A Formally Verified Quadratic Unification Algorithm

J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Martín-Mateos

Computational Logic Group

Dept. of Computer Science and Artificial Intelligence

University of Seville

Introduction

- A case study: using ACL2 to implement and verify a non-trivial algorithm with efficient data structures
 - Implement the algorithm in ACL2, and compare with similar implementations in other languages
 - Explore the main issues encountered during the verification effort
- Unification algorithm on term dags
 - A naive implementation of unification has exponential complexity, both in time and space
 - The implemented algorithm: quadratic time complexity and linear space complexity
- Why this algorithm?
 - Important in many symbolic computation system
 - Reuse previous work
- Note: no formal proofs about the complexity of the algorithm

Unification

- Unification of terms t_1 and t_2 : find (whenever it exits) a most general substitution σ such that $\sigma(t_1)=\sigma(t_2)$
- Martelli–Montanari transformation system (acting on unification problems S; U)

- We defined a particular unification algorithm by choosing:
 - a concrete data structure to represent terms and substitutions
 - \circ a concrete strategy to exhaustively apply the rules of \Rightarrow_u

The verification strategy

Proving the essential properties of unification

Martelli-Montanari transformation system

```
Delete: \{t \approx t\} \cup R; U \Rightarrow_u R; U

Occur-check:\{x \approx t\} \cup R; U \Rightarrow_u \bot \text{ if } x \in \mathcal{V}(t) \text{ and } x \neq t

Eliminate: \{x \approx t\} \cup R; U \Rightarrow_u \theta(R); \{x \approx t\} \cup \theta(U)

if x \in X, x \notin \mathcal{V}(t) \text{ and } \theta = \{x \mapsto t\}

Decompose:\{f(s_1, ..., s_n) \approx f(t_1, ..., t_n)\} \cup R; U \Rightarrow_u

\{s_1 \approx t_1, ..., s_n \approx t_n\} \cup R; U

Clash: \{f(s_1, ..., s_n) \approx g(t_1, ..., t_m)\} \cup R; U \Rightarrow_u \bot

if n \neq m \text{ or } f \neq g

Orient: \{t \approx x\} \cup R; U \Rightarrow_u \{x \approx t\} \cup R; U \text{ if } x \in X, t \notin X
```

• Theorem:

- \circ If $\{s=t\};\emptyset\Rightarrow_u S_1;U_1\Rightarrow_u\ldots\Rightarrow_u \bot$, the s and t are not unifiable
- \circ If $\{s=t\};\emptyset\Rightarrow_{u}S_{1};U_{1}\Rightarrow_{u}\ldots\Rightarrow_{u}\emptyset;U$, then U is a mgu of s and t
- $\circ \Rightarrow_u$ is terminating

Proving the main properties of \Rightarrow_u in ACL2

- Prefix representation of terms and substitutions:
 (f (h z) (g (h x) (h u)))
- We proved the previous theorem, using the prefix representation of terms
 - Reasoning is more "natural" with the prefix representation
 - We reused results from other verification projects
- After proving the theorem, in order to verify a concrete unification algorithm, we only have to show that the results computed can be obtained by the application of a sequence of operators of \Rightarrow_u

Formalization of \Rightarrow_u in ACL2

- \Rightarrow_u is not a function, is a relation
 - \circ *Operators*: pairs of the form $(name \ . \ i)$, where name is one of the rule names
 - o (unif-legal-p upl op)
 - o (unif-reduce-one-step-p upl op)
- For example:

An efficient term representation

Problems with the prefix representation

Exponential behavior

• Problem U_n :

$$p(x_n,\ldots,x_2,x_1)\approx p(f(x_{n-1},x_{n-1}),\ldots,f(x_1,x_1),f(x_0,x_0))$$

- ullet Mgu: $\{x_1\mapsto f(x_0,x_0),x_2\mapsto f(f(x_0,x_0),f(x_0,x_0)),\ldots\}$
- With a prefix representation of terms, every application of the Eliminate rule requires reconstruction of the instantiated systems

Unification with term dags

- We represent terms as directed acyclic graphs (dags) stored as pointer structures
- Thus, the Eliminate rule only updates a pointer in the graph
- In ACL2, we represent a graph by the list of its nodes
- Each node is identified with the index of its position in the list

Term dags in ACL2

• Example: $f(h(z), g(h(x), h(u))) \approx f(x, g(h(u), v))$

Dag unification problems

- Representing terms as dags, a (sub)term can be identified by the index of its root node
- Dag unification problem: a list (S U g), where
 - og is a list of nodes, representing the dag
 - s and υ system of equations and substitution (resp.) only containing indices, instead of the whole term
- For instance, in the previous example the equation $g(h(x),h(u)) \approx g(h(u),v)$ is stored as (4 . 11)

Dag unification

The key theorem proved in ACL2: the following diagram commutes

where $\Rightarrow_{u,p}$ and $\Rightarrow_{u,d}$ denote the transformation relation, defined respectively on prefix unification problems and on dag unification problems

• The theorem allows us to easily translate the properties proved about \Rightarrow_u , from the prefix representation to the dag representation

Efficiency improvements

Efficiency improvements

- Even with the dag representation the algorithm could be of exponential time complexity. We need to:
 - Improve occur check, avoiding repeated visits to the same subterm
 - Allow sharing of subterms when they have already been unified
- Sharing: after two subterms have been unified, point the root node of one of them to the root node of the other
- We specify this operation staying at the rule-based level:
 - Extend $\Rightarrow_{u,d}$ with a new rule: identifications
 - This rule specifies when it is "legal" to do identifications and how it changes the graph
 - But no control issues

A new rule of transformation: identification

- Operator: (identify i j)
- ullet Applicable to a dag unification problem when the subterms pointed by i and j are equal
- Results of its application: a new dag unification problem where node i is updated to point to node j

Theorem: an application of the identification rule does not change the unification problem in prefix form represented by the dag unification problem

Applying the rules with control

Applying the rules with control

- Time to define a concrete algorithm: always apply the rule suggested by the first equation
 - And prove that its computation can be simulated by a sequence of applications of $\Rightarrow_{u,d}$ (plus identifications)
- For efficiency reasons, the applicability condition of an identification should not be explicitly checked
 - But the algorithm must arrange things to ensure that whenever an identification is done, the identified subterms are already unified
- We extend the system of equations to be solved with some "identification marks" (id $i\ j$)
 - Whenever we apply the **Decompose** rule to the equation (i, j), we place the identification mark (id, i, j) just after the equations pairing the arguments of i and j

ACL2 implementation: one step of the dag transformation $(\Rightarrow_{u,d})$

```
(defun dag-transform-mm-g (ext-dag-upl)
 (let* ((ext-S (first ext-dag-upl)) (equ (first ext-S))
(R (rest ext-S))
         (U (second ext-dag-upl)) (g (third ext-dag-upl)) (stamp (fourth ext-dag-upl))
         (time (fifth ext-dag-upl)))
    (if (equal (first equ) 'id)
        (let ((g (update-nth (second equ) (third equ) g)))
          (list R U q stamp time))
      (let ((t1 (dag-deref (car equ) g)) (p1 (nth t1 g))
            (t2 (dag-deref (cdr equ) g)) (p2 (nth t2 g)))
        (cond ((= t1 t2) (list R U g stamp time))
              ((dag-variable-p p1)
               (mv-let (oc stamp)
                       (occur-check-q t t1 t2 q stamp time)
                       (if oc nil
                              (let ((g (update-dagi-l t1 t2 g)))
                                (list R (cons (cons (dag-symbol p1) t2) U) g
                                      stamp (1+ time))))))
              ((dag-variable-p p2) (list (cons (cons t2 t1) R) U g stamp time))
              ((not (eql (dag-symbol p1) (dag-symbol p2))) nil)
              (t (mv-let (pair-args bool)
                         (pair-args (dag-args p1) (dag-args p2))
                         (if bool (list (append pair-args
                                                 (cons (list 'id t1 t2) R))
                                        U q stamp time)
                                  nil))))))))
```

ACL2 implementation: one step of the dag transformation $(\Rightarrow_{u,d})$

```
dag-transform-mm-q(UPL) =
  let^* UPL be (S U g stamp time), S be (e . R)
  in if first(e) = id then let g be update-nth(second(e),third(e),g)
                                in (R U q stamp time)
                                                                                                      Identify
     else let* t_1 be dag-deref(car(e),g), p_1 be \mathsf{nth}(t_1,g)
               t_2 be dag-deref(cdr(e),g),\,p_2 be \mathsf{nth}(t_2,g)
           in if t_1 = t_2 then (R \ U \ g \ stamp \ time)
                                                                                                       Delete
              elseif dag-variable-p(p_1)
                    \mathsf{let}\ \langle \mathtt{oc}, \mathtt{stamp} \rangle\ \mathsf{be}\ \mathtt{occur-check-q}(t, t_1, t_2, g, stamp, time)
                    in if oc then nil
                                                                                                Occur-check
                       else let q be update-nth(t_1, t_2, q)
                             \mathsf{in}\;(R\;((\mathsf{dag}	extst{-}\mathsf{symbol}(p_1)\;.\;t_2)\;.\;U)\;g\;stamp\;time{+}1)
                                                                                                    Eliminate
              elseif dag-variable-p(p_2) then ((t_2 \cdot t_1) \cdot R) \cdot U \cdot g \cdot stamp \cdot time)
                                                                                                       Orient
              elseif dag-symbol(p_1) \neq dag-symbol(p_1) then nil
                                                                                                      Clash 1
              else let \langle pair-args,bool \rangle be pair-args(dag-args(p_1),dag-args(p_2))
                   in if bool
                        then (pair-args@((id t_1 t_2) . R) U g stamp time)
                                                                                                 Decompose
                      else nil
                                                                                                      Clash 2
```

Iteratively applying the rules of \Rightarrow_u

- unification-invariant-q, a very long and expensive condition:
 - Well-formedness
 - Aciclicity
 - Correct placement of the identification marks
- For termination reasons, it has to appear in the body
- Theorem: the computation performed by solve-upl-q can be simulated by $\Rightarrow_{u,d}$ (plus identifications)
 - The hard part: show that unification-invariant-q is indeed an invariant of the process

Execution in ACL2

Execution in ACL2

- The function **solve-upl-q** is executable in ACL2
- But from the practical point of view its execution is completely unfeasible
- For two reasons:
 - Accessing and updating the graph is not done in constant time
 - Expensive well-formedness conditions in the body, needed for termination, and evaluated in every recursive call

Using a stobj to store unification problems

```
(defstobj terms-dag
  (dag :type (array t (0)) :resizable t)
  ...)
```

- The stobj allows accessing and updating the graph in constant time
- Single-threadedness is naturally met in this algorithm
- We redefine the algorithm, now with the stobj
- But almost no change from the logical point of view

Using defexec

```
(defexec solve-upl-st (S U terms-dag time)
  (declare (xargs : quard ...))
  (mbe
  :logic (if (unification-invariant-q
               (list S U (dag-component-st terms-dag)
                      (stamp-component-st terms-dag) time))
              (if (endp S)
                  (mv S U t terms-dag time)
                  (mv-let (S1 U1 bool terms-dag time1)
                           (dag-transform-mm-st S U terms-dag time)
                           (if bool
                               (solve-upl-st S1 U1 terms-dag time1)
                               (mv S U nil terms-dag time))))
              (mv S U nil terms-dag time))
          (if (endp S)
   :exec
              (mv S U t terms-dag time)
              (mv-let (S1 U1 bool terms-dag time1)
                       (dag-transform-mm-st S U terms-dag time)
                       (if bool
                           (solve-upl-st S1 U1 terms-dag time1)
                           (mv S U nil terms-dag time))))))
```

In general, all the functions traversing the graph are defined using defexec

Execution in ACL2

Dag unification in ACL2

- The main function dag-mgu:
 - Input terms in prefix form are stored as dags in the stobj
 - The Martelli-Montanari transformation rules are exhaustively applied to the dag (updating pointers)
 - If unifiable, the mgu is built from the final dag
- Example:

- Input and output in prefix form, but the main internal operations of the algorithm are performed with the dag representation
- The implementation does not use operators (they are only for reasoning)

Main theorems proved

```
(defthm dag-mgu-completeness
 (implies (and (term-p t1) (term-p t2)
                (equal (instance t1 sigma)
                       (instance t2 sigma)))
           (first (dag-mgu t1 t2))))
(defthm dag-mgu-soundness
 (let* ((dag-mgu (dag-mgu t1 t2))
         (unifiable (first dag-mgu))
         (sol (second dag-mgu)))
   (implies (and (term-p t1) (term-p t2) unifiable)
             (equal (instance t1 sol) (instance t2 sol)))))
(defthm dag-mgu-most-general-solution
 (let* ((dag-mgu (dag-mgu t1 t2))
         (sol (second dag-mgu)))
   (implies (and (term-p t1) (term-p t2)
                  (equal (instance t1 sigma)
                         (instance t2 sigma)))
             (subs-subst sol sigma))))
```

Execution performance

	$oldsymbol{U_n}$			Q_n		
n	Prefix	Quadratic	C Quadratic	Prefix	Quadratic	C Quadratic
15	0.100	ϵ	ϵ	4.440	ϵ	ϵ
20	13.280	ϵ	ϵ	_	ϵ	ϵ
25	_	ϵ	ϵ	_	ϵ	ϵ
30	_	ϵ	ϵ	_	ϵ	0.001
100	_	0.002	0.002	_	0.002	0.002
500	_	0.052	0.028	_	0.040	0.032
1000	_	0.210	0.127	_	0.147	0.138
5000	_	14.496	14.940	_	11.591	27.696
10000	_	75.627	83.047	_	77.856	113.886

Proof effort

Phase	Definitions	Theorems
Properties of \Rightarrow_u (prefix representation)	24	81
Acyclic graphs	39	101
Diagram commutativity	39	76
Storing the initial terms in the graph	29	206
Extended transformation relation	10	25
Quadratic improvements and invariant	47	184
The stobj implementation and guards	26	102
Total	214	775

Conclusions

- On the negative side:
 - The number of theorems and definitions needed may be discouraging: 214 definitions and 775 theorems
 - In contrast with a naive implementation (prefix): 19 definitions and
 129 theorems
 - Solution: ¿more reusable books?
- On the positive side:
 - The performance of the implementation
 - The successful proof strategy: a rule-based approach clearly separating the logic, the data structures, the control strategy and the ACL2 execution details
 - mbe and defexec greatly benefits our work