Partial Clock
Functions in ACL?2

John Matthews and Daron Vroon
ACL2 Workshop 2004




Goals

® Given a state machine, we want:

® A termination proof: from a set of starting
states, a desired goal state will always
eventually be reached.

® An efficient simulator: a function that steps
machine until desired goal state is reached

® Modularity: Be able to compose subroutine
proofs and simulators




Goals

® We don't want to:

® write a VCG (verification condition
generator)

® manually define a clock function

® specify assertions or ordinal measures for
every instruction in the subroutine

® add a clock parameter to the simulator
® Related work:

® First three conditions above met for
partial correctness [Moore 2003]

® First two conditions above met for total
correctness [Ray & Moore 2004]

3




State machine model

® State tuple: represents current machine state
® Defined as a stobj

® Program, program counter are part of the state

(defstobj mstate
(mem :type (array (signed-byte 32) (1024))
(progc :type integer)
.)
® “next state” function: executes one machine step
next : mstate => mstate




State machine model

® Machine simulator (with clock parameter): Executes machine
for n steps

® Returns current state if n is bogus

(defun run (n mstate)
(declare (xargs :stobjs (mstate)
:guard (natp n)))
(1f (zp n)
mstate
(let ((mstate (next mstate)))
(run (1- n) mstate))))




State machine model

® State assertion: predicate about a machine
state

(defun entering-fib-routine (n mstate)
(and (program-loaded *fib-addr* mstate)
(equal (progc mstate)
*fib-addr*)
(equal (top-of-stack mstate)
n)))

(defun exiting-fib-routine (n mstate)
(and (program-loaded *fib-addr* mstate)
(equal (progc mstate)
*fib-done-addr¥*)
(equal (top-of-stack mstate)
(fib n))))




State machine model

® Cutpoints: Finite collection of state assertions

® Every program loop should be broken by at
least one cutpoint

® Exitpoint: Desired end state assertion
® Every exitpoint must be a cutpoint
® Multiple exitpoints allowed
® Exitpoints aren't necessarily halting
® Internal cutpoint: A cutpoint that is not an
exitpoint




Termination proof

® Total correctness: Every cutpoint always
leads to an exitpoint.

® Proof method:

® Assigh an ordinal measure o every cutpoint

cutpoint-measure :
mstate => ordinal

® Symbolically simulate each control path
from an internal cutpoint until another
cutpoint is reached

® Show that the newly-reached cutpoint is
smaller according o cutpoint-measure




Symbolic simulation

® Symbolic simulation automated via a partial clock function
® Has a generic, tail-recursive definition

® Returns number of steps (- n) until next valid cutpoint state,
if one is reachable

® Undefined if no cutpoint state is reachable
® Can be made "Executable”

(defpun steps-to-cutpoint-tail (n mstate)
(1f (at-cutpoint mstate)
n
(steps-to-cutpoint-tail (1+ n) (next mstate))))




Completed clock function

® Partial clock function is logically extended to a total function:

® Tests whether value returned by steps-to-cutpoint-tail is a
cutpoint:

® Tf so, then return that value
® Tf not, then return w

(defun steps-to-cutpoint (mstate)

(let ((steps (steps-to-cutpoint-tail 0 mstate)))
(i1f (at-cutpoint (run steps mstate))
steps

(omega))))




Clock function
rewrites

® Completed clock function has simpler rewrite rules
® Rules use ordinal addition to handle unreachable cutpoints

(defthm steps-to-cutpoint-zero
(implies (at-cutpoint mstate)
(equal (steps-to-cutpoint mstate) 0)))

(defthm steps-to-cutpoint-nonzero-intro
(implies (not (at-cutpoint mstate))
(equal (steps-to-cutpoint mstate)
(o+ 1
(steps-to-cutpoint (next mstate))))))




Symbolic simulation

® Check termination by symbolically simulating machine, from each
internal cutpoint to its next reachable cutpoint

(implies (and (at-cutpoint mstate)
(not (at-exitpoint mstate)))
(let* ((steps (steps-to-cutpoint (next mstate)))
(cutpoint (run steps mstate)))
(and (at-cutpoint cutpoint)
(o< (cutpoint-measure cutpoint)
(cutpoint-measure mstate)))))

® But then machine gets simulated twice per internal cutpoint!
® Once to compute number of steps to next cutpoint
® Second time to compute next cutpoint's state tuple




Symbolic simulation

® Solution: use clock function to define a next-cutpoint function
® Returns next cutpoint, if it is reachable
® Returns a non-cutpoint value, otherwise

(defun next-cutpoint (mstate)
(let ((steps (steps-to-cutpoint mstate)))
(1f (natp steps)
(run steps mstate)
nil)))




Symbolic simulation

® Next-cutpoint function agrees with machine simulator...
(thm
(implies (at-cutpoint (next-cutpoint mstate))
(equal (next-cutpoint mstate)
(run (steps-to-cutpoint mstate) mstate)))))

...and still obeys good symbolic simulation rules
(defthm next-cutpoint-at-cutpoint
(implies (at-cutpoint mstate)
(equal (next-cutpoint mstate)
mstate)))

(defthm next-cutpoint-intro-next
(implies (not (at-cutpoint mstate))
(equal (next-cutpoint mstate)
(next-cutpoint (next mstate)))))




Symbolic simulation

®* Now termination check symbolically simulates machine only once
per internal cutpoint.

(implies (and (at-cutpoint mstate)
(not (at-exitpoint mstate)))
(let ((cutpoint (next-cutpoint (next mstate))))
(and (at-cutpoint cutpoint)
(o< (cutpoint-measure cutpoint)
(cutpoint-measure mstate)))))




Termination

® Can now define function to count steps from cutpoint to next
exitpoint

(defun steps-to-exitpoint-from-cutpoint (mstate)
(declare (xargs :measure (cutpoint-measure mstate)))
(cond

((not (at-cutpoint mstate))

0)

((at-exitpoint mstate)

0)

(t

(+ 1 (steps-to-cutpoint (next mstate))
(steps-to-exitpoint-from-cutpoint

(next-cutpoint (next mstate)))))))




Termination

® Main termination theorem:

(defthm total-correctness-from-cutpoint
(implies (at-cutpoint mstate)
(at-exitpoint
(run (steps-to-exitpoint-from-cutpoint mstate)
mstate))))




Efficient simulator

® (Goal 2: Define an executable machine
simulator function that doesn't use a step
counter

® Simulator returns the first reachable
exitpoint state

® Simulator guard: input state must be a
cutpoint




Efficient simulator

® Defining the simulator:

® First define a cutpoint simulator, that
steps the machine from one cutpoint to
the next cutpoint

® Main simulator calls cutpoint simulator
until exitpoint is reached

® Use cutpoint measure to prove
termination

® Main challenge: stobj syntactic restrictions




Stobj restrictions

® Want to use steps-to-cutpoint in guards, but not execute them

:guard (at-cutpoint
(run (steps-to-cutpoint mstate) mstate))

® Problem: ACL2 requires guards to be executable
e Difficult to make guards stobj-compliant
® This definition doesn't work, since defpun not stobj-compliant:

(defun steps-to-cutpoint (mstate)
(declare (xargs :stobjs (mstate)))
(let ((steps (steps-to-cutpoint-tail 0 mstate)))
(1f (at-cutpoint (run steps mstate))
steps
(omega))))

20




Stobj restrictions

® Need to write coercion functions between stobjs and ACL2 values

logical-mstatep : * => bool
copy-from-mstate : mstate => *
copy-to-mstate : (* mstate) => mstate

(defthm copy-from-mstate-correct
(implies (mstatep mstate)
(equal (copy-from-mstate mstate)
mstate)))

(defthm copy-to-mstate-correct
(implies (and (mstatep mstate)
(logical-mstatep copy))
(equal (copy-to-mstate copy mstate)

copy)))

21




Stobj restrictions

® Next problem: guards are not allowed to modify stobjs

(defun steps-to-cutpoint (mstate)
(declare (xargs :stobjs (mstate)))
(let* ((mstate-copy (copy-from-mstate mstate))
(steps
(steps-to-cutpoint-tail 0 mstate-copy)))
(1f (at-cutpoint (run steps mstate))
steps
(omega))))

® "ACL2 value" version of run requires "ACL2 value" next
® Basically need to redefine the entire machine semantics

22




Stobj restrictions

® Solution: create a with-copy-of-stobj macro
® allocates a local copy of stobj object

® Executes a stobj-compliant mv-1et form on the local copy
® Discards the mv-1let's final stobj

® Returns the mv-1let's final value

® Modified steps-to-cutpoint function is now stobj-compliant
® Can be used in guards

® ACLZ2 runtime error if executed (but still sound)

23




Efficient simulator

® Clockless simulator, useful for cutpoint-induction proofs:
® next-cutpoint-exec defined with stobj-compliant guard
® called by cutpoint simulator cutpoint-to-cutpoint-exec
® Main simulator calls cutpoint simulator until exitpoint

(defun next-exitpoint-exec (mstate)
(declare (xargs :stobjs (mstate)
:measure (cutpoint-measure mstate)
:guard (at-cutpoint mstate)))
(1f (mbt (at-cutpoint mstate))
(1f (at-exitpoint mstate)
mstate
(let ((mstate (cutpoint-to-cutpoint-exec mstate)))
(next-exitpoint-exec mstate)))
(dummy-mstate mstate)))

24




Efficient simulator

® Clockless simulator, useful for efficient execution (not in
supporting materials):

(defun next-exitpoint-exec (mstate)
(declare (xargs :stobjs (mstate)
:guard (cutpoint-reachable mstate)
:measure (steps-to-exitpoint
mstate)))
(1f (mbt (and (mstatep mstate)
(cutpoint-reachable mstate)))
(Lf (at-exitpoint mstate)
mstate
(let ((mstate (next mstate)))
(next-exitpoint-exec mstate)))
mstate))

25




Conclusions

Partial clock functions and cutpoint symbolic simulation increase
automation and robustness of termination proofs

Termination proofs are modular, because exitpoints need not halt
Possible to define efficient, clockless machine simulators

Clockless stobj-compliant simulators will be easier to write
when ACL2

® allows nonexecutable guards

® removes stobj syntax restrictions in logical portions of guards,
mbt, and mbe macros

In the meantime, a defstobj+ ACL2 book has been written:
® Automatically creates stobj coercion functions & theorems

® Tncludes with-copy-of-stobj macro
2




