Motivation for Factoring

Suppose you wish to prove some formula like:

\[\text{Goal:} \quad (\alpha_1 \land \ldots \land \beta \land \ldots \land \alpha_k) \rightarrow \gamma \]

and you wish to rewrite \((\text{rev } (\text{rev } a))\) which occurs in \(\beta\). You wish to use the theorem:

\[(\text{true-listp } x) \rightarrow (\text{rev } (\text{rev } x)) = x \]

What can you assume about \(a\)?
Factor $Goal$ into $Goal'$ so that β is in the conclusion of $Goal'$. Then you can assume the hypothesis of $Goal'$.

By defining “factoring” we make it possible to prove $Goal$ by repeatedly rewriting anywhere in the formula without explicitly having to rearrange the formula as part of the proof.
Summaries of the Rules of Inference

To prove ψ using:

- **Tautology**: find a tautology and instantiate it to get ψ.

• Rewrite:
 - put ψ into the form $\psi_h \rightarrow (\ldots \alpha' \ldots)$ where α' is the term you want to change,
 - pick some theorem in the form $\phi_h \rightarrow (\alpha = \beta)$ or $\phi_h \rightarrow (\alpha \leftrightarrow \beta),$
 - match α with α' so that $\alpha/\sigma = \alpha'$,
 - relieve the hypotheses by proving $\psi_h \rightarrow \phi_h/\sigma,$
 - make sure the equivalence ("=" or "\leftrightarrow") is ok,
 - replace α' with $\beta/\sigma.$
• Hypothesis:
 - pick a term α' in the conclusion of ψ to rewrite with some hypothesis $(\alpha = \beta)$ or $(\alpha \leftrightarrow \beta)$,
 - make sure the equivalence (“=” or “\leftrightarrow”) is ok,
 - replace α with β.

• **Cases:**

 – pick an exhaustive set of terms \((\phi'_1 \lor \ldots \lor \phi'_k)\)

 – for each, prove \(\phi'_i \rightarrow \psi\).
• Constant Expansion (Variant 1):
 – pick a list constant \('(\alpha \ldots) \) in \(\psi \)
 – replace it by \(\text{cons } '(\alpha \ldots) \)
• Constant Expansion (Variant 2):
 – pick a non-0 natural n in ψ
 – replace it by $(+ 1 \ n')$, where n' is $n - 1$.
• Computation:
 – pick a function call \((f \ c_1 \ldots \ c_n)\) in \(\psi\), where the \(c_i\) are all constants
 – run \(f\) on those inputs to get \(v\)
 – replace \((f \ c_1 \ldots \ c_n)\) by \('v')