof:  We show first that Pn ⇒ Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)) for internal nodes n, and  

Pn ⇒ Qn for terminal nodes n.  Since Pn is the weakest predicate implying Qn, we 
obviously have Pn ⇒ Qn for all n.  Suppose n is an internal node, and s is the beginning 
state for a legal execution starting at node n.  Since Pn ⇒ Qn, we need only show that s 

satisfies σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)).  From property (2) of a legal execution, s has a 

successor state s’, which must satisfy Pn’ ∧ Bn,n’ for some node n’.  Since σn(Pn’ ∧ Bn,n’) 
is the weakest precondition for the postcondition Pn’ ∧ Bn,n’ it must include the state s.  
Since substitutions on terms distribute over logical connectives, s indeed satisfies

3. The symbol ∨ represents the logical disjunction (“or”) over the range described by its subscript.
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Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)).

We show now that Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)) ⇒ Pn for internal nodes n, and

Qn ⇒ Pn for terminal nodes n.  If n is terminal, all executions beginning at node n are legal 
and therefore Pn is simply the weakest predicate implying Qn, which is Qn.  Consider now 

the case where n is internal, and let s satisfy Qn ∧ σn(∨n’ ε S(n) (Pn’ ∧ Bn,n’)).  Distributing 

σn over ∨, s must satisfy σn(Pn’ ∧ Bn,n’) for some n’.  Furthermore Pn’ ∧ Bn,n’ ≠ false, 

otherwise s could not satisfy σn(Pn’ ∧ Bn,n’).  So there exists a state s’ satisfying
Pn’ ∧ Bn,n’.  Since Pn’ allows only legal executions, there is a legal execution beginning in 
state s’ at node n’ which satisfies Pn’.  Prepending s to this execution sequence, we have a 
legal execution beginning in state s at node n.  Since s satisfies Qn, and Pn is the weakest 
predicate implying Qn and allowing only legal executions beginning at node n, s must 
satisfy Pn.  This completes the proof.

5.3  Solving the Equations

We describe an algorithm which uses the equations (1) to derive closed form expressions 
for the Pn in terms of the set of predicates Qn.  These expressions will in general involve 
co-recursive routines, which may be algorithmically converted (see below) to simply 
recursive routines.  If termination properties can be proved for all simply recursive 
routines, then the existence of a unique solution to the system of equations (1) is assured.  
Our goal is to incrementally compute the weakest precondition WP(n) at node n, by 
accumulating (using logical “or”) Qn ∧ σn(WP(n’) ∧ Bn,n’) for all successor nodes n’.  We 
arrange our computation to process first those nodes with the fewest active successors.  
This avoids unnecessary introduction of new function symbols.  In addition to WP(n), the 
algorithm makes use of counters M(n), which give the number of currently active 
successors of the node n, a list of yet to be processed nodes L, and the set A(n’) of 
predecessors of the node n’.  The algorithm proceeds as follows.

Initialize the variables.

M(n)    =  |S(n)|

WP(n)  =  Qn if n is a terminal node, false otherwise

L          =  the set of all nodes

A(n’)    =  { n : n’ ε S(n) }

Iterate the following while L ≠ ∅.

(a)  Choose an n’ in L with minimal M(n’).
(b)  If M(n’) = 0, then for each n ε A(n’) accumulate (using disjunction)
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      Qn ∧ σn(WP(n’) ∧ Bn,n’) into WP(n) and then decrement M(n).
(c)  If M(n’) > 0, manufacture a new function symbol fn’ whose arguments
      consist of all state variables a1, a2, ... , ak,4 then for each n ε A(n’) accumulate
      Qn ∧ σn(fn’(a1, a2, ... , ak) ∧ Bn,n’) into WP(n), and finally decrement M(n).
(d)  Delete n’ from L.

Upon termination WP(n) = Pn.  For each manufactured fn set up the equation

fn(a1, a2, ... , ak) = WP(n)

These equations may be simplified by removing from the formal argument list of fn any ai 

that occurs within WP(n) solely in the ith argument position of calls to fn.  The resulting 
equations define, in general, a co-recursive set of function definitions which explicitly 
represent the Pn in terms of the Qn.

The co-recursive functions may be converted into simply recursive functions by collecting 
all co-recursive calls which are mutually dependent, and creating a simple recursion 
whose body performs a case split on a new parameter which identifies which of the co-
recursive functions is being called.  Once in this form, termination arguments may be 
rigorously pursued using, for example, the Boyer-Moore theorem prover NQTHM[1,2] or 
the Kaufmann-Moore theorem prover ACL2[11].

It is worth observing that the functions generated with the above algorithm are tail 
recursive.  This follows from the fact that all occurrences of fn within the WP(i) are at the 
outermost (logical) level.  There are no pending operations that need to be performed on 
results returned from calls to fn within any of its co-recursive routines.  Panagiotis 
Manolios and J Moore have shown [12] that such functions may be safely introduced into 
NQTHM or ACL2 without affecting the soundness of the Boyer-Moore logic.

5.4  Weakest Preconditions for the Multiply Program

We show the output (after simplification using arithmetic and logic rules) of the above 
algorithm when applied to the multiply program.  The syntax is that of NQTHM, which is 
similar to the lisp programming language.  (f x1 x2 ...  xn) represents the function f applied 
to the arguments x1, x2, ... , xn.  “defn” plays the role of the common lisp “defun,” which 
defines a function.  “defvar” defines lisp variables corresponding to weakest preconditions 
at various lines of the program.  “equal,” “lessp,” and “zerop” are predicates which return 
true if their arguments satisfy the relations that their names suggest.  “sub1,” “difference,” 
“plus,” “times,” and “remainder” also perform the operations that their names suggest on 
the natural numbers.  “quotient” returns the integer part of a quotient.  All functions are 
total, returning 0 where they would otherwise be undefined or not a natural number.

4.  One may avoid listing all state variables by selecting only those occurring in the domain of  substitutions  
applied to fn’(a1, a2, ... , ak) in the course of computing the WP(n).
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Notice that the postcondition is represented by the weakest precondition of a fictitious 11th 
instruction.  In order to prove termination, the definition of “dec” was added as well as the 
final line of the definition of wp-zcoef, which instructs NQTHM to use (lessp (dec x)) as a 
decreasing measure function.  The correctness statement for this program is

((f1save = f1) ∧ (f1 < 256) ∧ (f2 < 256) ∧ (low < 256)) ⇒ wp-1.

Output of the Equation Solving Algorithm

(defn dec (x)
  (if (zerop x)
      255
    (sub1 x)))

(defvar wp-1
  ‘(wp-zcoef (plus (times c 128) (quotient f1 2))
                    8
                    0
                    low
                    (times (remainder f1 2) f2)
                    f1save
                    f2)

(defvar wp-loop
 ‘(wp-zcoef (plus (times c 128) (quotient f1 2))
                   x
                   (times (remainder f1 2) (quotient (plus a f2) 256))
                   low
                   (plus (times (difference 1 (remainder f1 2)) a)
                            (times (remainder f1 2) (remainder (plus a f2) 256)))
                   f1save
                   f2))

(defvar wp-5
 ‘(wp-zcoef f1
                  x
                  (quotient (plus a f2) 256)
                  low
                  (remainder (plus a f2) 256)
                  f1save
                  f2))

(defn wp-zcoef (f1 x c low a f1save f2)
  (if (equal (dec x) 0)
      (equal (plus (times (plus (times c 128) (quotient a 2)) 256)
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                         (plus (times (remainder a 2) 128)
                                 (quotient low 2)))
                (times f1save f2))
     (wp-zcoef
       (plus (times (remainder low 2) 128) (quotient f1 2))
       (dec x)
       (times (remainder f1 2)
                 (quotient (plus (plus (times c 128) (quotient a 2)) f2)
                               256))
       (plus (times (remainder a 2) 128) (quotient low 2))
       (plus (times (difference 1 (remainder f1 2))
                         (plus (times c 128) (quotient a 2)))
               (times (remainder f1 2)
                         (remainder (plus (plus (times c 128) (quotient a 2)) f2)
                                          256)))
       f1save
       f2))
  ((lessp (dec x))))

(defvar wp-11
 ‘(equal (plus (times a 256) low)
             (times f1save f2)))

6.0  Concluding Remarks

When proving correctness theorems using weakest preconditions, it is often desirable to 
have available recursive definitions of state components.  These may be derived 
mechanically from the weakest preconditions by simply replacing the exit predicates with 
the desired state variable.  For example, to derive a recursive function for state component 
X from the weakest precondition at location 4 of the sum loop program

S(X,N,NS) = IF N>0 S(X+N,N-1,NS) ELSE Q(X,NS)

we define the function

X-S(X,N) = IF N>0 X-S(X+N,N-1) ELSE X.

It is a trivial verification effort (using induction) to prove5

S(X,N,NS) = Q(X-S(X,N),NS)

5   Notice that the term-valued recursive functions are in fact components of predicate transformers.  For an 
example of a complete predicate transformer see S1(X,N) at the end of section 3.3.
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Direct representation of state components by recursive functions makes possible the 
creation of lemmas which rewrite expressions into normal form.  This in turn contributes 
to higher degrees of proof automation.

We now compare the use of interpreters to weakest preconditions.  An interpreter models 
all aspects of program execution directly within a formal system.  It makes use of the same 
information as do weakest preconditions (σn and Bn,n’) to form a model for program 
execution.  The model, when provided with a “clock” function steps forward from an 
initial state to a final state.  The postcondition is then applied to the final state, which 
through the interpreter, becomes a function of the initial state.  If the interpreted program 
contains loops, it is generally necessary to manufacture recursive functions similar to X-S 
above and prove that the state transformations effected by the loops is the same as that 
given by the recursive functions.  This activity is repeated (if for example there are loops 
within loops) until one arrives roughly at the same point at which weakest preconditions 
begin.

The advantage of using interpreters is increased rigor.6  Program execution semantics are 
captured entirely within a formal logic, whereas weakest preconditions embody the 
execution semantics in their calculation.

When implementing the algorithm for computation of weakest preconditions described in 
this paper, careful consideration must be given to program efficiency.  Without due care, 
the size of the expressions Pn will grow exponentially with the length of the target 
program, and even with linear growth the size of the predicates generated on moderate 
size programs will exceed the capabilities of popular theorem provers which use “bottom 
up”7 rewriting.  Effective use of the techniques described in this paper may require 
redesign of currently available theorem provers.

Finally, it is interesting to note that in the context of finite state automata, this paper 
provides a concrete example of Church’s Thesis, which states that any computation 
possible with a Turing Machine is also possible using the Lambda Calculus.

6   Some would claim that interpreters have the additional advantage of being executable, but the same holds 
true of weakest precondition models provided the system clock is part of the state.  Each of the Qn would 
simply state that the clock has the desired value.  Each of the state components may then be derived by 
executing the term-valued functions referenced above.

7.  “Bottom up” rewriting transforms the innermost terms of an expression prior to rewriting the 
encompassing expression.  It performs a depth first exploration of the expression tree.
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