21.19HRS. 14 SEPT 1973.
[FILE JUMP]
[/]
[/ REWRITE]
[/ PROVE]
[/ IND1]
[/ IND2]
[/ VERB]
[/ FERTILIZ]
[/ REDUCE]
[/ GENRLIZE]
[/] TRACK 22
[21.1914 SEPT 1973]
CREATED 20.05 1491973
$\left[\begin{array}{lll}9 & 22 & 36\end{array}\right]->$ OTRS;
VARS SLASH9 SLASH22;
[[/PROPS][PPR][/GEN][/GENSYM][/INPUT][/TYPE][/IDENT][/EVAL]] - SLASHQ;
[[/REWRI才E][/REDUCE][/FERTILIZE][/GENRLIZE][/IND1][/IND2][/PROVE]] - SLASH22;

UTRACK (9);
APPLIST(SLASH9,DCOMP);
DTRACK (22);
APPLIST(SLASH22,DCOMP);

DTRACK(36);
DCOMP ([/DEFS]);
APPI IST (ALLFNS, NORMDEF);
OTRACK (22);

```
[/ REWRITE] TRACK 22
CREATED 10.19 1 8 1973
```

[21.1914 SEPT 1973]

COMMENT 'THIS IS THE NORMALIZE FUNCTION. IN-LINE COMMENTS EXPLAIN THE REWRITE RULES APPLIED.';

VAKS REWRITEFN;

```
IDENTFN -> REWRITEFN;
```

FUNCTIUN REWRITE TERM;
VARS TERM1 TERM2 TERM3;
COMMENT 'IF TERM IS AN EQUALITY';
IF HD (TERM) ="EQUAL" THEN
HD(TL(TERM))->TERM1;
HD(TL(TL(TERM)))->TERM2;
COMMENT '(EQUAL KNOWN1 KNOWN2) \Rightarrow T OR NIL';
IDENT (TERM1, TERM2) \rightarrow TERM3;
IF TERM3 = NIL THEN NIL; EXIT;
IF TERM3 THEN "T";EXIT;
COMMENT ' (EQUAL BOOL T) \Rightarrow BOOL';
IF TERM1==1 AND BOOLEAV(TERM2)THEN TERM2 EXIT;
IF TERM? $==1$ AND BOOLEAN(TERM1) THEN TERM1 EXIT;
COMMENT ((EQUAL (EQUAL A B) C) \Rightarrow
(COND (EQUAL A B) (EQUAL C T) (COND C NIL T)) ';
IF SHD (TERM1) = "EQUAL" OR SHD (TERM2) = "EQUAL" AND (SWAP;1)
THEN
[\% "COND", TERM1,
REWRITE([\% "EQUAL", TERM2, "T" \%]),
REWRITE([\% "COND", TERM2, NIL, "T" \%]) \%] \rightarrow TERM;
GUTO COND;
CloSE;
COMMENT '(EQUAL X NIL) \Rightarrow (COND \times NIL T)';
IF TERM1 $==$ NIL OR TERM2 $==\operatorname{NIL} \operatorname{AVD~(SWAP;1)~}$
THEN
[\% "CONO", TERM2, NIL, "「" \%] \rightarrow TERM;
GUTO COND;
CLOSE;
COMMENT 'GO SEE IF ONE ARG IS A COND';
GOTO CONDARG;
COMMENT, TERM IS A COND;
ELSEIF HD(TERM) ="COND" THEN
CONT:
TL(TERM) - $>$ TERM3;
HD (TERM3) - TERM1;

```
IL(TERM3) - >TERM3;
HD(TERM3)->TERM2;
HD(TL(TERM3))->TERM3;
COMMENT '(COND KNOWN X Y) => X OR Y';
IF TERM1 == NTL THEN TERM3; EXIT;
IF ISCONS(TERM1) THEN TERM2; EXIT;
COMMENT '(COND X Y Y) => Y';
IF TERM2 == TERM3 THEN TERM2; EXIT;
COMMENT '(COND X X NIL) => X';
IF TERM1 == TERM2 AND TERM3 == NIL THEN TSRM1; EXIT;
COMMENT '(COND BOOL T NIL) }=>\mathrm{ BOOL`;
IF 300LEAN(TERM1) AND TERY2 == "T" AND TERM3 = = NIL
    THEN TERM1; EXIT;
COMMENT '(COND X T (COND YNIL T)})=>(COND Y (COND X T NIL) T)';'
IF TERM2=="T" AND SHD(TERM3)="COND" AND
    HD(TL(TL(TERM3))) == NIL AND HD(TL(TL(TL(TERM3)))) == "T"
        THEN
        IF BOOLEAN(TERM1)
                THEN TERM1;
        ELSE [% "COND", TERM1, "T", NIL %] CLOSE;
    -> TERM2;
        HB(TL(TERM3)) }->\mathrm{ TERM1;
        "T" -> TERM3;
        [% "COND", TERM1, TERM2, TERM3 %] -> TERM;
    CLOSE;
```

COMMENT, (COND (COND A T2 T3) B C) \Rightarrow (COND A (COND T2 B C)
(COND T3 B C)) WHERE T2 OR T3 ISVIL';
IF SHD(TERMI) = "COND" AND
$H D(T L(T L(T E R M 1)))==N I L O R H D(T L(T L(T L(T E R M 1))))==N I L$
THEN
GOTO CONDCOND;
CLOSE;
COMMENT, (COND (COND $A B C) D E) \Rightarrow(C O N D A(C O N D B C E)(C O N D C D E))$
WHERE D AND E ARE NOT NIL OR D AND E ARE T AND NIL';
IF SHD (TERM1) $=" C O N D "$
THEN
IF TERM2 = = NIL AND NOT (TERM3 = = "T") THEN GOTO SKIP;
ELSEIF TERM3 $==$ NIL.AND NOT (TERM2 $==" T ")$ THEN GOTO SKIP; CLOSE;
CONDCOND:
IF ISSTAR(SHD (TERM2)) OR ISSTAR(SHD(TERM3)) THEN GOTO SKIP; CLOSE;
RENRITE ([\%"COND", HD(TL(TL(TERM1))), TERM2,TERM3 \%]);
REWRITE([\%"COND", HD(TL(TL(TL(TERM1)))), TERM2,TERM3\%]);
\rightarrow TERM3->TERM2;
[\%"COND", HD(TL(TERM1)), TERM2,TERM3\%]->TERM;
GOTO COND;
SKIP:
ClOSE;
COMMENT, TERM IS A NON-COND, NON-EQ FUNCTION CALL;
ELSE

```
COMMENT '(FOO X (COND A B C) Y) =>
(COND A (FOOX B Y) (FOO X C Y))';
    CONDARG:
TL(TERM) -> TERM1;
    LOOPIF TERM1 /= NIL AND SHD(HD(TERM1)) /= "COND"
        THEN
        TL(TERM1) -> TERM1;
        CLOSE;
    IF TERM1 /= NIL
        THEN
        HD(TERM1) -> TERM1;
        [% "COND", HD(TL(TERM1)), REWRITE(SUBST(HD(TL(TL(TERM1))),TERM1,
            TERM)), REWRITE(SUBST(HD(TL(TL(TL(TERM1)))),TERM1,TERM)) %]
    -> TERM;
    GOTO COND:
    CLOSE;
CLUSE;
REWRITEFN();
IERM
END
FUNCTION NORMALIZE TERM;
IF ATOM(TERM)THEN TERM EXIT;
REWRITE(HD(TERM)::MAPLIST(TL(TERM),NORMALIZE));
END
```

$[/ P R O V E]$	TRACK	22		
CREATED	10.53	27	7	1973

COMMENT, THIS FILE CONTAINS THE TOP-LEVEL THEOREM PROVER, "PROVE".
"Prove1" dOES all ThE wORK. MOST OF THE FUNCTIONS
between here and there are concerned only with output.';
VARS THM THMTIME STUCKTHM AVOIDSTARS VERBJSE LASTPPRTHM REPORTFN;
$1-$ AVOIDSTARS;
$0 \rightarrow$ VERBOSE;
NIL -> SPECPROF;
COMMENT , THIS RECOGNizES when the TheOrem has been beaten to death.';
FUNCTIUN FINISHED TERM;
VARS FUNSYM;
IF ATOM(TERM)
THEN 1;
ELSEIF (HD(TERM)->FUNSYM; FUNSYM = "EQUAL")
OR FUNSYM = "CAR" OR FUNSYM = "CDR" OR FJNSYM = "CONS"
THEN
LUOPIF (TL(TERM)->TERM; TERM /= NIL)
THEN
IF FINISHED(HD(TERM)) THEN; ELSE 0; EXIT;
CloSe;
1;
ELSE 0; CLOSE;
END;

FUNCTION GENSKOLIST LIST;
MAPLIST(LIST,LAMBDA CONST;CONSPAIR(CONST,GENSKO(CONST,0));END); END:

```
IDENTFN -> REPORTFN;.
```

FUNCTION REPORT CODE CMT BRKCMT;
VARS X;
IF CODE = Nil then goto verb; close;
IF CHAROUT $/=$ CUCHAROUT OR NOT(VERBOSE)
THEN
CUCHAROUT; CHAROUT \rightarrow CUCHAROUT; PR(CODE); -> CUCHAROUT;
Close;
CODE : : PROFILE \rightarrow PROFILE;
REPORTFN();
VERB:
THM -> LASTREPTHM;
$1 F$ ISFUNC(CMT) THEN CMT(); GOTO CHKSPEC;ClOSE;
IF VERBOSE $=1$ OR VERBOSE $=0.5$ AVD CODE $/=" E " A N D C O D E /=" N "$
AND CODE $/=$ "R"
THEN
POPTTON();NL(4);PRSTRING(CMT);NL(2);
IF SUBSCRC(DATALENGTH(CMT),CMT) $=10$ THEN
THM->LASTPPRTHM; PPR(THM); NL(2); CLOSE;
close;
CHKSPEC:

```
IF CODE = NIL THEN EXIT;
IF SPECPROF /= NIL
    THEN
    IF EOUAL(CODE,HD(SPECPROF))
        THEN
        TL(SPECPROF) -> SPECPROF;
        IF HD(SPECPROF) = "\uparrow"
            THEN
            HD(TL(SPECPROF)) }->>X
            TL(TL(SPECPROF)) -> SPECPROF;
            CUCHAROUT; CHAROUT -> CUCHAROUT;
            POPITON(); NL(4); PRSTRING('INTERRUPT; `);PR(BRKCMT);NL(1); - >CUCHAROUT;
            IF ISLINK(X)
                THEN POPVAL(X<>[; GOON]);
                ELSE APPLY(VALOF(X)); CLOSE;
            CUCHAROUT;CHAROUT->CUCHAROUT;NL(1);PRSTRING('RESUMED');NL(4);->CUCHAROUT;
            CLOSE;
        El.SE
        CHAROUT - CUCHAROUT;POPTTON(); NL(1); PRSTRING('PROFILES DIVERGE`);NL(1);SETPOP
() ;
        Cl_OSE;
    CLOSE;
END;
FUNCTION REPORTIF TESTTHM;
IF EQUAL(THM,TESTTHM) THEN ERASE();ERASE();ERASE(); EXIT:
REPORT();
END;
```

FUNCTIUN SETUP;
NIL \rightarrow PROFILE;
NIL \rightarrow FERTLIST;
NIL \rightarrow GENRLLIST;
NIL \rightarrow BOMBLIST;
NIL -> PROVEFNS;
NIL \rightarrow GENALIST;
NIL \rightarrow INDVARLIST;
UNDEF \rightarrow ENDTHM;
POPTIME \rightarrow THMTIME;
IF NOT (ATOM (HD (THM)))
THEN
NL(2);
PR(HD(THM));
TL(THM) $->$ THM;
CLOSE;
THM \rightarrow LASTREPTHM;
THM \rightarrow LASTPPRTHM;
IF VERBOSE
THEN SP(5); PR(POPDATE()); CLOSE;
NL(1);
END;
FUNCTION FINREPORT;
POPTTON();

```
IF VERBOSE = 1
    THEN
    IF PROVEFNS /= NIL
        THEN
        NL(5);PRSTRING('FUNCTION DEFINITIONS:`);NL(2);
        APPLIST(REV(PROVEFNS),
            LAMBDA FN;
            IF ISSTAR(FN) THEN EXIT;
            PPR([% FN, PROP("DEFN",FN) %]);
            IF PROP("PROGGEND",FN) = 1
                THEN NL(1);PRSTRING('(PROGRAM GENERATED)');CLOSE;
            NL(2);
            END);
        CLOSE;
    IF FERTLIST/= NIL
        THEN
        NL(3);PRSTRTNG('FERTILIZERS:`);VL(2);
        APPLIST(REV(FERTLIST),
            LAMBDA X;
            PR(X);PRSTRING(' = ');PPRIND(PROP("AUXDEFN",X);5,0);NL(2);
            END);
        ClOSE;
    IF GENRLLIST/= NIL
        THEN
        NL(3); PRSTRING('GENERALIZATIONS:');NL(2);
        APPLIST(REV(GENRLLIST),
            LAMBDA }X\mathrm{ ;
            PR(BACK(X)); PRSTRING(' = '); PR(FRONT(X));NL(2);
            END);
        CLOSE;
        CloSE;
IF VERBOSE
    THEN
    NL(3);
    PRSTRING('PROFILE: ');PR(REV(PROFILE));NL(2);
    CLOSE;
ENO;
```

FUNCTION WRAPUP;
IHM \rightarrow ENDTHM;
(POPTIME - THMTIME) / $16 \rightarrow$ THMTIME;
IF NOT (VERBOSE) OR CHAROUT $/=$ CUCHAROUT
THEN
CUCHAROUT; CHAROUT \rightarrow CUCHAROUT;
NL(1); PPR(THM); NL(1); PR(THMTIME); NL(1);
\rightarrow CUCHAROUT;
CLOSE;
IF VERBOSE
THEN
NL(4);
PRSTRING('TIME: ');PR(THMTIME);PRSTRING(' SECS.');
NL (5);
CLOSE;
END;

```
ON THE FIRST CONJUNCT IF THE THEOREM IS A CONJUNCT. FOR THIS
It gETS the name "artifICIAl INTELlIgENCE", bEINg abOUT THE
SMARTEST PROGRAM IN THE THEOREM PROVER.`;
FUNCTIUN ARTIFINTEL THM;
IF FERTILIZE(THM)
    THEN
    1;
    EXIT;
0-> CONJFLAG;
IF HD(THM) = "COND"
    THEN
    IF HD(TL(TL(THM)))== NIL
        THEN
        [% "COND", [% "NOT", HD(TL(THM)) %], HD(TL(TL(TL(THM)))), NIL %] -> THM;
        1 -> CONJFLAG;
    ELSEIF HD(TL(TL(TL(THM))))==NIL
        THEN
        1 -> CONJFLAG;
        Cl_OSE;
    CLOSE;
IF CONJFLAG
    THEN
    HD(TL(THM)); (REPORT("&",'(WORK ON FIRST CONJUNCT ONLY)',"ARTIFINTEL"));
    ELSE
    THM;
    CLOSE;
-> INDTERM;
GENRLIZE(INDTERM) -> INDTERM;
IF INDUCT(INDTERM)
    THEN
    -> INDTERM;
    ELSE INDTERM; 0; EXIT;
IF CONJFLAG
    THEN
    [% "CUND", INDTERM,
                                    APPSUBST(GENSKOLISTT(INDVARS),HD(TL(TL(THM)))),
                                    NIL %];
    ELSE
    INDTERM;
    ClOSE;
1;
END;
```

COMMENT, THIS IS THE THEOREM PRUVER. ASTOUNDING IN ITS SIMPLICITY.
THE OUTPUT FUNCTIONS HAVE BEEN MOVED TO THE SIDE TO REVEAL THE
ESSENCE OF THE SYSTEM: BEAT THE THEOREM TO DEATH WITH
EVALUATION, NORMALIZE AND REDUCE. IF THAT FAILS, TRY A LITTLE
AI AND THEN MORE VIOLENCE.';
FUNCTION PROVEI THM;
SETUP(); (REPORT (VIL,'THEOREM TO BE PROVED: ',"PROVE1"));
LOOP: (REPORT("/", IDENTFN,"PROVE1"));
THM $->$ OLDTHM;
EVAlUATE (THM) -> THM; (REPORTIF("E", 'EVALUATION YIELDS: ',"PROVE1",LASTREPTHM)
);
NORMALIZE(THM) \rightarrow THM; (REPORTIF("N",'WHICH NORMALIZES TO:',"PROVE1",LASTREPTH
M)) ;

```
REDUCE(THM) -> THM;
(REPORTIF("R",'AVD REDUCES TO:',"PROVEI",LASTREPTHM));
IF FINISHED(THM)
    THEN
                                    (REPORTIF(NIL,'WHICH IS EQUIVALENT TO:`,
                                    "PROVE1",LASTPPRTHM));
                                    (REPORT(",",FINREPORT,"PROVE1"));
```

```
    WRAPUP();
    EXIT;
IF EQUAL(THM,OLDTHM)
    THEN
                    (REPORTIF(NIL,'WHICH IS EQUIVALENT TO:`,
                                    "PROVE1",LASTPPRTHM));
    IF ARTIFINTEL(THM)
        THEN
        -) THM;
                                (REPORT(",","THE THEOREM TO BE PROVED IS NOW:`,
                                "PROVE1"));
    ElSE
    -> THM;
    THM -> STUCKTHM; (REPORT("Q",'STUCK',"PROVE1"));
    FINREPORT();WRAPUP();
        EXIT;
    CLOSE;
GOTO LOOP;
END;
```

COMMENT ' THE TOP-LEVEL. MAINLY CONCERNED WITH I/O, LIKE RECOGNIZING WHEN THE USER WANTS ALL THE THEOREMS IN THE STANDARD FILE PROVED, OR WHEN HE HAS GIVEN YOJ A THEOREM NAME RATHER THAN A THEOREM. ';

```
FUNCTIUN PROVE THM;
VARS TOTTIME;
IF HO(THM)= "ALL"
1HEN
        0 -> TOTTIME;
        APPLIST(GETTHM(THM),
            LAMBDA THM;
        IF AVOIDSTAR AND MEMBER("*",HD(THM)) THEV EXIT;
        PROVEI(THM);TOTTIME+THMTIME->TOTTIME;END);
        POPTTON();
        NL(10);
        PRSTRING('TOTAL TIME: ');PR(TOTTIME);PRSTRING(' SECS.');
        NL(5);
ELSEIF HD(THM) = "T"
    THEN
    PROVE1(THM::GETTHM(THM));
    ELSE PROVE1(THM); CLOSE;
END;
```

FUNCTIUN LPPROVE LIST;
VARS LPLNFEEDS DDF2 PPRMAXLNS MARG2 THMNAME;

```
180 -> PPRMAXL.NS;
79 -> MARG2;
POPMESS([LP80 THEOREMS PROVED]) -> DDF2;
IF HD(LIST) = "ALL" THEN GETTHM(LIST) -> LIST; CLOSE;
APPLIST(LIST,
    LAMBDA X;
    CHAROUT -> CUCHAROUT;
    0 -> LPLNFEEDS;
        NL(2);
    IF NOT(ATOM(HD(X))) THEN HD(X);ELSE NIL; ClOSE;
    -> THMNAME;
    IF AVOIDSTAR AND MEMBER("*",THMNAME) THEV EXIT;
    PR(THMNAME);
    NL(1);
        LAMBDA X;
    DDF2(X);
    IF X = 17
        THEN
        LPLNFEEDS +1 - >LPLNFEEDS;
        IF LPLNFEEDS = 60
            THEN
            2.> LPLNFEEDS;
            SP(60);IF THMNAME/=NIL THEN PR(THMNAME);CLOSE;DDF2(17);DDF2(17);
            CLOSE;
        CloSE;
    END -> CUCHAROUT;
    DLF2(64);
    IF VERBOSE = 0 THEN 0.5 -> VERBOSE; CLOSE;
    PROVE(X);
    END;);
CHAROUT -> CUCHAROUT;
DDF2(TERMIN)
END;
```

```
[/ [ND1] TRACK 22
```

VARS RIDCARCDR FAILURES BOMBBAY ARGLIST SCORE DESTCAND CONSCAND;
RECORDFNS("CANDREC",[$$
\begin{array}{lllll}{0}&{0}&{0}&{0}\end{array}
$$])
-> FAILURES
-> BOMBBAY
-> ARGLIST
-> SCORE
-> DESTCAND
-> CONSCAND;
FUNCTION CARCDRSKO TERM;
LOOPIF ISLINK(TERM)
THEN
IF HD(TERM) /= "CAR" AND HO(TERM) /= "CDR"
THEN 0; EXIT;
HD(TL(TERM)) -> TERM;
cloSE;
IF TERM = NIL OR TERM = 0 THEN 0; EXIT;
TERM;
1;
END;
FUNCTION COLLARGS BOMBLIST;
VARS ARGS BOMBS POCKET CONST;
NIL -> ARGS;
NIL -> BOMBS;
LOOPIF BOMBLIST/= NIL.
THEN
HD(BOMBLIST) -> POCKET;
TL(BOMBLIST) }->\mathrm{ BOMBL.IST;
POCKET <> EOMBS }->\mathrm{ BOMBS;
LOOPIF POCKET /= NIL
THEN
IF CARCDRSKO(HD(POCKET))
THEN
-> CONST;
IF NOT(MEMBER(CONST,ARGS))
THEN CONST::ARGS->ARGS; CLOSE;
ELSE 0; EXIT;
TL.(POCKET) - P POCKET;
ClOSE;
ClOSE;
BOM3S;
ARGS;
1;
END;
FUUNCTION GETCANDS ANALYSIS;
VARS ARGS BOMBS CANDLIST;
NIL -> CANDLIST;
APPLIST(ANALYSIS,
LAMBDA FAULTDESC;
IF COLLARGS(HD(TL(TL(FAULTDESC))))

```

THEN
\(\rightarrow\) ARGS \(\rightarrow\) BOMBS;
CONSCAND (1, ARGS,BOMBS,HD(TL(TL(TL(FAULTOESC)))))
\(:\) : CANDLIST \(\rightarrow\) CANDLIST;
CLUSE;
END);
CANDLIST;
END:
FUNCTION MERGECANDS CANDLIST;
VARS CAND1;
CANDLIST;
LOOPIF TL.(CANDLIST) \(1=\) NIL
THEN
HD (CANDLIST) \(\rightarrow\) CANDI;
TL(CANDLIST) \(->\) CANDLIST;
XAPPLIST(CANDLIST,
LAMBDA CAND2;
IF INTSECTP(ARGLIST(CAND1), ARGLIST(CAND2), NONOP =)
THEN
\(1 \rightarrow\) XAPPFLAG;
\(0 \rightarrow\) SCORE (CAND1);
UNION(ARGLIST (CAND1), ARGLIST (CAND2), NONOP \(\Rightarrow\) ) \(->A R G L I S T(C A N D 2) ;\) UNION(BOMBBAY(CAND1), BOMBBAY (CAND2), EQJAL) \(\rightarrow\) BOMBBAY (CAND2); UNION(FAILURES (CAND1), FAILURES(CAND2), EQUAL) - FAILURES(CAND2); SCORE (CAND2) +1->SCORE (CAND2);
Close;
END);
CLUSE;
ENO;

FUNCTION CHOOSEHIGH CANDLIST;
VARS HIGH ANS;
\(-10000 \rightarrow H I G H\);
LOOPIF CANDLIST \(=\) NIL
THEN
IF SCORE(HD(CANDLIST)) \(>H I G H\) AND SCORE(HD(CANDLIST)) THEN
SCORE (HD(CANDLIST)) \(\rightarrow\) HIGH; HD(CANDLIST) : : NIL \(\rightarrow\) ANS;
ELSEIF SCORE (HD (CANDLIST)) = HIGH
THEN
HD(CANDLIST) : ANS \(\rightarrow\) ANS;
CI.OSE;

TL(CANDLIST) \(\rightarrow\) CANDLIST;
CLOSE;
ANS;
END;
[[CONS RAND1. RAND2] [CONS RAND3 RAND4] [CONS RAND5 RAND6]
[CONS RAND7 RAND8] [CONS RAND9 RAND10] [CONS RAND11 RAND12]] \(\rightarrow\) RANDCONS;

FUNCTION RATECANDS CANDLIST INDTERM;
VARS \(X\);
APPLIST(CANDLIST, LAMBDA CAND;
RANDCONS \(->X\);
ERASE(EVALUATE(APPSUBST(MAPLIST(ARGLIST(CAND).
```

 I. AMBDA TERM;
 CONSPAIR(TERM,HD(X),TL(X)->X);
 END), INDTERM)));
 STEPCNT -> SCORE(CAND);
 END);
 CANDLIST;
END;
FUNCTION CHOOSENEW CANDLIST;
APPLIST(CANDLIST,
LAMBDA CAND;
1->SCORE(CAND);
APPLIST(ARGLIST(CAND),
LAMBDA TERM;
IF NOT(MEMBER(TERM,INDVARLIST))
THEN 1 + SCORE(CAND) -> SCORE(CAND);
CLOSE;
END);
END);
CHOOSEHIGH(CANDLIST);
END;
CONSPAIR("CAR","CARARG")::(CONSPAIR("CDR","CDRARG")::NIL)
-> RIDCARCDR;
FUNCTION PICKINDVARS INDTERM;
VARS CANDLIST;
ERASE(EVALUATE(APPSURST(RIDCARCDR,INDTERM)));
GETCANDS(ANALYSIS) -> CANDLIST;
IF CANDLIST = NIL THEN 0; EXIT;
MERGECANDS(CANDLIST) -> CANDLIST;
CHOOSEHIGH(CANDLIST) -> CANDLIST;
IF TL(CANDLIST) /= NIL
THEN
RATECANDS(CANDLIST,INDTERM) -> CANDLIST;
CHOOSEHIGH(CANDLIST) -> CANDLIST;
IF TL(CANDLIST) = NIL
T:HEN
CHOOSENEW(CANDLIST) -> CANDLIST;
ClOSE;
CLOSE;
HD(CANDLIST);
1;
END;

```
```

[/ IND2] TRACK 22
CREATEO 24.15 31 5 1973

```
[ 21.2114 SFPT 1973]
```

VARS CARCONSTS CANDREC JUSTCARSUBST CARSUBST CARCDRINFO;
FUNCTION GENCARCONST L;
MAPLIST(L,LAMBDA CONST;CONSPAIR(CONST,
IF ISNUMSKO(CONST) THEN NIL; ELSE GENSKO(CONST,O)CLOSE;);END);
END;
FUNCTIUN SETUPSUBST;
VARS X Y;
NIL -> CARCDRINFO;
NIL -> CARSUBST;
NIL -> JUSTCARSUBST;
APPLIST(BOMRBAY(CANDREC),
LAMBDA TERM;
HD(TERM) -> X;
HD(TL(TERM)) -> TERM;
IF ASSOC(TERM,CARCDRINFO)
THEN
-> Y;
IF X I= BACK(Y)
THEN "BOTH" -> BACK(Y); CLOSE;
El.SE
CONSPAIR(TERM,X) : CARCDRINFO - CARCDRINFO;
ClOSE;
END);
APPLIST(CARCDRINFO,
LAMBDA X;
IF BACK(X) /= "CDR"
THEN
CONSPAIR(FRONT(X),BACK(ERASE(ASSOC(FRONT(X),CARCONSTS)))) -> Y;
IF BACK(X) = "CAR"
THEN Y :: JUSTCARSUBST }->\mathrm{ \ JUSTCARSUBST; CLOSE;
Y :: CARSUBST -> CARSUBST;
ClOSE;
END);
END;
FUNCTION CONJOIN L;
IF TL(L) = NIL
THEN HD(L);
ELSE [% "AND", HD(L), CONJOIN(TL(L)) %]; CLOSE;
END;
FUNCTION NILCASE;
CONJOIN(MAPLIST(INDVARS,LAMBDA X;SUBST(NIL,X.INDTERM);END));
END;

```
FUNCTION INDHYP;
IF CARSUBST /= NIL
```

 THFN
 IF LENGTH(CARSUBST) = LENGTH(JUSTCARSUBST)
 THEN APPSUBST(CARSUBST,INDTERM);
 ELSE [% "AND", APPSUBST(CARSUBST,INDTERM),
 APPSUBST(JUSTCARSUBST,INDTERM) %]; CLOSE;
 ELSE INDTERM; CLOSE;
 END;
FUNCTIUN INDCONCL;
APPSUBST(MAPLIST(INDVARS,
LAMBDA VAR;
CONSPAIR(VAR,[% "CONS", BACK(ERASE(ASSOC(VAR,CARCONSTS))), VAR %]);
END), INDTERM);
END;
FUNCTIUN SIMPLEIND;
VARS X;
BOMBBAY(CANDREC) }->X\mathrm{ (;
LOOPIF X /= NIL
THFN
IF ISLINK(HD(TL(HD(X)))) THEN 0; EXIT;
TL(X) -> X;
CLOSE;
FAILURES(CANDREC) }->x\mathrm{ ;
LOOPIF X /= NIL
THEN
IF ISLINK(HD(TL(HD(X))))
THEN
IF CARCDRSKO(HD(TL(HD(X)))) AND MEMBER((), INDVARS)
THEN 0; EXIT;
ClOSE;
TL(X) -> X;
CLOSE;
1;
END;
FUNCTION SPECIALI;
VARS X;
IF TL(INDVARS) = NIL
THEN
IF GENMEM([% "CDR", CONST %],BOMBLIST,
LAMBDA;NOT(EQUAL());END)
THEN 0; EXIT;
FAILURES(CANDREC) }->\textrm{X}\mathrm{ ;
LOOPIF X /= NIL
THEN
IF ISLINK(HD(TL(HD(X)))) AND CARCDRSKO(HD(TL(HD(X)))) AND
() = CONST AND HD(HD(TL(HD(X)))) = "CAR" OR
ISLINK(HD(TL(HD(TL(HD(X))))))
THEN 0; EXIT;
TL_X) -> X;
ClOSE;
1;
else 0; close;
END;
FUNCTION SPECIAL2;
IF TL(INDVARS) = NIL
THEN

```
```

 If MEMBERID(F%"CDR",[%"COR",CONST%]%],BOMBLIST)
 OR MEMBERID([%"CAR",[%"CDR",CONST%]%],BJMBLIST)
 THEN 1; ELSE 0; CLOSE;
 ELSE 0; CLOSE;
 END;
FUNCTION SPECPHYP;
CONJOIN([%
IF MEMBERID([%"CAR",CONST%],BOMBLIST)
TIIEN SUBST(CARCON1,CONSI,INDTERY); CLOSE,
IF MEMBERI!\([%"CAR",[%"CDR",CONST%] %],BJMBLIST)
THEN SUBST(CARCON2,CONST,INDTERM);CLOSE,
IF MEMBERID([%"CDR",[%"CDR",CONST%]%],BOMBLIST)
THEN INDTERM; CLOSE %]);
END:
FUNCTIUN SPECIALMODE;
VARS CARCON1 CARCON2 CONST BOMBLIST;
HD(INIDVARS) -> CONST;
BOMBHAY(CANDREC) -> BOMBLIST;
BACK(ERASE(ASSOC(CONST,CARCONSTS))) -> CARCON1;
BACK(HD(GENCARCONST([% CONST %]))) - CARCON2;
IF SPECIAL1()
THEN
(REPORT("S1",'(SPECIAL CASE REQUIRED)',"SPECIALMODE"));
[% "AND", NILCASE(),
[% "AND", SUBST([%"CONS",CARCON1,NIL%],CONST,INDTERM),
[% "IMPLIES", SUBST([%"CONS",CARCON2, CONST %],
CONST, INDTERM),
SUBST([%"CONS",CARCJN1,[%"CJNS",CARCON2,CONST%] %],
CONST,INDTERM) %] %] %];
ELSEIF SPECIAL?()
THEN
(REPORT("S2",'(SPECIAL CASE REQUIRED)',"SPECIALMODE"));
[% "AND", NILCASE(),
\Gamma% "AND", SUBST([% "CONS",CARCON1,NIL%],CONST,INDTERM),
[% "IMPLIES", SPEC2HYP(),
SUBST([%"CONS",CARCON1,[%"COVS",CARCON2,CONST%] %],
CONST,INDTERM) %] %] %];
ELSE
ERRFUN('SPECTAL CASE NOT COVERED',10000);
SETPOP();
ClOSE;
END;
FUNCTIUN INDREPORT;
IF VERBOSE
THEN
PODTTON();
PRSEQUEN('INDUCT ON ',INDVARS,PR);NL(2);
CLOSE;
END;
FUNCTIUN INDUCT INDTERY;
(REPORT(NIL,"MUST TRY INDUCTION.',"INDUCT"));
IF NOT(PICKINDVARS(INDTERY)) THEN 0; EXIT;
-> CANUREC;

```
```

ARGLIST(CANDREC) -> INDVARS;
INDVARS <> INDVARLIST -> INDVARLIST;
GENCARCONST(INDVARS) }->\mathrm{ CARCONSTS;
IF SIMPLEIND()
THEN
SETUPSUBST();
[% "AND", NILCASE(), [% "IMPLIES", INDHYP(), INDCONCL() %] %];
ELSE SPECIALMODE(); CLOSE;

- INDFORM;
(REPORT(INDVARS,INDREPORT,"INDUCT"));
INDFORM;
1;
END;

```

FUNCTION REPORTF1;
IF ISLINk(CODE) THEN NL(2);PPR(INDTERM);NL(2);CLOSE;
END;
OPERATION 1 TALK; 1 -> VERBOSE; END;
UPERATION 1 QUIET; \(0 \rightarrow\) VERBOSE; IDENTFN \(\rightarrow\) REPORTFN; END;
OPERATION 1 WHISPER; \(0 \rightarrow\) VERBOSE; REPORTF1 \(\rightarrow\) REPORTFN; END;
REPORTFN \(\rightarrow\) OLDREPFN;

COmment , this is the fertilizatiov function. again, in-line comments EXPLAIN ITS BEHAVIOUR.';

VARS FERTCODE FERTLIST;
FUNCTION FERTREPORT;
If verbose
THEN
POPTTON();
NL(4);PRSTRING('FERTILIZE WITH ');PPRIND(TERM1,15,1);
PRSTRING('. ');NL(2);
Close;
END;
FUnction fertilize term;
VARS TERM1 TERM2 TERM3 LHS1 LHS2 RHS1 RHS2 \(x\);
IF SHD(TERM) /= "COND" THEN 0; EXIT;
HD(TL(TERM)) -> TERM1;
HD(TL(TL(TERM))) \(\rightarrow\) TERM2;
HD(TL(TL(TL(TERM)))) \(\rightarrow\) TERM3;
COMMENT 'FERTILIZE ONLY TERMS OF FORM (COND (EQUAL A B) C T)';
IF SHD(TERM1) = "EQUAL" AND NOT(TERM3 == VIL) AND BOOLEAN(TERM2) AND BOOLEAN(TERM3)
THEN
HD(TL(TERM1)) \(\rightarrow\) LHS1;
HD(TL(TL(TERM1))) -> RHS1;
If ISREALLINK(LHS1) OR ISREALLINK(RHS1)
THEN GOTO NOFERT; CLOSE;
COMMENT ( \(\operatorname{COND}(E Q A B)(E Q C D) 1) \Rightarrow(C O N D(E Q C D) X 1 F U)\) WHERE (EQ C D)X HAS BEEN CROSS FERTILIZED FROM (EQ A B)';

IF SHD(TERM2) = "EQUAL"
THEN
HD(TL(TERM2)) -> LHS2;
HD(TL(TL(TERM2))) \(\rightarrow\) RHS2;
IF OCCUR(RHS1,RHS2)
THEN
IF OCCUR(LHS1,LHS2)
THEN
IF CONSCNT(RHS1) < CONSCNT(LHS1)
THEN
SUBST(RHS1,LHS1,LHS2) \(\rightarrow\) LHS2;
ELSE
SUBST(LHS1,RHS1,RHS2) \(\rightarrow\) RHS2; Close;
ELSE
SUBST(LHS1,RHS1,RHS2) -> RHS2;
Close;
ELSE
IF OCCUR(LHS1,LHS2)
THEN SUBST(RHS1,LHS1,LHS2) \(\rightarrow\) LHS2;
```

 ELSE GOTO NOXFERT; CLOSE;
 CLOSE;
 [% "EQUAL", LHS2, RHS2 %] -> TERM2;
 "X" -> FERTCODE;
 COMMENT '(COND (EQ A B) (NON-EQ) 1) => (COND (NON-EQ)A/B 1 FU)`;
ELSEIF (NOXFERT: "F" -> FERTCODE; OCCUR(LHS1,TERM2))
TiHEN
IF OCCUR(RHS1,TERM2)
THEN
IF CONSCNT(RHS1) < CONSCNT(LHS1)
THEN SUBST(RHS1,LHS1,TERM2) -> TERM2;
ELSE SUBST(LHS1,RHS1,TERM2) -> TERM2; CLOSE;
ELSE SUBST(RHS1,LHS1,TERM2) -> TERM2; CLOSE;
El.SE
IF OCCUR(RHS1,TERM2)
THEN SUBST(LHS1,RHS1,TERM2) -> TERM2;
ELSE GOTO NDFERT; CLOSE;
ClOSE;
GENSYM("\#",0) -> X;
[% "COND", TERM1, NIL, TERM3 %] -> PROP("AUXDEFN",X);
1 -> PROP("BOOLEAN",X);
X :: FERTLIST -> FERTLIST;
[% "COND", TERM?, "T", [% X %] %] -> TERY2;
(REPORT(FERTCODE,FERTREPORT,"FERTILIZE"));
IF TERM3 == 1
THEN TERM2;
ELSE [% "COND", TERM2, [% "COND", TERM3, "T", TERM1 %], NIL %]; CLOSE;
1;
EXIT;
COMMENT 'IF NO FERTILIZATION WAS POSSIbLE, RECURSE INTO
COMPONENTS FOR FIRST POSSIBLE ONE';
NOFERT:
1 -> TERM3;
[% "COND", APPLIST(TL(TERM),
LAMBUA TERM;
IF TERM3 AND FERTILIZE(TERM) THEN 0 -> TERM3; ELSE TERM; CLOSE;
END), (IF TERM3 THEN ERASE(ERASE(),ERASE(),ERASE(),ERASE()); 0; EXIT)%];
1;
END;

```
```

[/ REDUCE] TRACK 2?
CREATED 19.48 17 4 1973

```
```

cOmMENT , this is the reduce function. in-line comments explain

```
cOmMENT , this is the reduce function. in-line comments explain
THE REWRITE RULES APPLIED.';
```

[21.22 14 SEPT 1973]
VARS REDUCE;
FUNCTION REDUCE1 TERM CONSLIST;
VARS TERM1 TERM2 TERM3;
RECURSE:
COMMENT 'IF TERM IS ATOM OR NON-COND, QUIT•;
IF ATOM(TERM) OR HD(TERM) /= "COND"
THEN
TERM;
EXIT;
COMMENT 'gET COMPONENTS OF THE COND';
HD(TL(TERM)) -> TERM1;
HD(TL(TL(TERM))) -> TERM2;
HD(TL(TL(TL(TERM)))) \rightarrow TERMZ;
COMMENT 'IF TERM1 IS NIL OR CONS, EVAL IT`;
IF TERM1 $==$ NIL
THEN
TERM3 -> TERM;
GUTO RECURSE;
ELSEIF ISCONS(TERM1) OR MEMBERID(TERM1,CONSLIST)
THEN
TERM2 -> TERM;
gOTO RECURSE;
CLOSE;
COMMENT ' (COND ATOM A 3) \Rightarrow (COND ATOM R(A(ATOM/CONS)) R(B(ATOM/NIL)));
IF ATOM(TERM1)
THEN
gUTO SUBSTCONS;
close;

```
COMMENT (COND (EQUAL A KNOWNLINK) B C) => (COND (EQUAL A KNOWNLINK)
        R(B(A/KNOWNLINK))
        R(C((EQUAL A KNOWNLINK)/NIL)))';
IF HD(TERM1) = "EQUAL"
    THEN
    IF ISREALLINK(HD(TL(TERM1)))
        THEN SUBST(HD(TL(TERM1)),HD(TL(TL(TERM1))),TERM2) -> TERM2;
    ELSEIF ISREALLINK(HD(TL(TL(TERM1))))
        THEN SUBST(HD(TL(TL(TERM1))),HD(TL(TERM1)),TERM2) -> TERM2;
        ElSE gOTO SUBSTTRUE; ClOSE;
    GOTO ASSEMBOOL;
    CLOSE;
COMMENT '(COND (COND ...) A B) => (COND R(COND) R(A) R(B))';
IF HD(TERM1) = "COND"
    THEN
```

```
REDUCE1(TERM1,CONSLIST) -> TERM1;
REDUCE1(TERM2,CONSLIST) -> TERM2;
REDUCE1(TERM3,CONSLIST) }->\mathrm{ TERM3;
IF TERM3 = = NIL THEN GOTO CONTINUE; CLOSE;
[% "COND", TERM1, TERM2, TERM3 %];
EXIT;
```


continue:

```
COMMENT '(COND BOOL A B) => (COND BOOL R(A(BOOL/T)) R(B(BOOL/NIL)))';
```

IF BOOLEAN(TERM1)
THEN
SUBSTTRUE:
SUAST("T",TERM1,TERM2) -> TERM2;
ASSEMBOOL:
[\% "COND", TERM1,
REDUCE1(TERM2,CONSLIST),
REDUCE1(SUBST("NIL",TERM1,TERM3),CONSLIST) \%];
EXIT;
COMMENT , (COND RANDOM A B) \Rightarrow (COND RANDOY R(A(RANDOM/CONS))
R(B(RANDOM/NIL)))';
SUBSTCONS:
[\% "COND", TERM1, REDUCE1(TERM2,TERM1 : $:$ CONSLIST),
REDUCE1(SUBST(VIL,TERM1,TERM3),CONSLIST) \%];
END;
REDUCE1(\% NTL \%) -> REDUCE;

Comment othis file generalizes the term about to be proved by induction. WE GENERALIZE ON THE COMMON SUBTERMS ON EITHER SIDE OF "EQUAL" AND "IMPLIES" STMTS, AVD QUALIFY THE GENERALIZATIONS WITH TYPE STATEMENTS.`;

COMMENT 'FIND ALL COMMON NON-ATOMIC NON-PRIMITIVE SUBTERMS OF TWO TERMS.';
VARS T2 GENRLTLIST ATOMLIST;
FUNCTION COMSUBT1 Ti;
VARS X;
IF ATOM(T1)
THEN
OCCUR(T1,T2);
ELSE
TL(T1) -> X;
IF (1;LOOPIF $x /=N I L$ THEN LOGAND(COMSUBT1(HD(x))):TL(x)->x;CLOSE;) THEN
IF NOT(LISPPRIM(T1)) AND OCCUR(T1,T2)
THEN
IF NOT(MEMBERID(T1,GENRLTLIST))
THEN T1 : : GENRLTLIST \rightarrow GENRLTLIST;CLOSE; 1; EXIT;
Close;
0 ;
Close;
END;
FUNCTION COMSUBTERMS T1 T2;
IF CONSCNT(T1) > CONSCVT(T2) THEN T1;T2->T1->T2;CLOSE;
ERASE(COMSUBT1(T1));
END;

COMMENT 'FIND ALL COMMON SUBTERMS OCCURRIVG ACROSS EQS AND
IMPLIES.:
FUNCTIUN GENRLT1 TERM;
IF ATOM(TERM) THEN EXIT;
IF HD (TERM) = "EQUAL"
THEN
COMSUBTERMS(HD(TL(TERM)), HD(TL(TL(TERM))));
ELSEIF HD(TERM) = "COND" AND HD(TL(TL(TL(TERM)))) ==1
THEN
IF $\operatorname{ATOM}(H D(T L(T E R M)))$
THEN;
ELSE APPLIST(TL(HD(TL(TERM))),LAMBDA;COMSUBTERMS(HD(TL(TL(TERM))));
END); CLOSE;

CLOSE;

```
APPLIST(TL(TERM),GENRLT1);
```

ENO;
FUNGTIUN GENRLTERMS;
VARS GENRLTLIST;
NIL -> GENRLTLIST;
GENRLT1();
GENRLTLIST;
END;

```
COMMENT 'QUALIFY THE GENERALIZATION BY ADDING TYPE STMTS';
FUNCTION ADDTYPESTMTS LIST TERM;
VARS X;
IF LIST=NIL
    THEN TERM;
    ELSt
        IF OCCUR(BACK(HO(LIST)),TERM)
        THEN
        TYPEEXPR(FRONT(HD(LIST))) -> X;
        IF HD(X) /= "CONSTTRUE"
        THEN
        [% "IMPLIES", SUBST(BACK(HD(LIST)),"X",X),
                            ADDTYPESTMTS(TL(LIST),TERM) %]
        ELSE
        ADDTYPESTMTS(TL(LIST),TERM);
        ClOSE;
        ELSE
        ADDTYPESTMTS(TL(LIST),TERM);
        CLOSE;
        CLOSE;
END;
```

COMMENT , THIS FUNCTION MAKES A VERBOSE REPORT ON THE PROGRESS
OF GENERALIZATION.';
FUNCTION GENREPORT;
If VERBOSE
THEN
POPTTON();
NL(2);
PRSEQUEN('GENERALIZE COMMON SUBTERMS BY REPLACING,
SUBSTLIST, LAMBDA P;PR(FRONT(P));PRSTRING('BY ');PR(BACK(P));END);
NL(2);
PRSTRING('THE GENERALIZED TERM IS: ');
NL(2);
PPR(TERM);
NL(2);
CLOSE;
END:
COMMENT, THIS IS THE TOP-LEVEL FUNCTION. IT GENERALIZES ITS
ARGUMENT AS DESCRIBED, QUALIFIES IT, AND THEN PRINTS

A VErbose comment if needed.';
FUNCTION GENRLIZE TERM;
VARS X SUBSTLIST;
GENRLTERMS(TERM) $->$;
IF $X=$ NIL THEN TERM; EXIT;
MAPLIST(X,
LAMBDA T;
GENSKO("GENRL",0) $->\times$;
CONSPAIR(T,X);
END) \rightarrow SUBSTLIST;
If SUBSTLIST = NIL THEN TERM; EXIT;
SUBSTLIST <> GENRLLIST -> GENRLLIST;
ADDTYPESTMTS(SUBSTLIST,APPSUBST(SUBSTLIST,TERM))
-> TERM;
(REPORT("G",GENREPORT,"GENRLIZE"));
TERM;
END;

