
Attaching Efficient Executability to Partial Functions in
ACL2

Sandip Ray

Department of Computer Science
University of Texas at Austin

Email: sandip@cs.utexas.edu
web: http://www.cs.utexas.edu/users/sandip

UNIVERSITY OF TEXAS AT AUSTIN



DEPARTMENT OF COMPUTER SCIENCES

Background: Partial Functions

Manolios and Moore [MM00, MM03] presented the notion of introducing
partial functions in ACL2.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))

UNIVERSITY OF TEXAS AT AUSTIN 1



DEPARTMENT OF COMPUTER SCIENCES

Background: Partial Functions

Manolios and Moore [MM00, MM03] introduced a macro defpun that
allows us to write partial functions in ACL2.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))

This introduces the axiom:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))

UNIVERSITY OF TEXAS AT AUSTIN 2



DEPARTMENT OF COMPUTER SCIENCES

Background: Partial Functions

Manolios and Moore [MM00, MM03] introduced a macro defpun that
allows us to write partial functions in ACL2.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))

This introduces the axiom:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))

Partial functions can be used in defining machine simulators, and
inductive invariants [Moo03].

UNIVERSITY OF TEXAS AT AUSTIN 3



DEPARTMENT OF COMPUTER SCIENCES

Defpun Issues

Partial functions cannot be evaluated (other than via repeated rewriting)
even for values on which they are guaranteed to terminate.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))

We cannot evaluate (factorial 3 1) to 6.

UNIVERSITY OF TEXAS AT AUSTIN 4



DEPARTMENT OF COMPUTER SCIENCES

Goal of this Work

Define a macro defpun-exec so that we can write the following form:

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

UNIVERSITY OF TEXAS AT AUSTIN 5



DEPARTMENT OF COMPUTER SCIENCES

Goal of this Work

Define a macro defpun-exec so that we can write the following form:

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

Logically, this introduces the same axiom as defpun:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))

UNIVERSITY OF TEXAS AT AUSTIN 6



DEPARTMENT OF COMPUTER SCIENCES

Goal of this Work

Define a macro defpun-exec so that we can write the following form:

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

Logically, this introduces the same axiom as defpun:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))

But in addition, we want to be able to evaluate the function when the
guards hold. That is, we want to evaluate (factorial 3 1) to 6.

UNIVERSITY OF TEXAS AT AUSTIN 7



DEPARTMENT OF COMPUTER SCIENCES

Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.

UNIVERSITY OF TEXAS AT AUSTIN 8



DEPARTMENT OF COMPUTER SCIENCES

Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.� Logically (mbe :logic x :exec y) is simply x.

UNIVERSITY OF TEXAS AT AUSTIN 9



DEPARTMENT OF COMPUTER SCIENCES

Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.� Logically (mbe :logic x :exec y) is simply x.� But mbe introduces a guard obligation (equal x y).

UNIVERSITY OF TEXAS AT AUSTIN 10



DEPARTMENT OF COMPUTER SCIENCES

Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.� Logically (mbe :logic x :exec y) is simply x.� But mbe introduces a guard obligation (equal x y).� When the guards are verified, the expression evaluates to y.

UNIVERSITY OF TEXAS AT AUSTIN 11



DEPARTMENT OF COMPUTER SCIENCES

A Simple Demonstration

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

UNIVERSITY OF TEXAS AT AUSTIN 12



DEPARTMENT OF COMPUTER SCIENCES

A Simple Demonstration

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

We first introduce a new function factorial-logic using defpun.

(defpun factorial-logic (n a)
(if (equal n 0) a
(factorial-logic (- n 1) (* n a))))

UNIVERSITY OF TEXAS AT AUSTIN 13



DEPARTMENT OF COMPUTER SCIENCES

A Simple Demonstration

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

We then introduce the following form:

(defun factorial (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(mbe :logic (factorial-logic n a)

:exec (if (equal n 0) a
(factorial (- n 1) (* n a)))))

UNIVERSITY OF TEXAS AT AUSTIN 14



DEPARTMENT OF COMPUTER SCIENCES

The Problem: Stobjs and Defpun

Suppose we want to define a partial function that manipulates a
single-threaded object (stobj).

(defstobj mc-state (fld))

(defun mc-step (mc-state)
(declare (xargs :stobjs mc-state))
...)

(defpun run (mc-state)
(declare (xargs :stobjs mc-state))
(if (halting mc-state) mc-state
(run (mc-step mc-state))))

UNIVERSITY OF TEXAS AT AUSTIN 15



DEPARTMENT OF COMPUTER SCIENCES

The Problem: Stobjs and Defpun

The problem is with signatures of functions.� The defpun macro introduces partial functions via encapsulation.

– A local witness is defined which is shown to satisfy the defining
equation.

UNIVERSITY OF TEXAS AT AUSTIN 16



DEPARTMENT OF COMPUTER SCIENCES

The Problem: Stobjs and Defpun

The problem is with signatures of functions.� The defpun macro introduces partial functions via encapsulation.

– A local witness is defined which is shown to satisfy the defining
equation.� The signature of the constrained function symbol must match the

signature of the local witness.

UNIVERSITY OF TEXAS AT AUSTIN 17



DEPARTMENT OF COMPUTER SCIENCES

The Problem: Stobjs and Defpun

The problem is with signatures of functions.� The defpun macro introduces partial functions via encapsulation.

– A local witness is defined which is shown to satisfy the defining
equation.� The signature of the constrained function symbol must match the

signature of the local witness.� The local witness for defpun is chosen via a special form
defchoose whose return value must be an ordinary object.

UNIVERSITY OF TEXAS AT AUSTIN 18



DEPARTMENT OF COMPUTER SCIENCES

The Defpun Solution

The local witness is made :non-executable.� When a function is declared :non-executable the syntactic
restrictions on stobjs are not enforced.� The return value of a :non-executable function has the signature
of an ordinary ACL2 object.� But, such a function cannot be evaluated.

UNIVERSITY OF TEXAS AT AUSTIN 19



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Problem

The :logic and :exec arguments of an mbe must have the same
signature.� We cannot have a stobj in the :exec argument if the :logic

argument is :non-executable.

UNIVERSITY OF TEXAS AT AUSTIN 20



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 1

Ignore the stobjs and functions manipulating them.

UNIVERSITY OF TEXAS AT AUSTIN 21



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 1

Ignore the stobjs and functions manipulating them.

(defstobj stor (fld :type (array T (100)) :resizable t))
(defpun-exec bar (x stor)

(if (equal x 0) stor
(let* ((stor (resize-fld 100 stor))

(stor (update-fldi 0 2 stor)))
(bar (- x 1) stor)))

:guard (...)
:stobjs stor)

UNIVERSITY OF TEXAS AT AUSTIN 22



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 1

(defun bar (x stor)
(declare (xargs :guard (...)))
(mbe
:logic (bar-logic x stor)
:exec (if (equal x 0) stor

(let* ((stor
(update-nth 0

(resize-list (nth 0 stor) 100 nil)
stor))

(stor (update-nth 0
(update-nth 0 2 (nth 0 stor))
stor)))

(bar (- x 1) stor)))))

We get executability but lose the efficient execution via stobjs.

UNIVERSITY OF TEXAS AT AUSTIN 23



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

This solution is based on a recent email by John Matthews in the
acl2-help mailing list. (Thanks, John.)� Suppose we have a stobj stor, and want to define a partial function

foo that manipulates stor.

UNIVERSITY OF TEXAS AT AUSTIN 24



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

This solution is based on a recent email by John Matthews in the
acl2-help mailing list. (Thanks, John.)� Suppose we have a stobj stor, and want to define a partial function

foo that manipulates stor.� Define two functions:

((copy-from-stor stor) => *)
((copy-to-stor * stor) => stor)

UNIVERSITY OF TEXAS AT AUSTIN 25



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

Define the function foo as follows:

(defun foo (stor)
(declare (xargs :stobjs stor))
(mbe :logic (let* ((lst (copy-from-stor stor))

(lst (foo-logic stor))
(stor (copy-to-stor lst stor)))

stor)
:exec (<body for foo>)))

There is no execution penalty since the coercions are done in the
:logic part of mbe.

UNIVERSITY OF TEXAS AT AUSTIN 26



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

We have implemented a macro defcoerce that achieves these
coercions.

UNIVERSITY OF TEXAS AT AUSTIN 27



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

We have implemented a macro defcoerce that achieves these
coercions.

Given a stobj name stor, (defcoerce stor) defines two functions
copy-to-stor and copy-from-stor.

UNIVERSITY OF TEXAS AT AUSTIN 28



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

Then the following theorems are proven:

(defthm copy-from-stor-identity
(implies (storp stor)

(equal (copy-from-stor stor) stor)))
(defthm copy-to-stor-identity

(implies (storp l)
(equal (copy-from-stor l stor) l)))

UNIVERSITY OF TEXAS AT AUSTIN 29



DEPARTMENT OF COMPUTER SCIENCES

The Defpun-exec Solution: 2

� We have a version of defpun-exec that uses the defcoerce
macro.� This is work in progress.

– We can handle partial functions that have one stobj argument.

UNIVERSITY OF TEXAS AT AUSTIN 30



DEPARTMENT OF COMPUTER SCIENCES

Observations

� Our slow execution approach gets us executability but is inefficient.� Our defcoerce approach gets us efficient executability but
complicates the logical definition (and hence theorem proving).

UNIVERSITY OF TEXAS AT AUSTIN 31



DEPARTMENT OF COMPUTER SCIENCES

Observations

� Our slow execution approach gets us executability but is inefficient.� Our defcoerce approach gets us efficient executability but
complicates the logical definition (and hence theorem proving).

We believe that ACL2 should handle mbe with stobjs differently.� Since mbe is meant to cleanly separate execution efficiency with
logical consideration, syntactic restrictions on stobjs should not be
enforced on the :logic argument of mbe.

UNIVERSITY OF TEXAS AT AUSTIN 32



DEPARTMENT OF COMPUTER SCIENCES

Questions?

UNIVERSITY OF TEXAS AT AUSTIN 33



DEPARTMENT OF COMPUTER SCIENCES

References

[MM00] P. Manolios and J S. Moore. Partial Functions in ACL2. In
M. Kaufmann and J S. Moore, editors, Second International
Workshop on ACL2 Theorem Prover and Its Applications,
Austin, TX, October 2000.

[MM03] P. Manolios and J S. Moore. Partial Functions in ACL2. Journal
of Automated Reasoning, 31(2):107–127, 2003.

[Moo03] J S. Moore. Inductive Assertions and Operational Semantics.
In D. Geist, editor, 12 th International Conference on Correct
Hardware Design and Verification Methods (CHARME), volume
2860 of LNCS, pages 289–303. Springer-Verlag, October 2003.

UNIVERSITY OF TEXAS AT AUSTIN 34


