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DEPARTMENT OF COMPUTER SCIENCES

Background: Partial Functions

Manolios and Moore [MM00, MM03] presented the notion of introducing
partial functions in ACL2.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))
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Background: Partial Functions

Manolios and Moore [MM00, MM03] introduced a macro defpun that
allows us to write partial functions in ACL2.
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(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))
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Background: Partial Functions

Manolios and Moore [MM00, MM03] introduced a macro defpun that
allows us to write partial functions in ACL2.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))

This introduces the axiom:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))

Partial functions can be used in defining machine simulators, and
inductive invariants [Moo03].
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Defpun Issues

Partial functions cannot be evaluated (other than via repeated rewriting)
even for values on which they are guaranteed to terminate.

(defpun factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n a))))

We cannot evaluate (factorial 3 1) to 6.
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Goal of this Work

Define a macro defpun-exec so that we can write the following form:

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))
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Goal of this Work

Define a macro defpun-exec so that we can write the following form:

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

Logically, this introduces the same axiom as defpun:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))
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Goal of this Work

Define a macro defpun-exec so that we can write the following form:

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

Logically, this introduces the same axiom as defpun:

(equal (factorial n a)
(if (equal n 0) a (factorial (- n 1) (* n a))))

But in addition, we want to be able to evaluate the function when the
guards hold. That is, we want to evaluate (factorial 3 1) to 6.
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Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.
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Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.� Logically (mbe :logic x :exec y) is simply x.
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Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.� Logically (mbe :logic x :exec y) is simply x.� But mbe introduces a guard obligation (equal x y).
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Our Approach

Executability in partial functions is achieved by a new feature in ACL2,
called mbe.� Logically (mbe :logic x :exec y) is simply x.� But mbe introduces a guard obligation (equal x y).� When the guards are verified, the expression evaluates to y.
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A Simple Demonstration

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))
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A Simple Demonstration

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

We first introduce a new function factorial-logic using defpun.

(defpun factorial-logic (n a)
(if (equal n 0) a
(factorial-logic (- n 1) (* n a))))
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A Simple Demonstration

(defpun-exec factorial (n a)
(if (equal n 0) a
(factorial (- n 1) (* n 1)))

:guard (and (natp n) (natp a)))

We then introduce the following form:

(defun factorial (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(mbe :logic (factorial-logic n a)

:exec (if (equal n 0) a
(factorial (- n 1) (* n a)))))
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The Problem: Stobjs and Defpun

Suppose we want to define a partial function that manipulates a
single-threaded object (stobj).

(defstobj mc-state (fld))

(defun mc-step (mc-state)
(declare (xargs :stobjs mc-state))
...)

(defpun run (mc-state)
(declare (xargs :stobjs mc-state))
(if (halting mc-state) mc-state
(run (mc-step mc-state))))
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The Problem: Stobjs and Defpun

The problem is with signatures of functions.� The defpun macro introduces partial functions via encapsulation.

– A local witness is defined which is shown to satisfy the defining
equation.
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The Problem: Stobjs and Defpun

The problem is with signatures of functions.� The defpun macro introduces partial functions via encapsulation.

– A local witness is defined which is shown to satisfy the defining
equation.� The signature of the constrained function symbol must match the

signature of the local witness.
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The Problem: Stobjs and Defpun

The problem is with signatures of functions.� The defpun macro introduces partial functions via encapsulation.

– A local witness is defined which is shown to satisfy the defining
equation.� The signature of the constrained function symbol must match the

signature of the local witness.� The local witness for defpun is chosen via a special form
defchoose whose return value must be an ordinary object.
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The Defpun Solution

The local witness is made :non-executable.� When a function is declared :non-executable the syntactic
restrictions on stobjs are not enforced.� The return value of a :non-executable function has the signature
of an ordinary ACL2 object.� But, such a function cannot be evaluated.
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The Defpun-exec Problem

The :logic and :exec arguments of an mbe must have the same
signature.� We cannot have a stobj in the :exec argument if the :logic

argument is :non-executable.
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The Defpun-exec Solution: 1

Ignore the stobjs and functions manipulating them.
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The Defpun-exec Solution: 1

Ignore the stobjs and functions manipulating them.

(defstobj stor (fld :type (array T (100)) :resizable t))
(defpun-exec bar (x stor)

(if (equal x 0) stor
(let* ((stor (resize-fld 100 stor))

(stor (update-fldi 0 2 stor)))
(bar (- x 1) stor)))

:guard (...)
:stobjs stor)
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The Defpun-exec Solution: 1

(defun bar (x stor)
(declare (xargs :guard (...)))
(mbe
:logic (bar-logic x stor)
:exec (if (equal x 0) stor

(let* ((stor
(update-nth 0

(resize-list (nth 0 stor) 100 nil)
stor))

(stor (update-nth 0
(update-nth 0 2 (nth 0 stor))
stor)))

(bar (- x 1) stor)))))

We get executability but lose the efficient execution via stobjs.
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The Defpun-exec Solution: 2

This solution is based on a recent email by John Matthews in the
acl2-help mailing list. (Thanks, John.)� Suppose we have a stobj stor, and want to define a partial function

foo that manipulates stor.
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The Defpun-exec Solution: 2

This solution is based on a recent email by John Matthews in the
acl2-help mailing list. (Thanks, John.)� Suppose we have a stobj stor, and want to define a partial function

foo that manipulates stor.� Define two functions:

((copy-from-stor stor) => *)
((copy-to-stor * stor) => stor)
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The Defpun-exec Solution: 2

Define the function foo as follows:

(defun foo (stor)
(declare (xargs :stobjs stor))
(mbe :logic (let* ((lst (copy-from-stor stor))

(lst (foo-logic stor))
(stor (copy-to-stor lst stor)))

stor)
:exec (<body for foo>)))

There is no execution penalty since the coercions are done in the
:logic part of mbe.
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The Defpun-exec Solution: 2

We have implemented a macro defcoerce that achieves these
coercions.
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The Defpun-exec Solution: 2

We have implemented a macro defcoerce that achieves these
coercions.

Given a stobj name stor, (defcoerce stor) defines two functions
copy-to-stor and copy-from-stor.
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The Defpun-exec Solution: 2

Then the following theorems are proven:

(defthm copy-from-stor-identity
(implies (storp stor)

(equal (copy-from-stor stor) stor)))
(defthm copy-to-stor-identity

(implies (storp l)
(equal (copy-from-stor l stor) l)))
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The Defpun-exec Solution: 2

� We have a version of defpun-exec that uses the defcoerce
macro.� This is work in progress.

– We can handle partial functions that have one stobj argument.
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Observations

� Our slow execution approach gets us executability but is inefficient.� Our defcoerce approach gets us efficient executability but
complicates the logical definition (and hence theorem proving).
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Observations

� Our slow execution approach gets us executability but is inefficient.� Our defcoerce approach gets us efficient executability but
complicates the logical definition (and hence theorem proving).

We believe that ACL2 should handle mbe with stobjs differently.� Since mbe is meant to cleanly separate execution efficiency with
logical consideration, syntactic restrictions on stobjs should not be
enforced on the :logic argument of mbe.

UNIVERSITY OF TEXAS AT AUSTIN 32



DEPARTMENT OF COMPUTER SCIENCES

Questions?
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