A Formally Verified Quadratic Unification Algorithm

J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Martin-Mateos

Computational Logic Group
Dept. of Computer Science and Artificial Intelligence
University of Seville

A Formally Verified Quadratic Unification Algorithm —p. 1/32 —

Introduction

® A case study: using ACL2 to implement and verify a non-trivial
algorithm with efficient data structures

© Implement the algorithm in ACL2, and compare with similar
Implementations in other languages

© Explore the main issues encountered during the verification effort

® Unification algorithm on term dags

© A naive implementation of unification has exponential complexity,
both in time and space

© The implemented algorithm: quadratic time complexity and linear
space complexity

® Why this algorithm?
© Important in many symbolic computation system
© Reuse previous work

®* Note: no formal proofs about the complexity of the algorithm

A Formally Verified Quadratic Unification Algorithm —p. 2/32 —

Unification

® Unification of terms t; and t5: find (whenever it exits) a most general
substitution o such that o(t1) = o (t2)

* Martelli-Montanari transformation system (acting on unification

Broblems S; U
elete: t=~t}UR;U =, R;U

Occur-check{x =~ t} U R;U =, Lifx € V(t)andx # t

Eliminate: {x =t} UR;U =, 0(R);{x =t} UOU)
fee X,z & V(t)and 0 = {x — t}

Decompose:{f(S1y:+58n) = f(t1y.eestn)} U R; U =,
{s1 = t1,..,Spn =t} UR;U

Clash: {f(s1ye0es8n) = g(t1y.estm) }UR; U =, L
fn#morf#g
Orient: {t=~z}UR;U =, {e=~t)UR;Uife e X,t¢& X

* We defined a particular unification algorithm by choosing:
© a concrete data structure to represent terms and substitutions

© a concrete strategy to exhaustively apply the rules of =,
A Formally Verified Quadratic Unification Algorithm —p. 3/32 —

The verification strategy

LOGIC OF DATA EFFICIENCY
— —
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~f—— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm — p. 4/32

Proving the essential properties of unification

LOGIC OF DATA EFFICIENCY
(—— —
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~f—— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm — p. 5/32

Martelli-Montanari transformation system

Delete: {t=t}UR;U =, R;U

Occur-check{r =~ t} U R;U =, Lifx € V(t) and x # ¢

Eliminate: {x=t}UR;U =, 0(R);{x =t} UulU)
fe e X,z ¢ V() and 0 = {x — t}

Decompose:{f(s1;.:s8n) = f(t1,.cestn)} UR; U =,
{s1 " t1,.c0, S =t} UR;U

Clash: {f(s1y.e058n) = g(t1,.eostm)) UR; U =, L
ifn 7 mor f #g
Orient: {t=z}UR;U =, {z=~tlUR;Uifx e X,t¢& X
® Theorem:
o lf{s=1t};0 = S1;U; =4 ... = L,the sand t are not
unifiable
o lf{s=1t};0 =, S1;U1 = ... = 0;U, then U isamgu of s
and t

© =, Is terminating
A Formally Verified Quadratic Unification Algorithm —p. 6/32 —

Proving the main properties of =, in ACL2

® Prefix representation of terms and substitutions:
(£ (h z) (g (h x) (hwu)))

® We proved the previous theorem, using the prefix representation of
terms
© Reasoning is more “natural” with the prefix representation
© We reused results from other verification projects
® After proving the theorem, in order to verify a concrete unification

algorithm, we only have to show that the results computed can be
obtained by the application of a sequence of operators of =,

A Formally Verified Quadratic Unification Algorithm —p. 7/32 —

Formalization of =>,, in ACL2

®* =, Is not a function, is a relation

© Qperators: pairs of the form (name . i), where name is one of
the rule names

© (unif-legal-p upl op)
© (unif-reduce-one-step-p upl op)

®* For example:

(defthm mm-preserves-solutions-1
(implies
(and (unif-legal-p upl op)
(solution sigma (both-systems upl)))
(solution sigma
(both-systems
(unif-reduce-one-step—-p upl op)))))

A Formally Verified Quadratic Unification Algorithm —p. 8/32 —

An efficient term representation

LOGIC OF DATA EFFICIENCY
— (——
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~f—— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm — p. 9/32

Problems with the prefix representation

Exponential behavior

® Problem U,,;:

D(Tnyeo.sxa, 1) = p(f(Xn—1sTn—1)s-..5 f(x1,21), f(x0,x0))

* Mgu: {z1 — f(xo,x0),z2 — f(f(x0,=0), f(xo0,0)),-..}

* With a prefix representation of terms, every application of the Eliminate
rule requires reconstruction of the instantiated systems

A Formally Verified Quadratic Unification Algorithm —p. 10/32 —

Unification with term dags

®* We represent terms as directed acyclic graphs (dags) stored as pointer
structures

®* Thus, the Eliminate rule only updates a pointer in the graph
®* In ACL2, we represent a graph by the list of its nodes
® Each node is identified with the index of its position in the list

A Formally Verified Quadratic Unification Algorithm —p. 11/32 —

Term dags in ACL2

Example: f(h(2),g(h(x), h(u))) = f(x,g(h(u),v))

13
6@5 8@5/
0 1 2 3 4 5 6
(EQU . (1 9))|(F . (2 4))|(H . (3))|(z . T)|(G. (57))|(H. (6))| (X . T)
(H . (8))|(U . T)|((F . (10 11)) 6 (G . (12 14))((H . (13)) 8 (V . T)

7

8

9

10

11

12

13

14

A Formally Verified Quadratic Unification Algorithm —p. 12/32

Dag unification problems

®* Representing terms as dags, a (sub)term can be identified by the index
of its root node
® Dag unification problem: alist (S U g), where
© g s a list of nodes, representing the dag
© 8 and U system of equations and substitution (resp.) only containing
indices, instead of the whole term

® For instance, in the previous example the equation
g(h(x),h(u)) =~ g(h(u),v) isstoredas (4 . 11)

A Formally Verified Quadratic Unification Algorithm —p. 13/32 —

Dag unification

®* The key theorem proved in ACL2: the following diagram commutes

:>'u,,d,

UPL;, —> UPL,

where =, , and =,, 4 denote the transformation relation, defined

respectively on prefix unification problems and on dag unification
problems

®* The theorem allows us to easily translate the properties proved about
=, from the prefix representation to the dag representation

A Formally Verified Quadratic Unification Algorithm —p. 14/32 —

Efficiency improvements

LOGIC OF DATA EFFICIENCY
— —
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~f—— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm —p. 15/32

Efficiency improvements

®* Even with the dag representation the algorithm could be of exponential
time complexity. We need to:
© Improve occur check, avoiding repeated visits to the same subterm

© Allow sharing of subterms when they have already been unified
® Sharing: after two subterms have been unified, point the root node of
one of them to the root node of the other
* We specify this operation staying at the rule-based level.
° Extend =, 4 With a new rule: identifications
© This rule specifies when it is “legal” to do identifications and how it
changes the graph
© But no control issues

A Formally Verified Quadratic Unification Algorithm —p. 16/32 —

A new rule of transformation: identification

® Operator: (identify i j)

®* Applicable to a dag unification problem when the subterms pointed by 2
and 3 are equal

® Results of its application: a new dag unification problem where node
IS updated to point to node 3

Theorem: an application of the identification rule does not change the
unification problem in prefix form represented by the dag unification problem

A Formally Verified Quadratic Unification Algorithm —p. 17/32 —

Applying the rules with control

LOGIC OF DATA EFFICIENCY
— —
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~f—— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm —p. 18/32

Applying the rules with control

®* Time to define a concrete algorithm: always apply the rule suggested
by the first equation

© And prove that its computation can be simulated by a sequence of
applications of =,, 4 (plus identifications)

® For efficiency reasons, the applicability condition of an identification
should not be explicitly checked
© But the algorithm must arrange things to ensure that whenever an
identification is done, the identified subterms are already unified
* We extend the system of equations to be solved with some
“identification marks” (id z j)

© Whenever we apply the Decompose rule to the equation (z .
7)., we place the identification mark (id i j) just after the
equations pairing the arguments of z and 3

A Formally Verified Quadratic Unification Algorithm —p. 19/32 —

ACL2 implementation: one step of the dag transformation (=>,q)

(defun dag-transform-mm-q (ext-dag-upl)

(let* ((ext-S (first ext-dag-upl)) (equ (first ext-S)) (R (rest ext-S))
(U (second ext-dag—upl)) (g (third ext-dag-upl)) (stamp (fourth ext-dag-upl))
(time (fifth ext-dag-upl)))

(1f (equal (first equ) ’'id)
(let ((g (update—-nth (second equ) (third equ) g)))
(list R U g stamp time))
(let ((tl1 (dag-deref (car equ) g)) (pl (nth tl1l g))
(t2 (dag-deref (cdr equ) g)) (p2 (nth t2 g)))
(cond ((= t1 t2) (l1list R U g stamp time))
((dag-variable-p pl)
(mv—-let (oc stamp)
(occur—-check—-gq t tl t2 g stamp time)
(if oc nil
(let ((g (update—-dagi-1l tl1 t2 g)))
(list R (cons (cons (dag-symbol pl) t2) U) g
stamp (1+ time))))))
((dag-variable-p p2) (list (cons (cons t2 tl) R) U g stamp time))
((not (eql (dag-symbol pl) (dag-symbol p2))) nil)
(t (mv-let (pair—-args bool)
(pair—-args (dag-args pl) (dag-args p2))
(if bool (list (append pair-args
(cons (list ’"id t1 t2) R))
U g stamp time)
nil))))))))

A Formally Verified Quadratic Unification Algorithm —p. 20/32 —

ACL2 implementation: one step of the dag transformation (=>,q)

dag-transform-mm-q(UPL) =
let* UPLbe (S U g stamp time), Sbe (e . R)
in if first(e) = id then let g be update-nth(second(e),third(e),g)
in (R U g stamp time) Identify
else let* t; be dag-deref(car(e),g), p1 be nth(ti, g)
t2 be dag-deref(cdr(e),g), p2 be nth(tz2, g)
inifty = tz then (R U g stamp time) Delete
elseif dag-variable-p(p1)
let (oc,stamp) be occur-check-q(t,t1,t2, g, stamp, time)
in if oc then nil Occur-check
else let g be update-nth(ti,t2,9)
in (R ((dag-symbol(pi1) . t2) . U) g stamp time+1) Eliminate

elseif dag-variable-p(p2) then (((t2 . t1) . R) U g stamp time) Orient
elseif dag-symbol(p1) # dag-symbol(p1) then nil Clash 1
else let (pair-args,bool) be pair-args(dag-args(pi1),dag-args(p2))
in if bool
then (pair-args@((id t1 t2) . R) U g stamp time) Decompose
else nil Clash 2

A Formally Verified Quadratic Unification Algorithm — p. 21/32 —

lteratively applying the rules of =,

(defun solve-upl-q (ext-upl)
(declare (xargs :measure (unification-measure-—-q ext-upl)))
(i1f (unification-invariant-q ext-upl)
(1f (normal-form-syst ext-upl)
ext-upl
(solve-upl—-q (dag-transform-mm-q ext-upl)))
"undef))

® unification-invariant-q, a very long and expensive condition:
© Well-formedness
© Aciclicity
© Correct placement of the identification marks
® For termination reasons, it has to appear in the body
® Theorem: the computation performed by solve—-upl—q can be
simulated by =-,, 4 (plus identifications)

© The hard part: show that unification-invariant-qis indeed
an invariant of the process

A Formally Verified Quadratic Unification Algorithm — p. 22/32 —

Execution in ACL2

LOGIC OF DATA EFFICIENCY
— —
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~ef— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm — p. 23/32

Execution in ACL2

® The function solve—upl-qis executable in ACL2
® But from the practical point of view its execution is completely unfeasible

® For two reasons:
© Accessing and updating the graph is not done in constant time

© Expensive well-formedness conditions in the body, needed for
termination, and evaluated in every recursive call

A Formally Verified Quadratic Unification Algorithm — p. 24/32 —

Using a stobj to store unification problems

(defstobj terms-dag
(dag :type (array t (0)) :resizable t)
cel)

®* The stobj allows accessing and updating the graph in constant time
® Single-threadedness is naturally met in this algorithm

® We redefine the algorithm, now with the stobj

® But almost no change from the logical point of view

A Formally Verified Quadratic Unification Algorithm —p. 25/32 —

Using defexec

(defexec solve—upl-st (S U terms-dag time)
(declare (xargs :guard ...))
(mbe
:logic (if (unification-invariant-q
(list S U (dag—component-st terms-dag)
(stamp—component-st terms—-dag) time))
(1f (endp S)
(mv S U t terms—-dag time)
(mv—-let (S1 Ul bool terms-dag timel)
(dag-transform-mm-st S U terms-dag time)
(if bool
(solve-upl-st S1 Ul terms-dag timel)
(mv S U nil terms—-dag time))))
(mv S U nil terms—-dag time))
:exec (if (endp S)
(mv S U t terms—-dag time)
(mv—-let (S1 Ul bool terms—-dag timel)
(dag-transform-mm-st S U terms-dag time)
(1f bool
(solve-upl-st S1 Ul terms-dag timel)
(mv S U nil terms—-dag time))))))

In general, all the functions traversing the graph are defined using defexec

A Formally Verified Quadratic Unification Algorithm — p. 26/32 —

Execution in ACL2

LOGIC OF DATA EFFICIENCY
— —
THE PROCESS STRUCTURES IMPROVEMENTS
Y
FINAL EXECUTION CONTROL OF
~f—— ~f—
THEOREMS IN ACL2 THE PROCESS

A Formally Verified Quadratic Unification Algorithm — p. 27/32

Dag unification in ACL2

® The main function dag-mqgu:
© Input terms in prefix form are stored as dags in the stobj

© The Martelli-Montanari transformation rules are exhaustively applied

to the dag (updating pointers)
© If unifiable, the mgu is built from the final dag

* Example:

ACL2 !>(dag-mgu ’'(f (h z) (g (h %) (h u)))
(£ x (g (h u) v)))

(T ((v . (H (HZ))) (U. (HZ)) (X. (H2Z))))

ACL2 !>(dag-mgu ’'(f y x) ' (£ (k x) y))

(NIL NIL)

® |nput and output in prefix form, but the main internal operations of the
algorithm are performed with the dag representation

®* The implementation does not use operators (they are only for

reasoning)
A Formally Verified Quadratic Unification Algorithm — p. 28/32 —

Main theorems proved

(defthm dag-mgu—-completeness
(implies (and (term-p tl) (term-p t2)
(equal (instance tl1l sigma)
(instance t2 sigma)))
(first (dag-mgu tl t2))))

(defthm dag-mgu—-soundness
(let* ((dag-mgu (dag-mgu tl1l t2))
(unifiable (first dag-mgu))
(sol (second dag—-mgu)))
(implies (and (term-p tl) (term-p t2) unifiable)
(equal (instance tl sol) (instance t2 sol)))))

(defthm dag-mgu—-most-general-solution
(let* ((dag-mgu (dag-mgu tl1l t2))
(sol (second dag—-mgu)))
(implies (and (term-p tl) (term-p t2)
(equal (instance tl1l sigma)
(instance t2 sigma)))
(subs—-subst sol sigma))))

A Formally Verified Quadratic Unification Algorithm — p. 29/32 —

Execution performance

Un Qn
n Prefix | Quadratic | C Quadratic | Prefix | Quadratic | C Quadratic
15 0.100 € € 4.440 € €
20 13.280 € € — € €
25 — € € — € €
30 — € € — € 0.001
100 — 0.002 0.002 — 0.002 0.002
500 — 0.052 0.028 — 0.040 0.032
1000 - 0.210 0.127 — 0.147 0.138
5000 — 14.496 14.940 — 11.591 27.696
10000 — 75.627 83.047 — /7.856 113.886

A Formally Verified Quadratic Unification Algorithm — p. 30/32 —

Proof effort

Phase Definitions | Theorems
Properties of =,, (prefix representation) 24 81
Acyclic graphs 39 101
Diagram commutativity 39 /6
Storing the initial terms in the graph 29 206
Extended transformation relation 10 25
Quadratic improvements and invariant 47 184
The stobj implementation and guards 26 102
Total 214 775

A Formally Verified Quadratic Unification Algorithm — p. 31/32 —

Conclusions

® On the negative side:

© The number of theorems and definitions needed may be
discouraging: 214 definitions and 775 theorems

© In contrast with a naive implementation (prefix): 19 definitions and
129 theorems

© Solution: ;more reusable books?
® On the positive side:
© The performance of the implementation

© The successful proof strategy: a rule-based approach clearly

separating the logic, the data structures, the control strategy and the
ACL2 execution details

°© mbe and defexec greatly benefits our work

A Formally Verified Quadratic Unification Algorithm —p. 32/32 —

	Introduction
	Unification
	The verification strategy
	Proving the essential properties of unification
	Martelli--Montanari transformation system
	Proving the main properties of $Rightarrow _u$ in ACL2
	Formalization of $Rightarrow _u$ in ACL2
	An efficient term representation
	Problems with the prefix representation
	Unification with term dags
	Term dags in ACL2
	Dag unification problems
	Dag unification
	Efficiency improvements
	Efficiency improvements
	A new rule of transformation: identification
	Applying the rules with control
	Applying the rules with control
	ACL2 implementation: one step of the dag transformation ($Rightarrow _{u,d}$)
	ACL2 implementation: one step of the dag transformation ($Rightarrow _{u,d}$)
	Iteratively applying the rules of $Rightarrow _u$
	Execution in ACL2
	Execution in ACL2
	Using a stobj to store unification problems
	Using {	t defexec}
	Execution in ACL2
	Dag unification in ACL2
	Main theorems proved
	Execution performance
	Proof effort
	Conclusions

