Reverse Abstraction in ACL2

Dr. Bill Young

Computer Sciences Department
University of Texas at Austin
byoung@cs.utexas.edu

ACL2 Workshop 2004

Draft of November 8, 2004

ACL2 Workshop 2004 1 Reverse Abstraction

Formal Modeling

Formal models of digital systems are constructed for a variety of
purposes.

Simulator models: may be highly optimized for efliciency, but not
congenial for proof;

Abstract models: may be elegant and well-suited for formal
analysis, but highly inefficient for execution.

It may be difficult to build a single model that supports such disparate
goals.

ACL2 Workshop 2004 2 Reverse Abstraction

Possible Solutions

e Construct an abstract system model, and then refine it through a
series of steps to eke out execution efficiency.

e Introduce conceptual abstractions into an existing low-level model
hand-tooled for efficiency.

ACL2 Workshop 2004 3 Reverse Abstraction

AA 7 odel

The existing artifact for this project is the Rockwell Collins AAMP7
processor model.

e Very detailed low level model of the AAMP7 processor.

e Represents man-years of effort.

e Highly optimized for efficient execution.

e Fixtensive use of sophisticated macros.

ACL2 Workshop 2004 4 Reverse Abstraction

7 Operation Semantics

Operation semantics are define in terms of a complex reader macro,
that essentially emulates an imperative language in an applicative
context.

Example: the LIT16 operation takes a 16-bit quantity from the
instruction stream and pushes it onto the stack.

(defun op-1lit16 (st)
(declare (xargs :stobjs (st)))
(AAMP *state->statex
(fetch_word ux);
(push ux);

st))

ACL2 Workshop 2004 5 Reverse Abstraction

peration Semantics

The call (OP-LIT16 ST) actually macro-expands into the following:

(update-nth
*aamp . ramx
(write_memory
(makeaddr (nth *aamp.denvr* st)
(logand 65535
(logext 32 (+ -2 (nth *aamp.tos* st)))))
(gacc::rx 16
(makeaddr (nth *aamp.cenvr* st)
(nth *aamp.pc* st))
(nth *aamp.ram* st))
(nth *aamp.ram* st))
(update-nth
aamp.tos
(logand 65535
(logext 32 (+ -2 (nth *aamp.tos* st))))
(update-nth *aamp.pc*
(logand 65535
(logext 32 (+ 2 (nth *aamp.pc* st))))
st)))

ACL2 Workshop 2004 6 Reverse Abstraction

bstracting

Staring at the specification we notice the form:
(logand 65535 (logext 32 (+ k x)))

This is provably equivalent to the slightly simpler logical expression:
(loghead 16 (+ k x)).

and we could rewrite it to this form, but that still isn’t very abstract.

ACL2 Workshop 2004 7 Reverse Abstraction

bstracting

Let’s define the following function and rewrite rule:

(defun plusi6 (k x)
(loghead 16 (+ k x)))

(defthm plusi6-abstractor
(equal (loghead 16 (+ k x))
(plusi6 k x)))

Note that it would be disastrous to have both of these enabled.

ACL2 Workshop 2004 8 Reverse Abstraction

Defabstractor

This process is very stylized and can all be accomplished with a macro.

(defabstractor plusl6 (k x)
(loghead 16 (+ k x)))

which encapsulates the definition of PLUS16, rewrite rule, and disable.

ACL2 Workshop 2004 9 Reverse Abstraction

ultiple Forms

If there are various forms of the same essential abstract concept, we can
“canonicalize” them:

(defthm plusl6-abstractor-2
(equal (logand 65535 (add32 x k))
(plusi6 k x)))

Abstractions may be nested.

(defabstractor next-stack-address (st)
(makeaddr (nth *aamp.denvr* st)
(plus16 -2 (nth *aamp.tos* st))))

ACL2 Workshop 2004 10 Reverse Abstraction

Rewriting with bstractions

Once the abstractions are in place, other rewrites are suggested, e.g., to
consolidate multiple updates to the state:

(defthm inc-pc-inc-pc
(implies (and (st-p st)
(unsigned-byte-p 16 (+ i j (pc st))))
(equal (inc-pc i (inc-pc j st))
(inc-pc (+ i j) st))))

ACL2 Workshop 2004 11 Reverse Abstraction

pplying everse Dbstraction

Applying reverse abstraction and rewriting to the OP-LIT'16 semantics,
we can prove:

(defthm litl6-rewriter
(implies
(st-p st)
(equal (op-1litl16 st)
(write-to-ram (next-stack-address st)
(fetch-code-word (pc st)
(cenvr st)
(ram st))
(inc-tos -2 (inc-pc 2 st)))))

This provides an alternative semantics for the LIT16 operation.

ACL2 Workshop 2004 12 Reverse Abstraction

Efficiency

Emulation of iterative behavior in an applicative context may be very
inefficient. Think about the computation of the top-of-stack pointer in:

(defun op-addi (st)

(reader
’((fetch-word x)
(push x)
(fetch-word y)
(push y)
(add)
)))

Naively, you increment twice and then decrement. An abstract
implementation merely increments once.

ACL2 Workshop 2004 13 Reverse Abstraction

Conclusions

The ultimate goal is to be able to prove properties of AAMP7
programs. The reverse abstraction process is a useful step toward a
suitable semantics.

e We have described an approach to introduce “abstraction” into an
existing formal specification.

e The result may actually be more efficient to execute because
optimizations are easier to see in the abstract version.

e The result is more readable and hopefully more amenable to formal
analysis.

ACL2 Workshop 2004 14 Reverse Abstraction

