
Reverse Abstration in ACL2William D. YoungUniversity of Texas at Austin1Department of Computer Sienes1 IntrodutionFormal models of digital systems are onstruted for a variety of purposes, not all of them mutuallyompatible. A model that is onstruted as a formal simulator for a digital system may be highlyoptimized for eÆient exeution. A more abstrat model may be less eÆient, but strutured tofailitate proofs of system properties. In an ideal world, any model would be abstrat, omprehen-sible, analyzable and eÆiently exeutable. However, it is often diÆult to build a single modelthat supports suh disparate goals.One possible solution is to onstrut an abstrat system model, and then re�ne it through someseries of steps to eke out the required level of exeution eÆieny (eg. [4℄). Sometimes, however,the artifat at hand is not an abstrat model that an be re�ned for eÆieny, but a very low-levelmodel that has been hand-tooled for eÆient exeution. This was the ase with the Rokwell CollinsAAMP7 proessor model[3℄; the need for exeution eÆieny led to a very low-level spei�ationhighly optimized for speed. Beause of the lak of abstration, the model is hard to understandand proofs very diÆult to onstrut.To failitate proofs of AAMP7 programs, it beame desirable to introdue abstrations into themodel. Sine it was not possible in the urrent projet to rebuild the model from srath, we deidedto investigate the feasibility of retro�ting the model with appropriate abstrations. By analogy with\reverse engineering," we all this proess \reverse abstration."2 The goal is to replae a low-levelsystem model with a more oneptually abstrat version that is provably semantially equivalent,but more amenable to formal reasoning. It is learly infeasible to mehanially reognize appropriateabstrations from a low-level spei�ation. But, one a human has identi�ed useful abstrations,automation an assist in managing the reverse abstration proess, and assuring that insertingabstrations preserves the semantis of the target system.In this report, we desribe the reverse abstration proess as applied to a very detailed existingformal spei�ation, the Rokwell Collins AAMP7 formal model. We used the ACL2 theoremproving system[2℄ to manage the proess, used the ACL2 rewriter to replae omplex terms by moreabstrat versions, and used the prover to assure that the proess preserved semanti equivalene.In addition to providing a more intelligible and aessible formal haraterization of the AAMP7instrution-level semantis, there was a rather surprising additional bene�t. Even though the1This work was supported at the University of Texas at Austin by a ontrat from Rokwell Collins, Projet#450117702, Instrution-level Model of the AAMP7 in ACL2.2One of the anonymous reviewers thought this term misleading, beause the two versions are semantially equiv-alent. I would argue that \abstration" is often used in plaes where that is true. \Proedural abstration," forexample, doesn't neessarily imply elimination of detail, merely hiding detail to repakage funtionality into a moreongenial form. I believe that that is preisely what is aomplished here.



Reverse Abstration 2low-level AAMP7 model was onstruted for eÆient exeution, the reverse abstration proessilluminated several ineÆienies. The abstrated model ould atually be faster than the low-levelmodel, though we have not yet validated this.2 The AAMP7 ModelThe AAMP7 model is a detailed instrution-level model of a ommerial proessor. It omprisesmany megabytes of formal spei�ation, exeutable ode, and supporting theory, and representsa monumental intelletual e�ort in the appliation of formal methods to digital design. Thise�ort was supported by the ACL2 automated analysis tool-suite. Exeutable spei�ations werewritten in the logi of ACL2 and formally analyzed to satisfy a variety of properties, inluding well-formedness of de�nitions, type restritions on the arguments to funtions, and formal relationshipsamong various funtions in the spei�ation. All of these proofs were mehanially heked usingthe ACL2 theorem prover.The ACL2 maro faility is used in an extremely sophistiated manner in this spei�ation. A readermaro is de�ned that allows the spei�ation of individual AAMP7 instrutions in an imperativestyle. For example, the following funtion desribes the semantis of the LIT16 operation, whihtakes a 16-bit literal from the instrution stream and plaes it on the proessor stak.3(defun op-lit16 (st)(delare (xargs :stobjs (st)))(AAMP *state->state*(feth_word ux);(push ux);st))Here, AAMP is a maro that interprets its arguments as follows. The �rst argument spei�es thatthis funtion is a state to state transformation. The e�et on the state is equivalent to exeutingthe listed pseudo-instrutions in sequene and then returning the resulting state. Loal variablesare introdued where needed.The AAMP maro essentially embeds within ACL2 an intuitive, imperative language for speifyingproessor operations. Maro expansion must transform this into an appliative form, typially afuntional expression involving aesses and updates on the single-threaded objet[1℄ representingthe state. The maro expansion of (op-lit16 st) is shown in Figure 1. Note that LIT16 is one ofthe simplest AAMP7 operations. By omparison, the maro expansion of the orresponding bodyof the ADD instrution is several hundred lines of text.4The AAMP maro faility provides a ongenial vehile for speifying the semantis of operations.However, it presents a nightmare for anyone attempting to prove properties of AAMP7 instrutions.The prover immediately expands the maro all, and whatever abstration is provided by the3The AAMP7 model is a moving target. The semantis desribed here is not entirely up to date.4This omplexity arises beause the semantis aurately aptures the potential exeption behavior of the opera-tion. The LIT16 instrution annot raise an exeption.



Reverse Abstration 3(update-nth*aamp.ram*(write_memory(makeaddr (nth *aamp.denvr* st)(logand 65535(logext 32 (+ -2 (nth *aamp.tos* st)))))(ga::rx 16(makeaddr (nth *aamp.envr* st)(nth *aamp.p* st))(nth *aamp.ram* st))(nth *aamp.ram* st))(update-nth*aamp.tos*(logand 65535(logext 32 (+ -2 (nth *aamp.tos* st))))(update-nth *aamp.p*(logand 65535(logext 32 (+ 2 (nth *aamp.p* st))))st))) Figure 1: Semantis of LIT16 instrutionimperative form disappears. The user attempting to reason formally about AAMP7 operations orprograms is onfronted with onjetures involving huge and omplex terms.3 Reverse AbstrationWhile the AAMP7 model funtions well in the role of a formal simulator, it is hopeless as a basisfor reasoning about AAMP7 programs. Two remedies to this situation seemed possible:1. rewrite the entire model in a more abstrat style;2. disover a way to preserve the existing model, but \retro�t" it with abstrations that aremore amenable to formal analysis.The �rst was infeasible under the urrent ontrat. The seond required a new approah that weall reverse abstration.The idea of reverse abstration is to take reurring low-level forms within a spei�ation and torewrite them into a more abstrat and perspiuous form. For example: in the OP-LIT16 de�nitionin Figure 1, the following form appears three times:(logand 65535 (logext 32 (+ k x)))This is a standard loution in the AAMP7 spei�ation for adding two 16-bit quantities. Thisexpression is provably equivalent to the slightly simpler logial expression:



Reverse Abstration 4(loghead 16 (+ k x)).By applying a rewrite rule, we an always eliminate the more omplex form in favor of this simplerform. However, this still leaves the spei�ation in terms of the logial operation LOGHEAD. Wewould like to replae this form with something more intuitive.We de�ne the following funtion and rewrite rule:(defun plus16 (k x)(delare (xargs :guard (and (integerp k)(integerp x))))(loghead 16 (+ k x)))(defthm plus16-abstrator(equal (loghead 16 (+ k x))(plus16 k x)))The lemma proves immediately simply by opening up the de�nition of PLUS16. Having this rulearound during a proof attempt ensures that terms of the form(loghead 16 (+ k x))will be rewritten to orresponding terms of the form(plus16 (+ k x)).It is neessary to disable the funtion PLUS16; otherwise, the rewriter will get into an in�nite loopof opening the funtion, rewriting it into its more abstrat form, opening it, et.This proess is very stylized and an all be aomplished with a maro. We de�ne a maroDEFABSTRACTOR to perform these steps. The relevant all then appears as:(defabstrator plus16 (k x)(loghead 16 (+ k x)))This enapsulates the de�nition of the PLUS16 funtion, the de�nition of the rewrite rule, and thedisabling of the funtion. (It would probably be good to disable the rewrite rule as well, sine wewant reverse abstration to our seletively. We will likely do that in the next version.)This simple example illustrates the tehnique of reverse abstration. It an be summarizes asfollows:1. identify ommon low-level forms in the spei�ation;2. de�ne an \abstration funtion" in terms of the low-level form;3. rewrite the low-level form into the more abstrat version;



Reverse Abstration 54. disable the abstration funtion to prevent looping.The result is an automati apability to replae a given form by a oneptually more abstratequivalent.At times, various low-level forms an be rewritten to the same abstration. For example, the AAMPmaro sometimes emits(logand 65535 (add32 x k))instead of(logand 65535 (+ k x)).Adding the following rewrite rule establishes that the two forms are semantially equivalent andeliminates a seond syntatially di�erent form in favor of our preferred abstration.(defthm plus16-abstrator-2(equal (logand 65535 (add32 x k))(plus16 k x)))Abstrations may be nested, i.e., de�ned in terms of other abstrations. For example, the ab-stration funtion NEXT-STACK-ADDRESS is de�ned in terms of the previously introdued PLUS16funtion. The abstrator lemma for NEXT-STACK-ADDRESS won't apply until the abstrator forPLUS16 has already done its work.(defabstrator next-stak-address (st)(makeaddr (nth *aamp.denvr* st)(plus16 -2 (nth *aamp.tos* st))))By introduing a series of abstrations, whih are automatially applied, it is possible to replae aompliated and non-intuitive expression suh as that in Figure 1 with a form that is muh easierto understand.After the abstrations are applied, it often beomes easier to spot useful simpli�ations. Forexample, multiple updates to the same state omponent an be onsolidated. This requires provingrewrites in terms of the abstration funtions. For example, we an prove the following rewrite:(defthm in-p-in-p(implies (and (st-p st)(unsigned-byte-p 16 (+ i j (p st))))(equal (in-p i (in-p j st))(in-p (+ i j) st))))



Reverse Abstration 6In partiular, we proved the following lemma, where the right hand side of the rewrite was \auto-matially" generated via reverse abstration from the expansion of (OP-LIT16 ST) given in Figure1.5 This lemma is trivial to prove sine the left and right sides are essentially idential, one theabstration funtions open.(defthm lit16-rewriter(implies (st-p st)(equal (op-lit16 st)(write-to-ram (next-stak-address st)(feth-ode-word (p st)(envr st)(ram st))(in-tos -2 (in-p 2 st)))))This lemma now provides an alternative semantis for the LIT16 operation. Hopefully, this seman-tis is easier to deal with in a proof ontext for several reasons. We an oneptualize the proofat the level of the abstration funtions. By proving appropriate lemmas about our abstrationswe an raise the level of proof to a more abstrat plane. By seletively disabling the abstra-tion funtions we an hide the morass of details generated by the AAMP maro during any proofattempt.Moreover, beause the same basi forms are used throughout the spei�ation, a relatively smallolletion of well-hosen abstration funtions an provide enormous bene�ts. For example, theabstrations de�ned for the LIT16 operation applied to most of the other operations in the AAMP7model. Thus, the inremental e�ort in applying reverse abstration to eah subsequent operationswas less and less.4 Performane IssuesThe use of maros allows the semantis of AAMP7 operations to be modeled very intuitively in animperative style. However, sine the underlying logi is appliative the expansion of these maroexpressions is ultimately a nest of aesses and updates to a single-threaded objet representingthe proessor state. For even a fairly simple operation suh as ADD, the resulting expansion is trulydaunting.The expansion may also ontain some surprising ineÆienies. This is beause operational behav-ior neessary in an iterative ontext is often highly ounterprodutive in an appliative ontext.Consider a potential operation (ADDI X Y), adding two literal values X and Y on a hypothetialstak-based mahine.6 Assuming an AAMP7-style reader maro, the semantis of this operationmight be de�ned in an imperative style by the following de�nition.5This was done by using the ACL proof-heker utility to manipulate the omplex term in Figure 1. Afteridentifying likely abstrations and introduing abstration funtions and rewrites, these were applied interatively inthe proof heker until the term was massaged into a ongenial form, namely the right hand side of the LIT16-REWRITERlemma shown below.6The point is more easily made on a hypothetial mahine than on the AAMP7, though it ertainly applies there.



Reverse Abstration 7(defun op-addi (st)(reader'( (feth-word x)(push x)(feth-word y)(push y)(add))))As a spei�ation artifat, this is onsise and intuitive. But, if translated naively, it may atuallylead to very ineÆient exeution.Emulating this imperative mahine diretly in an appliative ontext, maro expansion might gen-erate something like the semanti funtion.(defun op-addi-2 (st)(let ((X (feth-ode-word st))(Y (feth-ode-word (inrement-p st))))(inrement-p 2(write-to-stak (+ (feth-tos 0 st)(feth-tos 1 st)))(derement-tos(write-to-stak Y(inrement-tos(write-to-stak X(inrement-tos st))))))))Assuming that the various omponents of the state are disjoint, OP-ADD-2 is learly|and hopefully,provably|equivalent to:(defun op-addi-3 (st)(write-to-stak (+ (feth-ode-word st)(feth-ode-word (inrement-p st)))(inrement-p 2(inrement-tos st)))).This version likely exeutes somewhat more eÆiently than OP-ADD-2. The transformation fromOP-ADD-2 to OP-ADD-3 is easily aomplished with a series of obvious rewrite rules. However, if thesystem simulator diretly exeutes the output of the reader maro|as happens with the AAMP7|there is no opportunity for this rewriting optimization to our. The result is that the simulatorperforms multiple, and sometimes redundant, updates on seleted elements of the state.As an alternative, we an prove that the naive translation is equivalent to the more eÆient,optimized version. After doing this for eah of the available operations, we an replae the original



Reverse Abstration 8simulator with one that runs the more eÆient versions. This simulator is equivalent to the naiveversion, but onsiderably more eÆient.75 ConlusionsWe have demonstrated an approah to \retro�tting" an existing low-level spei�ation with abstra-tions. On analogy with reverse engineering, we all this reverse abstration. Reverse abstrationis a potentially valuable tool for rendering a omplex low-level spei�ation more intelligible andmore amenable to formal analysis. Moreover, even a spei�ation that was designed for eÆientexeution may have ineÆienies that are hidden by omplexity. This beame apparent in oure�orts to apply reverse abstration to the Rokwell Collins AAMP7 formal proessor spei�ation.Our reverse abstration proess is not ideal. It requires onsiderable low level e�ort and ingenuity.Perhaps a better solution would have been to replae the original model with a more abstratversion. Reverse abstration might be viewed as a �rst step to identifying what suh a model mightlook like.This e�ort validates the importane of abstration to manage omplexity and to failitate proof.But it also suggests that it is possible in some ases to introdue abstration into an existingspei�ation. It is unlikely that there are many large formal spei�ations that will require reverseabstration. Still, it ould prove to be a valuable addition to the spei�er's toolbox.Referenes[1℄ R. Boyer and J Moore. Single-threaded objets in ACL2. In Proeedings of Pratial Aspetsof Delarative Langauges, 2002, pages 9{27, 2002.[2℄ M. Kaufmann, P. Manolios, and J Moore. Computer-Aided Reasoning: An Approah. KluwerAademi Press, Boston, 2000.[3℄ Matthew Wilding, David Greve, and David Hardin. EÆient simulation of formal proessormodels. Formal Methods in System Design, 18(3):233{248, May 2001.[4℄ William D. Young and William R. Bevier. Developing an abstrat separation kernel via sues-sive re�nement. Tehnial report 109, Computational Logi, In., May 1995.
7The insertion of abstration funtions in plae of primitive update and aessor funtions may introdue somefuntion all overhead. However, most of our abstration funtions are simple, non-reursive funtions and ould bereplaed by in-line ode.


