Attaching Efficient Executability to Partial Functions in
ACL2

Sandip Ray

Email: sandi p@s. ut exas. edu
web: htt p: //www. cs. ut exas. edu/ user s/ sandi p

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Background: Partial Functions |

Manolios and Moore [MMO0OO, MMO3] presented the notion of introducing
partial functions in ACL2.

(def pun factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* na))))

N Y

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Background: Partial Functions |

Manolios and Moore [MMO0O, MMO3] introduced a macro def pun that
allows us to write partial functions in ACL2.

(def pun factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* na))))

This introduces the axiom:

(equal (factorial n a)
(1f (equal n 0) a (factorial (- n1) (* na))))

_ U

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Background: Partial Functions |

Manolios and Moore [MMO0O, MMO3] introduced a macro def pun that
allows us to write partial functions in ACL2.

(def pun factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* na))))

This introduces the axiom:

(equal (factorial n a)
(1f (equal n 0) a (factorial (- n1) (* na))))

Partial functions can be used in defining machine simulators, and
Inductive invariants [Moo03].

- J

‘ Defpun Issues |

Partial functions cannot be evaluated (other than via repeated rewriting)
even for values on which they are guaranteed to terminate.

(def pun factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* na))))

We cannot evaluate (factorial 3 1) to6.

N —

DEPARTMENT OF COMPUTER SCIENCES —\

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Goal of this Work I

Define a macro def pun- exec so that we can write the following form:

(def pun-exec factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* n1l)))
.guard (and (natp n) (natp a)))

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Goal of this Work I

Define a macro def pun- exec so that we can write the following form:

(def pun-exec factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* n1l)))
.guard (and (natp n) (natp a)))

Logically, this introduces the same axiom as def pun:

(equal (factorial n a)
(1f (equal n O0) a (factorial (- n1) (* na))))

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Goal of this Work I

Define a macro def pun- exec so that we can write the following form:

(def pun-exec factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* n1l)))
.guard (and (natp n) (natp a)))

Logically, this introduces the same axiom as def pun:

(equal (factorial n a)
(1f (equal n O0) a (factorial (- n1) (* na))))

But in addition, we want to be able to evaluate the function when the
guards hold. That is, we want to evaluate (factorial 3 1) to6.

N

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Our Approach |

Executability in partial functions is achieved by a new feature in ACL2,
called nbe.

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Our Approach |

Executability in partial functions is achieved by a new feature in ACL2,
called nbe.

e Logically (nbe :logic x :exec y) issimply x.

N /

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Our Approach |

Executability in partial functions is achieved by a new feature in ACL2,
called nbe.

e Logically (nbe :logic x :exec y) issimply x.

e But nbe introduces a guard obligation (equal x vy).

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Our Approach |

Executability in partial functions is achieved by a new feature in ACL2,
called nbe.

e Logically (nbe :logic x :exec y) issimply x.
e But nbe introduces a guard obligation (equal x vy).

e When the guards are verified, the expression evaluates to y.

- __/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 11

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A Simple Demonstration |

(def pun-exec factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* n1l)))
:guard (and (natp n) (natp a)))

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ A Simple Demonstration |

(def pun-exec factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* n1l)))
:guard (and (natp n) (natp a)))

We first introduce a new function f act ori al - | ogi ¢ using def pun.

(def pun factorial-logic (n a)
(1f (equal n 0) a
(factorial-logic (- n1) (* na))))

. _

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ A Simple Demonstration |

(def pun-exec factorial (n a)
(1f (equal n 0) a
(factorial (- n1) (* n1l)))
:guard (and (natp n) (natp a)))

We then introduce the following form:

(defun factorial (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(nmbe :logic (factorial-logic n a)
exec (if (equal n 0) a
(factorial (- n1) (* na)))))

- __

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Problem: Stobjs and Defpun I

Suppose we want to define a partial function that manipulates a
single-threaded object (stobj).

(defstobj nc-state (fld))

(defun nt-step (nt-state)
(declare (xargs :stobjs nct-state))

)

(def pun run (nc-state)
(declare (xargs :stobjs nt-state))
(1f (halting nc-state) nct-state
(run (nc-step nc-state))))

- __

UN|VERS|TY OF TEXAS AT AUST|N ___|] 15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Problem: Stobjs and Defpun I

The problem is with signatures of functions.

e The def pun macro introduces partial functions via encapsulation.

— A local witness is defined which is shown to satisfy the defining
equation.

. _

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Problem: Stobjs and Defpun I

The problem is with signatures of functions.

e The def pun macro introduces partial functions via encapsulation.
— A local witness is defined which is shown to satisfy the defining
equation.

e The signature of the constrained function symbol must match the
signature of the local witness.

- __

UN|VERS|TY OF TEXAS AT AUST|N ___|] 17

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Problem: Stobjs and Defpun I

The problem is with signatures of functions.

e The def pun macro introduces partial functions via encapsulation.
— A local witness is defined which is shown to satisfy the defining
equation.

e The signature of the constrained function symbol must match the
signature of the local witness.

e The local witness for def pun is chosen via a special form
def choose whose return value must be an ordinary object.

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun Solution |

The local withess is made : non- execut abl e.

e When a function is declared : non- execut abl e the syntactic
restrictions on stobjs are not enforced.

e The return value of a : non- execut abl e function has the signature
of an ordinary ACL2 object.

e But, such a function cannot be evaluated.

19

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Problem |

The : 1 ogi ¢ and : exec arguments of an mbe must have the same
signature.

e We cannot have a stobj in the : exec argument if the : | ogi ¢
argument is : non- execut abl e.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 1 I

Ignore the stobjs and functions manipulating them.

N R/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Defpun-exec Solution: 1 I

Ignore the stobjs and functions manipulating them.

(defstobj stor (fld :type (array T (100)) :resizable t))
(def pun-exec bar (x stor)

(1f (equal x 0) stor

(let* ((stor (resize-fld 100 stor))
(stor (update-fldi O 2 stor)))
(bar (- x 1) stor)))
cguard (...)
. stobjs stor)

- __

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Defpun-exec Solution: 1 I

(defun bar (x stor)
(declare (xargs :qgquard (...)))
(mbe
:logic (bar-logic x stor)
.exec (If (equal x 0) stor
(let* ((stor
(update-nth O
(resize-list (nth O stor) 100 nil)
stor))
(stor (update-nth O
(update-nth 0 2 (nth 0 stor))
stor)))
(bar (- x 1) stor)))))

We get executability but lose the efficient execution via stobijs.

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 2 I

This solution is based on a recent email by John Matthews in the
acl 2- hel p mailing list. (Thanks, John.)

e Suppose we have a stobj st or , and want to define a partial function
f oo that manipulates st or .

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 2 I

This solution is based on a recent email by John Matthews in the
acl 2- hel p mailing list. (Thanks, John.)

e Suppose we have a stobj st or , and want to define a partial function
f oo that manipulates st or .

e Define two functions:

((copy-fromstor stor) => *)
((copy-to-stor * stor) => stor)

. _

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Defpun-exec Solution: 2 I

Define the function f oo as follows:

(defun foo (stor)
(declare (xargs :stobjs stor))
(mbe :logic (let* ((lIst (copy-fromstor stor))
(I st (foo-logic stor))
(stor (copy-to-stor |Ist stor)))
stor)
. exec (<body for fo0>)))

There is no execution penalty since the coercions are done in the
. 1 ogi ¢ part of nbe.

- __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 2 I

We have implemented a macro def coer ce that achieves these
coercions.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 2 I

We have implemented a macro def coer ce that achieves these
coercions.

Given a stobj name st or, (def coerce stor) defines two functions
copy-to-stor and copy-from stor.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 2 I

Then the following theorems are proven:

(defthm copy-fromstor-identity
(tnmplies (storp stor)
(equal (copy-fromstor stor) stor)))
(defthm copy-to-stor-identity
(tnmplies (storp |)
(equal (copy-fromstor | stor) 1)))

. _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ The Defpun-exec Solution: 2 I

e We have a version of def pun- exec that uses the def coer ce
macr o.

e This is work in progress.

— We can handle partial functions that have one stobj argument.

- __/

-

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Observations I

e Our slow execution approach gets us executability but is inefficient.

e Our def coer ce approach gets us efficient executability but

complicates the logical definition (and hence theorem proving).

UNIVERSITY OF TEXAS AT AUSTIN

31

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Observations I

e Our slow execution approach gets us executability but is inefficient.

e Our def coer ce approach gets us efficient executability but
complicates the logical definition (and hence theorem proving).

We believe that ACL2 should handle nbe with stobjs differently.

e Since nbe is meant to cleanly separate execution efficiency with
logical consideration, syntactic restrictions on stobjs should not be
enforced on the : | ogi ¢ argument of nbe.

- __

N

UNIVERSITY OF TEXAS AT AUSTIN

‘ Questions? I

DEPARTMENT OF COMPUTER SCIENCES —\

33

7

-

DEPARTMENT OF COMPUTER SCIENCES ﬂ

References

[MMOO] P. Manolios and J S. Moore. Partial Functions in ACL2. In
M. Kaufmann and J S. Moore, editors, Second International
Workshop on ACL2 Theorem Prover and Its Applications,
Austin, TX, October 2000.

[MMO3] P. Manolios and J S. Moore. Partial Functions in ACL2. Journal
of Automated Reasoning, 31(2):107-127, 2003.

[Mo0o03] J S. Moore. Inductive Assertions and Operational Semantics.
In D. Geist, editor, 12th International Conference on Correct
Hardware Design and Verification Methods (CHARME), volume
2860 of LNCS, pages 289-303. Springer-Verlag, October 2003.

