
1

Verifying Transformation Rules of the
HATS High-Assurance Transformation

System: An Approach

Steve Roach Fares Fraij
Department of Computer Science

The University of Texas at El Paso

Fifth International Workshop on the ACL2 Theorem Prover
and Its Applications (ACL2-2004)

November 18, 2004

2

Develop models and techniques using ACL2 to prove the

correctness of HATS transformation rules and apply them to a

high-consequence system

Goal

3

Formal Approaches for Software
Assurance

• Transformation-Oriented Programming (TOP)
Incremental refinement of formal specifications to implementations

– Correctness by construction

– Examples: HATS, Maude, ELAN, Stratego, and ASF+SDF

• Automated theorem provers

Model computing systems and their desired properties in the language of the of the

theorem prover and prove the correctness of these properties using inference rules,

axioms, and theorems

– Correctness by verification

– Examples: ACL2, HOL, PVS, Isabelle

4

HATS Goals

• Create a language-independent program transformation

system

• Perform program transformation in a provably correct

fashion

• Provide framework for experimenting with transformation

techniques

5

HATS High-Level Overview

Input
program in

specification
language

Output program in
implementation

language

HATS
Engine

Transformation
Language
Program

• Transforms input
programs written in
abstract languages to
output programs in
concrete languages

• Transformation language
program (TLP) consists of
sequence of
transformation rules and a
control strategy

6

HATS Transformation Language Program

• General form

LHS → RHS if C

• Two types of

transformation rules

– First-Order

– High-Order

Control the application of
transformation rules to
the input file

• Types:
– Once
– Fix
– Transient
– Hide

• Types:

– Seq (;)

– Left-biased (<+)

– Right-biased (+>)

Transformation rules Control strategiesCombinators

7

Example: Once VS. Fix

To resolve the pointers in the table T, the

following first-order transformation rules

are needed:

TR-1.0 = (x 1) (x “Hello)
TR-1.1 = (x 2) (x “World”)
TR-1.2 = (x 3) (x 2)
TR-1.3 = (x 4) (x 3)

Given the following table, T, the goal is

to resolve the pointers in the second

column to their respective string values

T = ((1 “Hello”)
(2 “World”)
(3 2)
(4 3))

8

Rule-list
TR-1.0 = (x 1) (x “Hello)
TR-1.1 = (x 2) (x “World”)
TR-1.2 = (x 3) (x 2)
TR-1.3 = (x 4) (x 3)

T = ((1 “Hello”)
(2 “World”)
(3 2)
(4 3))

Rule-List NEW-T = ((1 “Hello”)

(2 “World”)
(3 “World”)

(4 2))Once

Rule-List

Once

Result

FINAL-T = ((1 “Hello”)

(2 “World”)
(3 “World”)

(4 “World”))

Result

T = ((1 “Hello”)
(2 “World”)
(3 2)
(4 3))Fix

Rule-List

Result

FINAL-T = ((1 “Hello”)

(2 “World”)
(3 “World”)

(4 “World”))

Example: Once VS. Fix

9

Verification Challenge
How do we know transformations are correct?

10

High-Consequence Application:
Sandia Secure Processor (SSP)

JVM
Intermediate

Form
(ROM image)

classloader
(static)

runtime
(dynamic)

The SSP

classfile classfile classfile

Commercial Java Compiler

≡

class classclass

Java Source

• A general-purpose
computational
infrastructure suitable for
use in high-consequence
embedded systems

• A simplified Java
processor designed to be
small and analyzable

• Closed system

11

SSP-classloader and HATS

In term ed iate
Fo rm

(R O M im ag e)

classloader
(static)

runtime
(dynamic)

The SSP

In term ed iate
Fo rm

(R O M im ag e)

runtime
(dynamic)

In term ed iate
Fo rm

(R O M im ag e)

runtime
(dynamic)

The SSP

classloader
(S tatic)

CR OM
(ROM im age)

TLP 1

TLP 2

TLP 3

TLP 4

C IF3

C IF2

TLP 5

CIF4

C IF1

CC F:
C lassfile

classloader
(S tatic)

• HATS is used to implement the
SSP-classloader

• Functionality of the SSP-
classloader is decomposed into
five canonical forms

• TLP1: index resolution
• TLP2: static fields address

calculation
• TLP3: instance field offset

calculation
• TLP4: method table

construction
• TLP5: inter-class absolute

address and offset address
distribution

12

Methodology

• Model the HATS TLP1 in ACL2
– Modeling the control strategies and the

combinators, modelTLP1

– Defining semantic function, S0

• Prove that the application of the
transformation rules preserves the semantics

13

Methodology
• Model the behavior of TLP1

fix-strategy (CCF, rule-list)
– Applies the rule-list to CCF exhaustively

• Construct a semantic function S0 for TLP1

get-constant (n CCF)
– Chases a pointer n down in a table CCF

• Main conjecture:
∀(CCF) S0 (modelTLP1 (CCF)) = S0 (CCF), i.e.,

∀(CCF), get-constant (n, (fix-strategy (CCF, rule-list))) =

get-constant (n CCF)

14

fix-strategy1 (rule-list, classfile)

once-strategy (rule-list, tail, classsfile)

fix-strategy (classfile)

generate-rules (classfile)

apply-rule-list-to-node (rule-list, i ,classfile)

apply-rule-to-node (rule, i, classfile)

Put-in-place (new-node, classfile)

Simplified ACL2 Model of TLP1

15

Verification

• Proof of termination of fix-staregy1

• Proof of the main conjecture

16

Proof of Termination
(defthm sum-addr-once-strategy-strictly-<

(implies
(and (well-formed-classfilep classfile)

(some-matchp rule-list tail classfile))
(< (sum-addr-to-resolve

(once-strategy rule-list
tail
classfile))

(sum-addr-to-resolve classfile))))

17

Proof of The Main Conjecture
∀(CCF) (get-constant n (fix-strategy CCF)) = (get-constant n CCF)))

• Main conjecture in ACL2
(defthm get-constant-n-fix-strategy1
(implies (well-formed-classfilep classfile)

(equal (get-constant n
(fix-strategy1 rule-list classfile))

(get-constant n classfile))))

	Formal Approaches for Software Assurance
	HATS High-Level Overview
	Example: Once VS. Fix
	High-Consequence Application: Sandia Secure Processor (SSP)
	SSP-classloader and HATS
	Methodology
	Verification
	Proof of Termination
	Proof of The Main Conjecture

