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Formal Modeling

Formal models of digital systems are constructed for a variety of
purposes.

Simulator models: may be highly optimized for efliciency, but not
congenial for proof;

Abstract models: may be elegant and well-suited for formal
analysis, but highly inefficient for execution.

It may be difficult to build a single model that supports such disparate
goals.
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Possible Solutions

e Construct an abstract system model, and then refine it through a
series of steps to eke out execution efficiency.

e Introduce conceptual abstractions into an existing low-level model
hand-tooled for efficiency.
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AA 7 odel

The existing artifact for this project is the Rockwell Collins AAMP7
processor model.

e Very detailed low level model of the AAMP7 processor.

e Represents man-years of effort.

e Highly optimized for efficient execution.

e Fixtensive use of sophisticated macros.
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7 Operation Semantics

Operation semantics are define in terms of a complex reader macro,
that essentially emulates an imperative language in an applicative
context.

Example: the LIT16 operation takes a 16-bit quantity from the
instruction stream and pushes it onto the stack.

(defun op-1lit16 (st)
(declare (xargs :stobjs (st)))
(AAMP *state->statex
(fetch_word ux);
(push ux);

st))
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peration Semantics

The call (OP-LIT16 ST) actually macro-expands into the following:

(update-nth
*aamp . ramx
(write_memory
(makeaddr (nth *aamp.denvr* st)
(logand 65535
(logext 32 (+ -2 (nth *aamp.tos* st)))))
(gacc::rx 16
(makeaddr (nth *aamp.cenvr* st)
(nth *aamp.pc* st))
(nth *aamp.ram* st))
(nth *aamp.ram* st))
(update-nth
*aamp.tos*
(logand 65535
(logext 32 (+ -2 (nth *aamp.tos* st))))
(update-nth *aamp.pc*
(logand 65535
(logext 32 (+ 2 (nth *aamp.pc* st))))
st)))
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bstracting

Staring at the specification we notice the form:
(logand 65535 (logext 32 (+ k x)))

This is provably equivalent to the slightly simpler logical expression:
(loghead 16 (+ k x)).

and we could rewrite it to this form, but that still isn’t very abstract.
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bstracting

Let’s define the following function and rewrite rule:

(defun plusi6 (k x)
(loghead 16 (+ k x)))

(defthm plusi6-abstractor
(equal (loghead 16 (+ k x))
(plusi6 k x)))

Note that it would be disastrous to have both of these enabled.
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Defabstractor

This process is very stylized and can all be accomplished with a macro.

(defabstractor plusl6 (k x)
(loghead 16 (+ k x)))

which encapsulates the definition of PLUS16, rewrite rule, and disable.
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ultiple Forms

If there are various forms of the same essential abstract concept, we can
“canonicalize” them:

(defthm plusl6-abstractor-2
(equal (logand 65535 (add32 x k))
(plusi6 k x)))

Abstractions may be nested.

(defabstractor next-stack-address (st)
(makeaddr (nth *aamp.denvr* st)
(plus16 -2 (nth *aamp.tos* st))))
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Rewriting with bstractions

Once the abstractions are in place, other rewrites are suggested, e.g., to
consolidate multiple updates to the state:

(defthm inc-pc-inc-pc
(implies (and (st-p st)
(unsigned-byte-p 16 (+ i j (pc st))))
(equal (inc-pc i (inc-pc j st))
(inc-pc (+ i j) st))))
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pplying everse Dbstraction

Applying reverse abstraction and rewriting to the OP-LIT'16 semantics,
we can prove:

(defthm litl6-rewriter
(implies
(st-p st)
(equal (op-1litl16 st)
(write-to-ram (next-stack-address st)
(fetch-code-word (pc st)
(cenvr st)
(ram st))
(inc-tos -2 (inc-pc 2 st)))))

This provides an alternative semantics for the LIT16 operation.
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Efficiency

Emulation of iterative behavior in an applicative context may be very
inefficient. Think about the computation of the top-of-stack pointer in:

(defun op-addi (st)

(reader
’( (fetch-word x)
(push x)
(fetch-word y)
(push y)
(add)
)))

Naively, you increment twice and then decrement. An abstract
implementation merely increments once.
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Conclusions

The ultimate goal is to be able to prove properties of AAMP7
programs. The reverse abstraction process is a useful step toward a
suitable semantics.

e We have described an approach to introduce “abstraction” into an
existing formal specification.

e The result may actually be more efficient to execute because
optimizations are easier to see in the abstract version.

e The result is more readable and hopefully more amenable to formal
analysis.
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