
Partial Clock
Functions in ACL2

John Matthews and Daron Vroon
ACL2 Workshop 2004

2

Goals
• Given a state machine, we want:

• A termination proof: from a set of starting
states, a desired goal state will always
eventually be reached.

• An efficient simulator: a function that steps
machine until desired goal state is reached

• Modularity: Be able to compose subroutine
proofs and simulators

3

Goals
• We don’t want to:

• write a VCG (verification condition
generator)

• manually define a clock function

• specify assertions or ordinal measures for
every instruction in the subroutine

• add a clock parameter to the simulator

• Related work:

• First three conditions above met for
partial correctness [Moore 2003]

• First two conditions above met for total
correctness [Ray & Moore 2004]

4

• State tuple: represents current machine state

• Defined as a stobj

• Program, program counter are part of the state
 (defstobj mstate
 (mem :type (array (signed-byte 32) (1024))
 (progc :type integer)
 ...)

• “next state” function: executes one machine step
 next : mstate => mstate

State machine model

5

• Machine simulator (with clock parameter): Executes machine
for n steps

• Returns current state if n is bogus

(defun run (n mstate)
 (declare (xargs :stobjs (mstate)
 :guard (natp n)))
 (if (zp n)
 mstate
 (let ((mstate (next mstate)))
 (run (1- n) mstate))))

State machine model

6

State machine model
• State assertion: predicate about a machine

state

(defun entering-fib-routine (n mstate)
 (and (program-loaded *fib-addr* mstate)
 (equal (progc mstate)
 fib-addr)
 (equal (top-of-stack mstate)
 n)))

(defun exiting-fib-routine (n mstate)
 (and (program-loaded *fib-addr* mstate)
 (equal (progc mstate)
 fib-done-addr)
 (equal (top-of-stack mstate)
 (fib n))))

7

• Cutpoints: Finite collection of state assertions
• Every program loop should be broken by at

least one cutpoint
• Exitpoint: Desired end state assertion
• Every exitpoint must be a cutpoint
• Multiple exitpoints allowed
• Exitpoints aren’t necessarily halting
• Internal cutpoint: A cutpoint that is not an

exitpoint

State machine model

8

• Total correctness: Every cutpoint always
leads to an exitpoint.

• Proof method:

• Assign an ordinal measure to every cutpoint
 cutpoint-measure :
 mstate => ordinal

• Symbolically simulate each control path
from an internal cutpoint until another
cutpoint is reached

• Show that the newly-reached cutpoint is
smaller according to cutpoint-measure

Termination proof

9

Symbolic simulation
• Symbolic simulation automated via a partial clock function

• Has a generic, tail-recursive definition

• Returns number of steps (- n) until next valid cutpoint state,
if one is reachable

• Undefined if no cutpoint state is reachable

• Can be made “Executable”

(defpun steps-to-cutpoint-tail (n mstate)
 (if (at-cutpoint mstate)
 n
 (steps-to-cutpoint-tail (1+ n) (next mstate))))

10

Completed clock function
• Partial clock function is logically extended to a total function:

• Tests whether value returned by steps-to-cutpoint-tail is a
cutpoint:

• If so, then return that value

• If not, then return ω

(defun steps-to-cutpoint (mstate)
 (let ((steps (steps-to-cutpoint-tail 0 mstate)))
 (if (at-cutpoint (run steps mstate))
 steps
 (omega))))

11

Clock function
rewrites

• Completed clock function has simpler rewrite rules

• Rules use ordinal addition to handle unreachable cutpoints

(defthm steps-to-cutpoint-zero
 (implies (at-cutpoint mstate)
 (equal (steps-to-cutpoint mstate) 0)))

(defthm steps-to-cutpoint-nonzero-intro
 (implies (not (at-cutpoint mstate))
 (equal (steps-to-cutpoint mstate)
 (o+ 1
 (steps-to-cutpoint (next mstate))))))

12

Symbolic simulation
• Check termination by symbolically simulating machine, from each

internal cutpoint to its next reachable cutpoint

 (implies (and (at-cutpoint mstate)
 (not (at-exitpoint mstate)))
 (let* ((steps (steps-to-cutpoint (next mstate)))
 (cutpoint (run steps mstate)))
 (and (at-cutpoint cutpoint)
 (o< (cutpoint-measure cutpoint)
 (cutpoint-measure mstate)))))

• But then machine gets simulated twice per internal cutpoint!

• Once to compute number of steps to next cutpoint

• Second time to compute next cutpoint’s state tuple

13

Symbolic simulation
• Solution: use clock function to define a next-cutpoint function

• Returns next cutpoint, if it is reachable

• Returns a non-cutpoint value, otherwise

(defun next-cutpoint (mstate)
 (let ((steps (steps-to-cutpoint mstate)))
 (if (natp steps)
 (run steps mstate)
 nil)))

14

Symbolic simulation
• Next-cutpoint function agrees with machine simulator...

(thm
 (implies (at-cutpoint (next-cutpoint mstate))
 (equal (next-cutpoint mstate)
 (run (steps-to-cutpoint mstate) mstate)))))

...and still obeys good symbolic simulation rules
 (defthm next-cutpoint-at-cutpoint
 (implies (at-cutpoint mstate)
 (equal (next-cutpoint mstate)
 mstate)))

 (defthm next-cutpoint-intro-next
 (implies (not (at-cutpoint mstate))
 (equal (next-cutpoint mstate)
 (next-cutpoint (next mstate)))))

15

Symbolic simulation
• Now termination check symbolically simulates machine only once

per internal cutpoint.

 (implies (and (at-cutpoint mstate)
 (not (at-exitpoint mstate)))
 (let ((cutpoint (next-cutpoint (next mstate))))
 (and (at-cutpoint cutpoint)
 (o< (cutpoint-measure cutpoint)
 (cutpoint-measure mstate)))))

16

Termination
• Can now define function to count steps from cutpoint to next

exitpoint

(defun steps-to-exitpoint-from-cutpoint (mstate)
 (declare (xargs :measure (cutpoint-measure mstate)))
 (cond
 ((not (at-cutpoint mstate))
 0)
 ((at-exitpoint mstate)
 0)
 (t
 (+ 1 (steps-to-cutpoint (next mstate))
 (steps-to-exitpoint-from-cutpoint
 (next-cutpoint (next mstate)))))))

17

Termination
• Main termination theorem:

(defthm total-correctness-from-cutpoint
 (implies (at-cutpoint mstate)
 (at-exitpoint
 (run (steps-to-exitpoint-from-cutpoint mstate)
 mstate))))

18

Efficient simulator
• Goal 2: Define an executable machine

simulator function that doesn’t use a step
counter

• Simulator returns the first reachable
exitpoint state

• Simulator guard: input state must be a
cutpoint

19

Efficient simulator
• Defining the simulator:

• First define a cutpoint simulator, that
steps the machine from one cutpoint to
the next cutpoint

• Main simulator calls cutpoint simulator
until exitpoint is reached

• Use cutpoint measure to prove
termination

• Main challenge: stobj syntactic restrictions

20

Stobj restrictions
• Want to use steps-to-cutpoint in guards, but not execute them

:guard (at-cutpoint
 (run (steps-to-cutpoint mstate) mstate))

• Problem: ACL2 requires guards to be executable

• Difficult to make guards stobj-compliant

• This definition doesn’t work, since defpun not stobj-compliant:

(defun steps-to-cutpoint (mstate)
 (declare (xargs :stobjs (mstate)))
 (let ((steps (steps-to-cutpoint-tail 0 mstate)))
 (if (at-cutpoint (run steps mstate))
 steps
 (omega))))

21

Stobj restrictions
• Need to write coercion functions between stobjs and ACL2 values

logical-mstatep : * => bool
copy-from-mstate : mstate => *
copy-to-mstate : (* mstate) => mstate

(defthm copy-from-mstate-correct
 (implies (mstatep mstate)
 (equal (copy-from-mstate mstate)
 mstate)))

(defthm copy-to-mstate-correct
 (implies (and (mstatep mstate)
 (logical-mstatep copy))
 (equal (copy-to-mstate copy mstate)
 copy)))

22

Stobj restrictions
• Next problem: guards are not allowed to modify stobjs

(defun steps-to-cutpoint (mstate)
 (declare (xargs :stobjs (mstate)))
 (let* ((mstate-copy (copy-from-mstate mstate))
 (steps
 (steps-to-cutpoint-tail 0 mstate-copy)))
 (if (at-cutpoint (run steps mstate))
 steps
 (omega))))

• “ACL2 value” version of run requires “ACL2 value” next

• Basically need to redefine the entire machine semantics

23

Stobj restrictions
• Solution: create a with-copy-of-stobj macro

• allocates a local copy of stobj object

• Executes a stobj-compliant mv-let form on the local copy

• Discards the mv-let’s final stobj

• Returns the mv-let’s final value

• Modified steps-to-cutpoint function is now stobj-compliant

• Can be used in guards

• ACL2 runtime error if executed (but still sound)

24

Efficient simulator
• Clockless simulator, useful for cutpoint-induction proofs:

• next-cutpoint-exec defined with stobj-compliant guard

• called by cutpoint simulator cutpoint-to-cutpoint-exec

• Main simulator calls cutpoint simulator until exitpoint

(defun next-exitpoint-exec (mstate)
 (declare (xargs :stobjs (mstate)
 :measure (cutpoint-measure mstate)
 :guard (at-cutpoint mstate)))
 (if (mbt (at-cutpoint mstate))
 (if (at-exitpoint mstate)
 mstate
 (let ((mstate (cutpoint-to-cutpoint-exec mstate)))
 (next-exitpoint-exec mstate)))
 (dummy-mstate mstate)))

25

Efficient simulator
• Clockless simulator, useful for efficient execution (not in

supporting materials):

(defun next-exitpoint-exec (mstate)
 (declare (xargs :stobjs (mstate)
 :guard (cutpoint-reachable mstate)
 :measure (steps-to-exitpoint
 mstate)))
 (if (mbt (and (mstatep mstate)
 (cutpoint-reachable mstate)))
 (if (at-exitpoint mstate)
 mstate
 (let ((mstate (next mstate)))
 (next-exitpoint-exec mstate)))
 mstate))

26

Conclusions
• Partial clock functions and cutpoint symbolic simulation increase

automation and robustness of termination proofs

• Termination proofs are modular, because exitpoints need not halt

• Possible to define efficient, clockless machine simulators

• Clockless stobj-compliant simulators will be easier to write
when ACL2

• allows nonexecutable guards

• removes stobj syntax restrictions in logical portions of guards,
mbt, and mbe macros

• In the meantime, a defstobj+ ACL2 book has been written:

• Automatically creates stobj coercion functions & theorems

• Includes with-copy-of-stobj macro

