
An ACL2 Library for Bags
(Multisets)

Eric Smith*, Serita Nelesen*, David Greve, Matthew
Wilding, and Raymond Richards

Rockwell Collins Advanced Technology Center

Cedar Rapids, IA 52498 US

*Eric and Serita are students at Stanford University
and the University of Texas at Austin, respectively.

Background

• The AAMP7 microprocessor has instructions that
access memory.

• Rockwell has a library, GACC, for reasoning
about such instructions.

• To say that two memory operations don't interfere
is to say that they affect different addresses.

• GACC often deals with collections of addresses.
• This sort of reasoning seems common to many

systems which access memory.

• Two main ways to show that A and B are different
addresses:

(1) A and B belong to collections which are disjoint
from each other.

(2) A and B are separately included in a collection
that contains no duplicates.

• For this reasoning we care about the presence of
elements in the collections, but not their order.

• Situation (2) requires us to keep track of duplicates.

• So, we use multisets (or “bags”).

Operations That Return Bags:

• (bag-insert a x) : Insert element A into bag X.
[currently implemented with cons]

• (bag-sum x y) : Combine the bags X and Y.
[currently implemented with append]

• (remove-1 a x) : Remove the first occurrence of
element A from bag X.

• (remove-all a x) : Remove all occurrences of
element A from bag X.

• (bag-difference x y) : Remove the elements in bag
Y from bag X.

Predicates on Bags:

• (bagp x) : Test whether X is a bag [currently: t]
• (empty-bagp x) : Test whether X is an empty bag.

[currently: (not (consp x))]
• (memberp a x) : Test whether A appears in bag X. (always

returns a boolean)
• (subbagp x y) : Test whether, for any element A, A appears

in bag Y at least as many times as it appears in bag X.
• (disjoint x y) : Test whether X and Y have no elements in

common.
• (unique x) : Test whether no element appears in X more

than once.

Misc.

• (count a x) : Return the multiplicity of A in
X.

• (perm x y) : Equivalences relation to test
whether two bags are permutations of each
other (i.e., whether they agree on the count
for each element)

Rules About Bags

The bags library has two kinds of rules:

1. Basic rules for simplifying terms in the
usual ACL2 style.

2. Fancy rules (mostly :meta rules) for cases
in which the basic rules are too expensive.

Some Basic Rules
(defthm unique-of-append
 (equal (unique (append x y))
 (and (unique x)
 (unique y)
 (disjoint x y))))

(defthm disjoint-of-append-one
 (equal (disjoint (append x y) z)
 (and (disjoint x z)
 (disjoint y z))))

(defthm disjoint-of-append-two
 (equal (disjoint x (append y z))
 (and (disjoint x y)
 (disjoint x z))))

These Rules Can Be Expensive!
(unique (append a b c d e f)) 

This is a quadratic blowup!
(We get one disjoint claim
for each pair of arguments
to append.)

But sometimes we append
dozens of things! Yikes!

 (and (unique a)
 (unique b)
 (unique c)
 (unique d)
 (unique e)
 (unique f)
 (disjoint e f)
 (disjoint d e)
 (disjoint d f)
 (disjoint c d)
 (disjoint c e)
 (disjoint c f)
 (disjoint b c)
 (disjoint b d)
 (disjoint b e)
 (disjoint b f)
 (disjoint a b)
 (disjoint a c)
 (disjoint a d)
 (disjoint a e)
 (disjoint a f))

:Meta Rules to the Rescue !

• We disable potentially-expensive basic rules like
unique-of-append and instead manage the
reasoning ourselves.

• We care most about establishing certain predicates
(disjoint, unique, etc.).

• Our :meta rules search through the known facts
(i.e., the type-alist) to try to find an “argument”
that the predicate of interest is true.

• Ex: To show (subbagp x y), try to find several
subbagp facts which can be chained together using
transitivity.

Situations our :meta rules can handle:

• (subbagp x y)

• (unique x)

• (disjoint x y)

• (memberp a x)

• (not (memberp a x))

• (unique-subbagps x y bag) : Both X and Y fit inside BAG.

• (unique-memberps a b bag) : Both A and B fit inside BAG.

• (unique-memberp-and-subbagp a x bag) : Both A and X fit inside BAG.

• (not (equal a b))

Example: Subbagp Chain

• Intuition: To show (subbagp x y), we find some known fact, F,
of the form (subbagp x BLAH), and then show (subbagp BLAH
y), recursively. When asked to show something is a subbagp of
itself, we immediately return t.

• Subtlety: We have the notion of a “syntax subbag.” To say
(syntax-subbagp x y) means we can tell (subbagp x y) just by
looking at X and Y.

• Ex: (syntax-subbagp ‘(cons a b) ‘(append b (cons a c)) is true for all a, b, and c.

• Fact F above need not have x itself as its first argument. It’s
enough to find (subbagp BLAH1 BLAH2) where x is a syntax
subbag of BLAH1. We then try to show (subbagp BLAH2 y).

Example: Subbagp Chain, cont.

Ways to show (subbagp x y):
1. Discover that (syntax-subbagp x y).
2. Find (subbagp BLAH1 BLAH2), where

(syntax-subbagp x BLAH1), and then show
(subbagp BLAH2 y).

Think: x ⊆ BLAH1 ⊆ BLAH2 ⊆ y

Note that this is a recursive procedure.

Concrete Example

(defthmd example

 (implies (and (subbagp x z)

 (subbagp (append z aa) w)

 (subbagp w y))

 (subbagp x y)))

Think: x ⊆ z ⊆ (append z aa) ⊆ w ⊆ y

Example: Disjointness

Ways to show (disjoint x y):

1. Find (disjoint BLAH1 BLAH2), and then show
(subbagp x BLAH1) and (subbagp y BLAH2).

2. Find (disjoint BLAH1 BLAH2), and then show
(subbagp y BLAH1) and (subbagp x BLAH2).

3. Find (unique BLAH), and then show

(unique-subbagps x y BLAH).

Implementation Details

• Our :meta reasoning is of the “extended”
sort. That is, we make use of the mfc (or
metafunction context). In particular, we
search the type-alist for known facts.

• Each extended :meta rule requires a
generated hypotheses (roughly, the
conjunction of all the facts we used to
convince ourselves that the rewrite is okay).

Change to ACL2
• By default, variables which are mentioned in the generated hypotheses for a

:meta rule -- but not in the rule’s left-hand-side -- are treated as free. So ACL2
searches for matches. This isn’t what we want at all!

• Ex: If we can show (subbagp x y) by finding a subbagp chain involving
(subbagp x z), we know exactly what z should be bound to (namely, z itself!),
since we found (subbagp x z) on the type-alist.

• It is now legal for hypothesis metafunctions to generate, in essence, calls of
syntaxp and bind-free. So we can bind the variables ourselves.

• It is now legal to add a :backchain-limit-lst to :meta rules to ensure that no
work is done when relieving the hypotheses. (Our hyps come straight from the
type-alist, so backchaining should never be necessary.)

• Together, these changes let us write solid :meta rules that make use of
information from the mfc.

:Meta Rules in Action
Our rules prove these in about 0.01 seconds each:

(defthmd disjoint-test4
 (implies (and (subbagp x x0)
 (subbagp y y0)
 (subbagp (append x0 y0) z)

 (subbagp z z0)
 (subbagp z0 z1)
 (unique z1))
 (disjoint x y)))

(defthmd non-memberp-test1
 (implies (and (subbagp p q)

 (subbagp q (append r s))
 (subbagp (append r s) v)
 (memberp a j)
 (subbagp j (append k l))
 (subbagp (append k l) m)
 (disjoint m v)
)

 (not (memberp a p))))

Future work

• Add more bag functions to the library (e.g.,
bag-intersection).

• Make the interface more abstract (e.g., use
bag-insert instead of cons).

• Investigate the instances where we have to
enable the basic rules.

• Is there an interesting decidable theory
here?

Conclusion
• We’ve implemented a library about bags. It has

been used at Rockwell, and we hope others will
use it too.

• The library uses fancy :meta rules when the basic
rules would cause quadratic blowups.

• The :meta rules are fairly nice. (To show foo, find
a term of the form blah, and then show bar.)

• The :meta rules access the mfc. Our work led to a
change to ACL2 which we think will help others
who want to access the mfc.

