
A Functional Specification and Validation Model

for Networks on Chip in the ACL2 Logic1

Julien Schmaltz2 and Dominique Borrione

TIMA Laboratory, VDS Group
Joseph Fourier University
46 avenue Felix Viallet

38031 Grenoble Cedex, France
{Julien.Schmaltz, Dominique.Borrione}@imag.fr

Abstract. We present a functional model used to specifiy and validate,
in the ACL2 logic, a system on a chip communication architecture named
Octagon. The functional model is briefly introduced before being devel-
oped on the case study. We define and validate the routing algorithm,
a simple scheduling algorithm and the correctness of read and write op-
erations which includes the proof that messages travel over the network
without being modified and eventually reach their expected destination.

1 Introduction

Nowadays, if the design and the verification of systems on chip is well supported
at the Register Transfer Level (RTL) and below [1], the first design steps are
only supported by numeric simulation and ad hoc tools. Furthermore, systems
increasingly reuse pre-existing modules, which have been intensively verified in
isolation, and an essential aspect of the overall functional correctness of systems
relies on the correctness of their communications. In this context, our work
focuses on the specification of the communications on a chip at a high level
of abstraction. It involves generic network components where the number of
interconnected modules is finite, but not necessary bounded.

In this paper, we present the formal specification, in the ACL2 logic [2], of
a state of the art network on chip developed by ST Microelectronics and named
Octagon. The ACL2 model is based on the informal descriptions presented in
the scientific literature ([4] and [5]). Nervertheless, our model is more general in
the sense that it is parameterized by the number of nodes and the size of the
memory. Our main contribution is the application of theorem proving techniques
to on chip communication architectures, which is, to the best of our knowledge,
new. The study of communication protocols (regarding the ACL2 community

1 This paper is adapted from a higher-level paper presented at the FMCAD conference
[7] and provides details for an ACL2-literate audience

2 Part of this work was done while visiting the Department of Computer Sciences
of the University of Texas at Austin. This visit was supported by an EURODOC
scholarship granted by the ”Region Rhone-Alpes” , France.

Application
Master MI_req(ord)

MI_res(resp)

SI_ord(req)

SI_resp(res)
Slave(ord)

OrdersRequests

Results

Orders

ResultsResponses Responses

Requests

CommArch(msg)

Master Unit Slave Unit

Slave InterfaceMaster Interface

Fig. 1. Formalization of Communications

Moore’s work [3] is one example) is somehow related to our work, but not directly.
These studies formalize how data are encapsulated in messages; we focus here
on formalizing how messages travel over an interconnect. Our main results are
a first model for networks on chip and the development of a specific library of
functions and theorems, most of which will be reusable for circuits of similar
functionnality.

In the next section, we briefly introduce the functional model used for the
specification of Octagon. We present the functional definition of the transfer of
messages and the general theorems that express its correctness. Section three
introduces the main features of the Octagon and of the interconnected nodes.
In section four, the overall memory structure and the functional specification
of a node system are presented. Within a node system, we prove that the local
communications are correct according to the model of section two. The functional
definition of the Octagon, and the main theorems that validate this model are
given in section five. We prove the correctness of read and write operations which
includes the proof that messages eventually reach their expected destination
without being modified. In the final section, we discuss the experimental results,
and present our conclusions.

2 Functional Modeling of Communications

Our model is pictured on Fig. 1. A master starts the communication by sending
an order to the slave, which replies with a result. Communication operations
are orthogonal to the computation operations [6]. They are separated in two
classes of components: the interfaces and the applications. To distinguish be-
tween interface-application and interface-interface communications, the former
dialogue is denoted by orders and results, the latter by requests and responses.
Generally, the encoding of orders differs from the encoding of requests.

An interface communicates with two components, an application and another
interface, and is thus modeled by two functions. For the master interface: MIreq

computes a request from an order; MIres computes a result from a response. For
the slave interface: SIord computes an order from a request; SIresp computes a
response from a result. Master and slave interfaces are not directly connected. A
communication medium, bus or network, determines how requests and responses
are transfered. The medium is modeled by a function CommArch which takes

and returns a response or a request, i.e. a message. Communications are modeled
by the composition of these functions.

The transfer of an order from the master to the slave application is defined
as the composition of MIreq, CommArch and SIord:

Definition 1. Transmission of an Order via a medium

trans ord(order) returns Order
def
= SIord ◦ CommArch ◦ MIreq(order)

A transfer from the slave to the master application is defined as the compo-
sition of MIres, CommArch and SIresp:

Definition 2. Transmission of a Result via a medium

trans res(result) returns Result
def
= MIres ◦ CommArch ◦ SIresp(result)

Let function Slave model the slave application; a complete transfer between
the master and the slave is defined by the composition of Trans res, Slave and
Trans ord:

Definition 3. Transfer

Transfer(order) returns Result
def
= Trans res ◦ Slave ◦ Trans ord(order)

The correctness of the transmission of an order is achieved if the order re-
ceived by the slave application is “equal” to the order sent by the master appli-
cation. Generally, the slave interface will modify the address of the original order
to satisfy a specific mapping of the slave application addresses. Consequently,
the order received by the slave application is not strictly equal to the sent order,
but equal modulo a given address mapping. This is expressed by some relation
' which is defined according to the specific memory structure of a system. If
the transmission of an order is correct, then the following is a theorem:

Theorem 1. Trans Ord Correctness
∀ order, trans ord(order) ' order

The correctness of the transmission of a result is achieved if the result received
by the master application is equal (generally strictly) to the result sent by the
slave application. If the transmission of a result is correct, then the following is
a theorem:

Theorem 2. Trans Res Correctness
∀ result, T rans res(result) = result

The correctness of a transfer is achieved if its result is equal (again modulo an
address mapping) to the application of the function Slave to the order produced
by the master application.

Theorem 3. Transfer Correctness
∀ order, T ransfer(order) ' Slave(order)

Proof. follows from theorems 1 and 2. 2

In the remainder of this paper, we develop this functional style through the
definition and the validation, in the ACL2 logic, of the Octagon architecture.

7

5

6

0

4

3

2

1

Fig. 2. Basic Octagon Unit

bus

switch

switch switch

switchswitch

switch

switch

switch

Decoder

Memory

Interface
Master

Interface
Slave

Scheduler

Fig. 3. Node System connected to a switch and
the scheduler

3 Overview of the Octagon

3.1 Architecture and Routing

A basic Octagon unit consists in eight nodes and twelve bidirectional links (Fig-
ure 2). It has two main properties: two-hop communication between any pair of
nodes and simple, shortest-path routing algorithm ([4] and [5]).

An Octagon packet is data that must be carried from the source node to the
destination node as a result of a communication request by the source node. A
scheduler allocates the entire path between the source and destination nodes of
a communicating node pair. Non-overlapping communication paths can occur
concurrently, permitting spatial reuse.

The routing of a packet is accomplished as follows. Each node compares the
tag (Packet addr) to its own address (Node addr) to determine the next action.
The node computes the relative address of a packet as:

Rel addr = (Packet addr − Node addr) mod 8 (1)

At each node, the route of packets is a function of Rel addr as follows:

– Rel addr = 0, process at node

– Rel addr = 1 or 2, route clockwise

– Rel addr = 6 or 7, route counterclockwise

– route across otherwise

Example 1. Consider a packet Pack at node 2 sent to node 5. First, 5−2 mod 8 =
3, Pack is routed across to 6. Then, 5 − 6 mod 8 = 7, Pack is routed counter-
clockwise to 5. Finally, 5 − 5 mod 8 = 0, Pack has reached its final destination.

3.2 Node and System Structure

Each node of the network is a small system built around a bus architecture. It
contains an address decoder, a master and a slave interface and a memory unit.
This system is connected to Octagon via a switch (Figure 3). Master interfaces
and switches are connected to the scheduler.

Nodes and Octagon work as follows. If the memory unit and the master
interface involved in a communication belong to the same node, the request is
said to be local and the output flag of the decoder is set to true. It is said to be
non-local otherwise, and the output flag of the decoder is set to false. Suppose
a non-local transaction is pending at several master interfaces. The scheduler
determines the set of transactions that can be done concurrently, i.e. those that
do not share communication paths. A path is allocated for each one of them and
carries both the request and the response. When every concurrent transaction
is finished, the system is ready for a new set of transactions.

In the next two sections, we present a summary of the definition and the
validation of the network in the ACL2 logic. The complete ACL2 model is given
as supporting materials to this paper.

4 Functional Specification of the Node System

4.1 Memory Structure

The overall system memory is equally distributed over the nodes. Let ms be the
size of a memory in a node, and Num Node be the number of nodes (8 for the
Octagon, but the argument is more general). The size of the global memory is
global ms = Num Node × ms.

During transfers, the master uses the global address, which ranges from 0
to global ms − 1 and the slave selected by the decoder reads or writes the data
to its local address local addr. The local and global addresses are related by:
local addr = global addr mod ms.

Conversely, the destination node possessing a given global address global addr
is the node i, such that

i = global addr div ms (2)

The address decoder receives a global address and determines whether the
slave at node node nb should be active or not. It is defined as follows:

Definition 4. Address Decoder

(defun decoder (global_addr ms node_nb)

(if (and (< global_addr (* (1+ node_nb) ms))

;; less than the first address of next node

(<= (* node_nb ms) global_addr))

;; greater than or equal to the first

;; address of the current node.

1 ; l/nl=1 for local transfers

0)) ; l/nl=0 for non local transfers

4.2 Functional Memory Model

The memory unit of a node is modeled by a list memo of items and a function
Memory that operates on memo. The address of an item is its position in the
list.

Definition 5. Memory

(defun MEMORY (op addr item memo)

(if (< addr (len memo)) ;; then we are OK and can do op

(if (equal op ’read)

(mv-let (dat mem)

(mem_read addr memo) ;; = call to nth

(mv ’OK dat mem))

(if (equal op ’write)

(mv-let (dat mem)

(mem_write addr memo item) ;; call to put-nth

(mv ’OK dat mem))

(mv ’INV_OP ’INV_DATA memo)))

(mv ’INV_ADDR ’INV_DATA memo)))

The global memory Glob Mem is represented by the ordered concatenation
of all local memory lists Memo, starting from 0.

Glob Mem = (d0 d1 ... dms−1 dms dms+1 ... dnum node×ms−1) (3)

Two functions are defined on Glob Mem: get local mem extracts the memory
unit number node nb from the global memory, and update local mem returns a
global memory containing an updated local memory.

Definition 6. Get Local Memory

(defun get_local_mem (Glob_Mem node_nb ms)

(firstn ms (nthcdr (* node_nb ms) Glob_Mem)))

Example 2. Consider Glob Mem = (a b c d e f), ms=2 and Num Node=3. The
memory of node 1 is (firstn 2 (nthcdr (* 1 2) Glob Mem)) = (firstn 2 (c d e f))
= (c d).

Definition 7. Update Local Mem

(defun update_local_mem (Glob_Mem memo node_nb ms)

(append (firstn (* node_nb ms) Glob_Mem)

(append memo

(nthcdr (* (+ 1 node_nb) ms) Glob_Mem)))))

Example 3. The memory of node 1, as of example 2, is updated as follows:
(update local mem (a b c d e f) (g h) 1 2) = (append (a b) (g h) (e f)) = (a b
g h e f)

On these functions we prove some useful properties on the length of their
result. We also prove that updating the global memory at a given node using
the memory list of this node does not change the initial global memory:

(defthm update_and_get_local_ok

(implies (and (equal memo (get_local_mem Glob_Mem node_nb ms))

(integerp node_nb) (<= 0 node_nb)

(true-listp Glob_Mem) (NODE_MEM_SIZEp ms)

(< node_nb (floor (len Glob_Mem) ms)))

(equal (update_local_mem Glob_Mem memo node_nb ms)

Glob_Mem)))

4.3 Specification of the Node System

We define a function Node which represents a generic node system. Its execution
models either one local communication or a step in a distant communication. Pri-
ority is given to the communication started by the local master. It takes three
architectural parameters: Glob Mem, ms, and the own node number node nb.
The other arguments are the pending order of the local master (i.e an opera-
tion, a location and a data), the request req and the response resp coming from
a distant node, and two Boolean flags stating the validity of these last two ar-
guments. Node returns a list composed of the result of a communication, the
emitted request, the response to the incoming request, and the new value of the
global memory.

Definition 8. Node System

(defun node (op loc dat Glob_Mem ;; pending order and memory

nw_stat nw_r_dat ;; response from network

nw_r/w nw_addr nw_dat ;; request from network

IncomingResponse IncomingRequest ;; validity flags

node_nb ;; node number

ms ;; size of local memory

)

(if (equal op ’NO_OP) ;; node master is doing nothing

(if (equal IncomingRequest 1) ;; valid request from ntwk

(let ((dec (decoder nw_addr ms node_nb)))

(mv-let (st dat memo)

(nw_transfer nw_r/w nw_addr nw_dat Glob_Mem

dec node_nb ms)

(mv ’NO_OP ’NO_DATA ;; no result

st dat ’NO_MSG_DATA ;; response to ntwk

memo))) ;; new memory

(if (equal IncomingResponse 1) ;; valid response

(mv-let (stat r_dat)

(MI_res nw_stat nw_r_dat) ;; get result

(mv stat r_dat ;; result to master

’NO_MSG_R/W ’NO_MSG_ADDR ’NO_MSG_DATA

;; no response or no request to ntwk

Glob_Mem)) ;; the memory is not changed

(mv ’NO_OP ’NO_DATA ’NO_MSG_R/W

’NO_MSG_ADDR ’NO_MSG_DATA Glob_Mem)))

;; else the node master is doing a write or read operation

(let ((dec (decoder loc ms node_nb)))

(if (equal dec 1) ;; local communication

(mv-let (st dat memo)

(bus_transfer op loc dat Glob_Mem

dec node_nb ms)

(mv st dat ;; result of the local communication

’NO_MSG_R/W ’NO_MSG_ADDR ’NO_MSG_DATA

memo))

;; else the node sends a request to the ntwk

(mv-let (r/w addr data)

(mi_req op loc dat) ;; get request

(mv ’NO_OP ’NO_DATA ;; no result

r/w addr data ;; request sent to the ntwk

Glob_Mem))))))

Local communications are represented by function Bus transfer which is
defined similarly to the definitions of section 2. Function CommArch is replaced
by function Bus, which is here modeled by the identity function: Bus(x) = x.
Consequently, the correctness of local operations follows from Theorems 1, 2,
and 3.

At the beginning of a distant communication initiated by the master of node
nb 1, the local order is read or write and function Node with parameter node nb
= nb 1 calls MIreq . This produces a request which is sent over the network. At
the destination node nb 2, the validRequest is set to “true” by the scheduler.
This is modeled to a second call to function Node with node nb = nb 2 that calls
function Netw transfer below to compute the response. The response is sent back
to the source node nb 1, with a third call to Node with parameters node nb =
nb 1 and validResponse = ‘true”, that invokes function MIres to compute the
final result of the distant communication.

Definition 9. Network Transfer

(defun nw_transfer (r/w addr data Glob_Mem sl_select node_nb ms)

(mv-let (op loc dat)

(si_ord r/w addr data sl_select ms)

(mv-let (stat dat memo)

(memory op loc dat

(get_local_mem Glob_Mem node_nb ms))

(mv-let (st d)

(si_resp stat dat sl_select)

(mv st d

(update_local_mem Glob_Mem memo

node_nb ms))))))

Distant communications are completed by function Octagon, presented in the
next section.

5 Functional Specification of Octagon

5.1 Routing Function

We define a function Route which represents the routing algorithm of section 3.1
for an arbitrary number Num Node of nodes. Num Node is a natural number,
that is a multiple of 4. It computes the path - a list of node numbers - be-
tween nodes from and to. To simplify the reasoning within ACL2, Num Nodes
is defined as (∗ 4 n) where n is a positive integer.

Definition 10. Routing Function

(defun route (from dest n)

(cond ((or (not (integerp dest))

(< dest 0)

(< (- (* 4 n) 1) dest)

;; dest must be lower than the number of nodes

(not (integerp from)) ;; from must be an integer

(< from 0)

(< (- (* 4 n) 1) from)

;; from must be lower than the number of nodes

(not (integerp n))

(<= n 0))

nil)

((equal (- dest from) 0) ;; process at node

(cons from nil))

((and (< 0 (mod (- dest from) (* 4 n)))

(<= (mod (- dest from) (* 4 n)) n))

(cons from (route (n_clockwise from n) dest n)))

Quarter 1 and −4Quarter 4 and −1

Quarter 3 and −2 Quarter 2 and −3

Bounds 1 and 2

Fig. 4. Decomposition of the Octagon

((and (<= (* 3 n) (mod (- dest from) (* 4 n)))

(< (mod (- dest from) (* 4 n)) (* 4 n)))

(cons from (route (n_counter_clockwise from n) dest n)))

(t

(cons from (route (n_across from n) dest n)))))

where n clockwise, n counter clockwise and n across are defined as:

(defun n_clockwise (from n)

(mod (+ from 1) (* 4 n)))

(defun n_counter_clockwise (from n)

(mod (- from 1) (* 4 n)))

(defun n_across (from n)

(mod (+ from (* 2 n)) (* 4 n)))

The following properties establish the correctness of function Route: a) it
terminates; b) it computes a path consistent with the network topology; and c)
the number of hops is less than or equal to Num Node

4
. The second property is

divided in three parts. First, we prove that each move is part of the available
ones: clockwise, counterclockwise or across. Second, Route produces a non-empty
path that contains no duplicate. Finally, we prove that a path starts with node
from and ends with node to.

The measure used to prove that Route terminates, is

Min[(dest− from) mod (4 × n), (from − dest) mod (4 × n)]

It is generally hard to reason about mod in ACL2. In this proof of termination,
we use the last arithmetic packages [8] and ten additional lemmas. Once the
function is admitted in the logic, we decompose the computation according to
the following eight quarters and two bounds (Figure 4):

1. Quarter 1. 0 ≤ to − from ≤ n
4

2. Quarter -4. −n < to − from ≤ − 3n
4

3. Quarter 2. n
4

< to − from < n
2

4. Quarter -3. − 3n
4

< to − from − n
2

5. Quarter 3. n
2

< to − from < 3n
4

6. Quarter -2. −n
2

< to − from < −n
4

7. Quarter 4. 3n
4

≤ to − from < n
8. Quarter -1. −n

4
≤ to − from < 0

9. Bound 1. to − from = n
2

10. Bound 2. to − from = −n
2

For each case, we prove that Route is equivalent to a small function that does
not use mod. Reasoning is thus simplified.

The following theorem states the correctness of Route. Some predicates are
obvious, and not spelled out for brevity.

Theorem 4. Correctness of Route

(defthm CORRECTNESS_OF_ROUTE

(implies (and (integerp from) (<= 0 from) (< from (* 4 n))

(integerp to) (<= 0 to) (< to (* 4 n))

(integerp n) (< 0 n))

(and (consp (route from to n))

;; every node is an integer

(all_intp (route from to n))

;; every node number is positive

(all_pos_intp (route from to n))

;; every route contains no duplicate

(no-duplicatesp (route from to n))

;; every node is less than the maximum of nodes

(all_inf_np (route from to n) (* 4 n))

;; a route is made of available moves

(AvailableMovep (route from to n) n)

;; the first node is the starting node

(equal (car (route from to n)) from)

;; the last node is the final node

(equal (car (last (route from to n))) to))))

5.2 Scheduler

In the rest of the paper, we consider that an order is pending at each master
(a no op operation standing for the absence of order). Master 0 is given the
highest priority, and master Num Node− 1 the lowest. The pending orders are
represented by a list op lst which has the following form:

op lst = (... (i opi loci itemi) ... (j opj locj itemj) ...) (4)

where i is a node number, op an operation, and loc a global address.
The role of the scheduler is to identify all the pending orders that can be

concurrently executed, taking into account their priority. The local communica-
tions are always executed, removed from op lst, and their results are stored. The

other requests involve distant communications, and their route is computed. A
priority ordered travel list is built, where each travel is a request followed by its
route. It has the following form:

tl = (... ((r/wk addrk datk) k n1 n2 ...f) ...) (5)

where k is the source node and f is the final node computed by: f = addr k div
ms. By a simple induction, we prove that Theorem 4 holds for every route in tl.

We define a function Scheduler which extracts a set of non-overlapping routes
from tl, i.e. such that a node may appear in at most one route. It takes three
arguments: 1) the travel list tl; 2) a list non ovlp, initially empty, that contains
the non-overlapping communications at the end of the computation; 3) the list
prev, initially empty, of the nodes used by the communications in non ovlp.
Each computation step processes one request route, and adds it to non ovlp if
the intersection of its node set with prev is empty; then prev is updated. For
brevity, overlapping communications are dropped in function Scheduler below.
In the full model, they are stored in another travel list, for later processing.

Definition 11. Scheduler

(defun scheduler (tl non_ovlp_r prev)

;; extracts non overlapping communications of tl

(if (endp tl)

(rev non_ovlp_r)

(let ((route_i (cdr (car tl))))

(if (no_intersectp route_i prev)

(scheduler (cdr tl)

(cons (car tl) non_ovlp_r)

(append route_i prev))

(scheduler (cdr tl) non_ovlp_r prev)))))

Let (Grab nodes tl) be a function that creates the list of the nodes used by
every route in a travel list tl. The correctness of Scheduler is expressed by the
following theorem:

Theorem 5. Correctness of Scheduler

(defthm all_no_duplicatesp_scheduler

(implies (all_no_duplicatesp tl)

(no-duplicatesp (grab_nodes (scheduler tl nil prev)))))

Proof. The proof requires three lemmas. First, we prove that the scheduler pro-
duces a travel list in which every route is unique (but two routes may have nodes
in common):

(defthm all_no_intersectp_scheduler_non_tail

(all_no_intersectp_routep (scheduler tl nil prev)))

SWITCH

Parameters:

to_node

to_cwise

to_ccwise

to_across

from_node

from_cwise

from_ccwise

from_across to_ccwise_nb

from_cwise_nb to_cwise_nb

from_ccwise_nb

origin target

node_nb
from_across_nb to_across_nb

Fig. 5. Generic Switch

from/to counter clockwise = (i−1) mod Num_Node

from/to node = i mod Num_Node

from/to clockwise = (i+1) mod Num_Node

from/to across = (i + Num_Node/2) mod Num_Node

Fig. 6. A step in a travel

Then, we prove that if every route of a travel list tl contains no duplicate, then
every route of the travel list produced by the function scheduler contains also no
duplicate:

(defthm no_dupli_tl_=>_no_dupli_scheduler

(implies (all_no_duplicatesp tl)

(all_no_duplicatesp (scheduler tl nil prev))))

Finally, we prove that if every route is unique and if every route contains no
duplicate in a travel list tl, then (Grab nodes tl) returns a list without duplicate:

(defthm all_no_dupli_and_all_no_inter_route_=>_no_dupli_grab_nodes

(implies (and (all_no_intersectp_routep l)

(all_no_duplicatesp l))

(no-duplicatesp (grab_nodes l))))

2

5.3 Traveling Functions

We define a function Switch which represents a generic switch component (Figure
5). It takes as arguments: the four inputs (from x), two commands (origin and
target) and the parameters. It produces a new value for every output. The switch
reads a message on the input selected by the value of origin, and writes the
message on the output selected by the value of target. The other outputs are set
to NIL.

In our model, a message travels on its route r as a result of iterative calls
to function Switch, until every node of r has been visited. Let i be the current
node at a given travel step in route r. Switch is called with i as node nb. origin
and target take the previous and next node numbers w.r.t. i in r. The other
parameters are numbered as pictured on Figure 6. If i is the first node of r,
origin is equal to i. If i is the last node of r, target is equal to i. The values
assigned to the outputs of Switch, as a result of executing one travel step, are
used in the next call to Switch where i is replaced by its successor in r. These calls
to Switch represent the structure of the interconnected nodes effectively involved

in the travel along route r. The set of concurrent travels over the structure are
represented by function Trip, which takes as arguments a travel list tl and the
parameter Num Node and executes the travel of every request in the travel list.
(For space reasons, the definitions of functions Switch and Trip are not given.)
To validate this function, we first prove that if every route in tl contains no
duplicate and satisfies the predicate AvailableMovep then Trip does not modify
the message:

Theorem 6. Correctness of the Interconnection Structure 1

(defthm correctness_of_Trip

(implies (and (all_no_duplicatesp tl)

(all_pos_intp_route_lstp tl) (all_int_routep tl)

(all_inf_routep tl (* 4 N))

(all_availableMovep_routep tl N)

(all_true-listp tl) (integerp N) (< 0 N)

;; tl is a travel list

(tlp tl))

(equal (trip tl N) tl)))

Proof. By a simple induction on tl. A suitable induction scheme is automatically
found by ACL2. Some ACL2 heuristics prevent the opening of some recursive
predicates and thus an expand hint is required. 8 simple rewrite rules are also
needed in addition to ACL2 pre-existing rules. 2

Then, we check that messages are lost if every route in tl is not valid:

Theorem 7. Correctness of the Interconnection Structure 2

(defthm correctness_of_Trip_not

(implies (and (all_no_duplicatesp tl)

(all_pos_intp_route_lstp tl) (all_int_routep tl)

(all_inf_routep tl (* 4 N))

;; routes are not valid

(all_not_available_routep tl N)

(integerp N) (< 0 N) (all_true-listp tl) (tlp tl))

(all_nil_msg (trip tl N))))

Proof. This proof is a little more complex. The proof requires 2 inductions,
generalization, destructor elimination and 3 additional rewrite rules including
Theorem 6. We also use an expand hint similar to Theorem 6. 2

5.4 Correctness of Distant Communications

Function Octagon represents the overall system. It takes as arguments the list
op lst containing the orders pending at every node, the two parameters Num Node

and ms and the global memory Glob Mem. It first recursively calls function Node
for every order of op lst. Every such call either produces a result, which is stored
in a list LocRes, or produces a request, which is put, together with its route, in a
travel list tl. Second, it calls Scheduler to extract the non-overlapping communi-
cations from tl. Then, a first call to Trip moves every request to its destination
node. Function Node is recursively called for each one of the requets to compute
the response of every one of them (function ComputeResponses). The responses
are carried back to their respective source node by a second call to Trip. Finally,
a third recursive call to Node computes the result of every response (function
ComputeRes). Function Octagon returns the list LocRes of the local orders, the
list NetwDone of the results of the distant orders and the final memory.

Definition 12. Octagon

(defun Octagon (op_lst N ms Glob_Mem)

;; model of the complete network: nodes connected to Octagon

;; runs the Ntwk once, returns loc_done nw_done and memory

(mv-let (loc_done nw_op Glob_Mem1)

;; collect messages and execute the local operations

;; we also get the non local requests

(collect_msg op_lst nil nil Glob_MEM ms)

;; then we compute the travel list

(let* ((tl (make_travel_list nw_op nil ms N))

;; we extract the set of non-overlapping comms

(novlp (scheduler tl nil nil))

;; we move every request to their destination

(tl_at_dest (trip novlp N)))

(mv-let (cr_lst Glob_Mem2)

;; we compute the response of every request

(ComputeResponses tl_at_dest Glob_Mem1

ms nil)

;; move responses back to their source node

(let ((tl_back (trip cr_lst N)))

(mv-let (nw_done Glob_Mem3)

(ComputeRes tl_back Glob_Mem2

ms nil)

(mv loc_done nw_done

Glob_Mem3)))))))

To validate this function, we need to prove a theorem equivalent to Theorem
3,i.e. to prove that read or write operations exhibit the same behaviour through
the Octagon as they would have through direct interaction with the memory. We
decompose this final proof into a litany of theorems which consider separately the
correctness of the returned status, data and memory. We also split read orders
from write orders. For instance, we prove that if op lst contains only distant read
orders then the memory is not changed.

Theorem 8. Correctness of the Memory for Read Orders

(defthm mem_ok_read_Octagon

(implies (and (all_read_op_lstp op_lst)

(all_non_loc_op_lstp op_lst ms)

(all_node_nb_validp op_lst (* 4 N))

(all_address_validp op_lst (* 4 N) ms)

(equal (len Glob_Mem) (* (* 4 N) ms))

(integerp N) (< 0 N) (true-listp Glob_Mem)

(NODE_MEM_SIZEp ms))

(equal ;; final memory

(mv-nth 2

(Octagon op_lst N ms Glob_Mem))

Glob_Mem)))

Similarly, we prove that every write order is equal to a direct update of the
memory.

Theorem 9. Correctness of the Memory for Write Orders

(defthm mem_ok_write_octagon

(implies (and (all_write_op_lstp op_lst)

(all_non_loc_op_lstp op_lst ms)

(all_node_nb_validp op_lst (* 4 N))

(all_address_validp op_lst (* 4 N) ms)

(equal (len Glob_Mem) (* (* 4 N) ms))

(integerp N) (< 0 N) (true-listp Glob_Mem)

(NODE_MEM_SIZEp ms))

(equal ;; final memory

(mv-nth 2 (Octagon op_lst N MS Glob_Mem))

;; correct modification of the memory

(good_mem_write

(scheduler

(make_travel_list

(mv-nth 1 (collect_msg op_lst nil nil

Glob_Mem ms))

NIL ms N)

nil nil)

Glob_Mem ms))))

where good mem write is the following function:

(defun good_mem_write (req_lst mem ms)

;; in case of good write requests, the location

;; is changed through a call to put-nth

(if (endp req_lst)

mem

(good_mem_write

(cdr req_lst)

(put-nth (global_addr (nth 1 (caar req_lst))

(last_route req_lst)

ms)

(nth 2 (caar req_lst))

mem)

ms)))

6 Conclusion and Future Work

In this paper, we have presented a functional model for on chip communications.
We have illustrated this approach on the Octagon. The functional correctness of
the network routing and scheduling algorithm were established. We proved the
correctness of read and write operations which includes the proof that tokens
travel correctly over this structure: messages eventually reach their expected des-
tination without being modified. In reality, our results hold on a generalization
of the Octagon: we model an unbounded interconnection structure as of Fig. 3,
where the number of switches is a multiple of 4.

The model and its proof were developed in three months but the proof can
be replayed in less than ten minutes on a Pentium IV at 1.6 GHz with 256 Mb
of main memory, under Linux. The overall model contains around one hundred
definitions and the proof requires more than two hundred lemmas and theorems.

Thanks to our decomposition of the communications, most of the functions
may be redefined to suit the characteristics of other design decisions. Provided
the essential theorems still hold for them, the overall proof is not changed. For
instance, the scheduling function may implement a different priority policy: if
Theorem 5 still holds on the new scheduling, Theorems 6 and 7 remain valid.
Likewise, the routing algorithm of another network structure may be redefined:
if it can be proved to satisfy Theorem 4, the final theorems remain valid.

The work reported here is only a first step. Extensions are required to take
into account the full complexity of on chip communications. For instance, the
scheduling algorithm of this paper considers only a circuit switched mode, and
packet switching algorithms will have to be considered. We are also trying to
extend our model (i.e. Fig. 1) so that it can take protocols into account. For
instance, we are working on the formalization of Ethernet in the spirit of this
paper.

7 Acknowledgements

We are thankful to J Strother Moore, Warren A. Hunt, Jr, their research group
and Matt Kaufmann for their precious help on ACL2 and many discussions. We
also thank Robert Krug for his help on the arithmetic packages.

References

1. W. Roesner: What is Beyond the RTL Horizon for Microprocessor and Sys-
tem Design. Invited Speaker. Correct Hardware Design and Verification Meth-
ods(CHARME) (2003)

2. M. Kaufmann, P. Manolios and J Strother Moore: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publisher (2000)

3. J Strother Moore: A Formal Model of Asynchronous Communication and Its Use
in Mechanically Verifying a Biphase Mark Protocol, Formal Aspects of Computing
(1993)

4. F. Karim, A. Nguyen and S. Dey: An Interconnect Architecture For Networking
Systems On Chip. IEEE Micro (Sept-Oct 2002) pp. 36–45

5. F. Karim, A. Nguyen, S. Dey and R. Rao : On-Chip Communication Architecture
for OC-768 Network Processor. Design Automation Conference (2001)

6. J. A. Rowson and A. Sangiovanni-Vincentelli: Interface-Based Design. Design Au-
tomation Conference (1997)

7. J. Schmaltz and D. Borrione: A Functional Approach to the Formal Specification
of Networks on Chip, in Proc. of the 5th Intl. Conference on Formal Methods in
Computer-Aided Design (FMCAD’04), (2004)

8. R. Krug, W. A. Hunt and J Moore: Linear and Nonlinear Arithmetic in ACL2.
Correct Hardware Design and Verification Methods(CHARME) (2003)

