
An ACL2 Proof of the Correctness of the
Preprocessing for a Variant of the Boyer-Moore

Fast String Searching Algorithm

Erik Toibazarov

April 30, 2012

Abstract

We describe a mechanically checked proof that a straightforward implementa-
tion of the preprocessing for a version of the Boyer-Moore Fast String Searching
Algorithm is correct. We say “straightforward” because theimplementation does
not attempt to do the preprocessing quickly (unlike production implementations).
We say “a version” of the algorithm because the algorithm verified is not the one in
the classic paper but one that uses a single 2-dimensional skip table. The proof is
done at the “JVM bytecode” level. We implement a formal modelof a subset of the
JVM, M3, in ACL2, generate the bytecode for the preprocessing algorithm in M3,
formally specify the methods and verify the effects of executing those methods.
The top-level theorem proves that as a result of calling the preprocessing algo-
rithm on a given string pattern we get a correctly set 2-dimensional array contain-
ing the skip information for the fast string searching algorithm. The proof includes
verifying four methods, three singly-nested loops and a doubly-nested loop. Be-
cause 2-dimensional arrays are represented as 1-dimensional arrays of references
to 1-dimensional arrays, our proof involves pointer manipulation.

1 Background

The fast string searching algorithm was invented by Boyer and Moore in 1975 [2].
The algorithm finds the leftmost occurrence of one string, pattern, in another string,
text. The original version of the algorithm used two precomputed tables,delta1 and
delta2, to determine the skip information when the mismatch between the pattern
and the text occurs. The original algorithm’s worst-case run time was linear including
the time needed for setting up the preprocessed tables [6].

Around 2005, Moore came up with a version of the algorithm that used a two-
dimensional arraydelta that contained better skip information. The algorithm was
implemented by Moore and Martinez in bytecode for the M1 model of JVM written in
ACL2 and they proved the correctness of the bytecode assuming that the preprocessed
arraydelta was set up correctly [10].

A detailed description of the string searching algorithm that we verified can be
found in [10]. We assume the reader is familiar with that paper and recommend that

1



those readers not familiar with it read it before getting into the details of the current
proof. The operational semantics for M1 and the general way to prove correctness of
M1 programs can be found in [11]; in this paper we use the approach described there.

Toibazarov, with the help of Moore, extended M1 to what we call M3 in which
the modeling of 2-dimensional arrays allocated on the heap became possible, then
Toibazarov wrote the bytecode for preprocessing, specifiedevery loop and every method,
including specifying the runtime, and in collaboration with Moore proved the code cor-
rectness.

The top-level method of the preprocessing algorithm,preprocessing, when
invoked with a string argument,pattern, terminates and returns a reference (i.e., a
pointer to an Object in the heap) to a two-dimensional array,a, such thata(i, j)
is (delta (code-char i) j pattern), wheredelta is defined in ACL2 to
be the amount by which the fast string searching algorithm should skip when it has
matched the lastj characters ofpattern but then read a mismatchingi from the
text.

The main problems that we faced in this proof included formalizing a way to rep-
resent two-dimensional arrays as one-dimensional arrays of references, handling the
possible “aliasing” problem (if some of the rows of the arrays shared the heap loca-
tions with other rows), and specifying and verifying 125 lines of bytecode, including
four methods, three singly nested loops, and a doubly nestedloop.

Moore later used the results of this proof to produce a total correctness proof of an
M3 version of the string searching algorithm. This project allowed him to relieve the
assumption about the correctness of the preprocessing from[10].

In Section 2 we show the Java code for the preprocessing algorithm that we used
to produce the corresponding bytecode. In Section 3 we describe the M3 model and
how it is different from the M1 model. Section 4 explains the ACL2 implementation
of the preprocessing algorithm, and the specification of theproblem. In Section 5 we
talk about proving the correctness of a loop inside a method using the example of one
of the methods of the preprocessing algorithm. In Sections 6, 7, 8 and 9 we describe
the proofs of the functionspmatch, x, delta andpreprocessing respectively.
Section 10 shows how the proof of preprocessing is used to verify the correctness of
the fast string searching algorithm. Finally, Section 11 talks about the contributions
that proof brings.

The verification time for proving everything – that the bytecode implements the
preprocessing and the fast algorithm and that the resultingfast algorithm is correct – is
about 35 seconds on a Macbook Pro with a 2.3 GHz Intel Core i7 processor with 8GB
of 1333 MhZ DDR3 running ACL2 Version 4.3 in CCL.

2 The Java Code for A Boyer-Moore Search

In this section we provide the Java code for producing a 2-dimensional array containing
the skip information for the Boyer-Moore fast string searching algorithm. We also show
the actual implementation of the algorithm in Java that usesthe “preprocessed” array
and briefly discuss the code that we verified.

The top-level function is calledpreprocessing. In this function we initialize

2



a 2-dimensional array, fill it in with the skip information for the string searching algo-
rithm and return a reference to it. The array contains 256 rows (one for each extended
ASCII character) and as many columns as there are letters in the search pattern. The
stringpattern is the only parameter that is passed to the function. The algorithm
references the array by the ASCII index corresponding to theletter that is currently
being looked at and the position of that letter in the pattern.

public static int[][] preprocessing(String pattern)
{

int[][] preprocessed = new int[256][pattern.length()];
for (int i = 0; i < 256; i++)

{
for (int j = 0; j < pattern.length(); j++)

{
preprocessed[i][j] = delta((char)i, j, pattern);

}
}

return preprocessed;
}

As you might have noticedpreprocessing callsdelta whenever it assigns a
value to a specified location in the array. The code fordelta is shown below.

public static int delta(char v, int j, String pat)
{

return (pat.length() - 1) + (-x(v, j + 1, pat, j - 1));
}

Delta takes in three arguments: the characterv, that represents the letter from
the text first mismatching the corresponding letter from theterminal substring of the
pattern, the integerj, that represents the index of the corresponding letter in the pattern,
and stringpattern. It returns an integer, representing a skip distance for a pointer to
the text.Delta calls functionx for which the code is shown below.

public static int x(char v, int lastMatch, String pattern, int j)
{

while (!pmatch(v, lastMatch, pattern, j))
{

j--;
}

return j;
}

As you can see, x takes in four parameters. Three of them are passed in bydelta:
v, j andpattern. The last one,lastMatch, represents an index of the leftmost
letter in the terminal substring of pattern matching the corresponding letter from the
text – this letter is preceded in the pattern by the letter atlastMatch-1 which is
different from the corresponding letter from the text, which isv. X works by searching
backwards fromj looking for an interior substring of the pattern (possibly one that
“falls off” the lefthand end) that starts withv and otherwise matches the terminal sub-
string starting atlastMatch. To check for a “partial match”x callspmatch, which
is the last function of the preprocessing algorithm.

3



public static boolean pmatch(char v, int lastMatch,
String pattern, int j)

{
int dtLength = pattern.length() - lastMatch + 1;
int firstN = dtLength + j;
if (j < 0)
{

int offset = pattern.length() - firstN;
for (int i = 0; i < firstN; i++)
{

if (pattern.charAt(i) != pattern.charAt(offset + i))
{

return false;
}

}
}
else
{

if (v != pattern.charAt(j))
{

return false;
}
for (int i = j + 1; i < firstN; i++)
{

if (pattern.charAt(i) != pattern.charAt(lastMatch))
{

return false;
}
lastMatch++;

}
}
return true;

}

Pmatch takes in four arguments which are the same arguments that were passed to
x, and returns a boolean value indicating whether or not a “partial” match of character
v concatenated on the portion of text that matched occurs in pattern at specified index
j. We are, however, not usingString concatenation here because (a) it is a native
Java method not supported by M3 and (b) a practical implementation of preprocessing
would not repeatedly build substring objects but do something close to what we do
here. This is why we have loops to check the substring equality.

We also provide the code for the functionfast that callspreprocessing and
uses the array returned by it for determining the skip distance in the string searching
algorithm. The M3 version of the bytecode forfast was verified by Moore using the
correctness of thepreprocessing code proved in this project.

public static int fast(String pattern, String text)
{

if (text.length() != 0)
{

if (pattern.length() == 0)
{

return 0;
}
else

4



{
int pmax = pattern.length();
int tmax = text.length();

int j = pmax - 1;
int i = j;
int[][] preprocessed = preprocessing(pattern);

while (j >= 0)
{

if ((tmax - i) <= 0)
{

return -1;
}
char v = text.charAt(i);
if (pattern.charAt(j) == v)
{

j--;
i--;

}
else
{

i += preprocessed[v][j];
j = pmax - 1;

}
}
return i + 1;

}
}
return -1;

}

We did not verify the Java code shown above in this project. The Java is shown for
illustrative purposes only. We took the bytecode corresponding to this Java and hand-
generated bytecode for the M3 model of JVM. The M3 bytecode, the correctness of
which we proved, can be found in Appendix A. All the functionsprovided here keep
the same names and parameters as in the M3 bytecode.

The code that we generated by hand for the M3 model of JVM almost exactly
mimics the actual bytecode generated by the Java compiler for the functions shown
above. The only significant difference is that as discussed earlier in this section we do
not implement JavaString class native methods. In order to avoid usingString
concatenation we implement our partial equality check through loops and character
by character comparison. Whenever aninvokevirtual to String.charAt()
or String.length appeared in thejavac-produced JVM bytecode we replaced it
with the M3 instructions(charat) and(strlength) that we implemented.

3 The M3 Model

In this section we give a brief overview of M3 model that we built to do our proof
in, and most importantly explain how M3 model is different from the simplest JVM
model implemented in ACL2 – M1, which is described in [11]. Weshow the semantics
of certain M3 instructions and discuss what those instructions do and how they work.

5



The first extension brought into an M3 model is the existence of a call-stack used for
method invocations. An M1 state consists of a program counter, a list of local variables
and a stack, associated with the program, and a list of instructions that constitute the
program. The first element of an M3 state is the call-stack, which we can think of as
being a stack of M1 states, we call them frames, with the main method always being
the deepest element of the call-stack. The only difference between an M1 state and an
M3 frame is the presence ofsync-flg in an M3 frame, which is used for threading,
and is not relevant to our discussion, since we do not deal with threads in this proof.

Going back to the M3 state we should point out that it consistsof 3 elements of
which we described only the first one – the call-stack. The second and the third ele-
ments are a heap and a class-table, both of which are absent inthe simpler M1 model.
In M3 we introduce an object model, and use a heap to hold instances of objects and a
class-table to hold the descriptions of classes. In our proof we store the preprocessed
2–dimensional array containing the skip information on theheap and later reference it
in the actual search algorithm.

The class table of M3 contains a set of base classes:Object,Array andThread.
Each class definition consists of the name, a list of superclasses, a list of fields and a list
of methods that the class contains. For our proof we define a class calledBoyer-Moore
where we have all the methods for producing a skip array.

Finally M3 introduces some new instructions that are not present in M1. The ad-
ditional instructions includeCONST, POP, INC, DUP, NEG, IF_CMPGE, IF_CMPEQ,
IF_ACMPNE,IFEQ, IFGT,IFGTEQ,NEW, GETFIELD,PUTFIELD,INVOKEVIR-
TUAL, XRETURN, RETURN, MULTIANEWARRAY, AALOAD, AASTORE, CHARAT,
STRLENGTH andINVOKESTATIC.

All the instructions defined in M3 resemble the semantics of their JVM analogues.
In some cases we do not follow the exact names of JVM instructions, especially where
the difference is due only to Java “type-checking” (bytecode verification). For example,
we do not distinguish between JVM’sILOAD,ALOAD, andLLOAD; we use M3’sLOAD
in all three cases.

Below we show the semantics of one of the instructionsAASTORE to give an idea
of the ACL2 approach to modeling instructions:

(defun execute-AASTORE (inst s)
(declare (ignore inst))
(let* ((instance (deref (top (pop (pop (stack (top-frame s)))))

(heap s)))
(index (top (pop (stack (top-frame s)))))
(field-value (field-value "Array" "contents" instance))
(value (update-nth index

(top (stack (top-frame s)))
field-value)))

(modify s
:stack (pop (pop (pop (stack (top-frame s)))))
:heap (bind (cadr (top (pop (pop (stack (top-frame s))))))

(set-instance-field "Array"
"contents"
value
instance)

(heap s)))))

6



AASTORE stores a given value to a specified location in a 1-dimensional array. The
functionexecute-AASTORE is what we call thesemantic functionfor AASTORE. It
describes the functionality of the given instruction. All semantic functions in the M3
model take two arguments:inst, the instruction to be executed, ands, an M3 state.
In the case ofAASTORE the instruction contains no components other than the opcode.
(Some instructions like(CONST 1) and(LOAD 3) contain components that affect
the semantics of the instruction, e.g., the constant or, respectively, the index of the
local variable to be pushed.) Thus,execute-AASTORE ignoresinst. But ACL2
requires that ignored parameters be explicitly declared ignored.

The let*-expression allows us to give temporary names to certain elements in
order to make the code more readable. So here we give the nameinstance to a
1-dimensional array (obtained by dereferencing the heap address three items down in
the stack),index to the index of slot to which we will write,field-value to the
row of the array, andvalue to the item we will write into the specified slot.

AASTORE pops three elements from the stack: the value to be written, the index
of the slot, and the reference to the array. The heap is changed so that array reference
points to anArray object like the previous one but containing the value in the specified
slot. The ACL2 macromodify allows us to write only those parts of the state which
are affected by execution of the given instruction. In this case we modify onlystack
andheap, leaving all other elements of state unchanged.

Below we briefly describe all the bytecodes used in this project. “Pc” and “stack”
refer to the program counter and operand stack, respectively, in the top frame of the
call stack. Unless otherwise noted, “push” and “pop” refer to the obvious operations
on the operand stack of the top frame of the call stack. The “value of local variablei”
is theith element in the locals field of the top frame of the call stack. Unless otherwise
noted all instructions increment the pc by 1.

• Arithmetic Operations on the Stack

(CONST c) push constantc

(ADD) pop two items and push their sum

(SUB) pop two items and push their difference

(NEG) pop an item and push its negation

• Operations on Local Variables

(LOAD i) push the value of local variablei

(STORE i) pop an item and store it as the value of local variablei

(INC i c) increment the value of local variablei by c

• Operations on Arrays

(MULTIANEWARRAY n) build an n-dimensional array (an array of 1-dimen-
sional array references) in the heap and push its reference (heap address)

(AALOAD) pop an array reference and index and push the indexed item from
the array

7



(AASTORE) pop an array reference, index, and value and write the value to
the indexed slot in the array

• Control Flow

(IF_ACMPNE δ) pop two references,a1 anda2, and increment the pc byδ if
a1 6= a2

(IF_CMPGE δ) popv1 andv2 and increment the pc byδ if v1 ≥ v2

(IF_CMPEQ δ) popv1 andv2 and increment the pc byδ if v1 = v2

(IFLT δ) popv and increment the pc byδ if v < 0

(IFLE δ) popv and increment the pc byδ if v ≤ 0

(IFNE δ) popv and increment the pc byδ if v 6= 0

(IFGTEQ δ) popv and increment the pc byδ if v ≥ 0

(GOTO δ) increment the pc byδ

• Methods

(INVOKESTATIC α β n) popn items, increment the pc, and push a new
frame on the call stack poised to run methodβ from classα with those
n items as the local variable values; note that this transferscontrol to the
first instruction in the called method since the meaning of “pc” has now
changed

(XRETURN) popv from the operand stack of the top frame of the call stack,
pop and discard the top frame, and pushv onto the operand stack of the
newly exposed top frame, wherev is the return value of the method; note
that this transfers control to the first instruction in the calling method since
the meaning of “pc” has now changed

• Bytecodes for NativeString Methods

(CHARAT) pop a strings and indexi and push the Latin 1 (extended ASCII)
code of the characters[i]

(STRLENGTH) pop a string and push its length

4 The Specification

Before we proceed to the proof we will discuss the ACL2 implementation of the prepro-
cessing algorithm. We provide the ACL2 code for functionsdelta, x, andpmatch.
Remember that the string searching algorithm always maintains two indexes:i, index
into the source text, andj, index into the pattern for which we are searching. The top-
most function of the preprocessing algorithm,delta takes in three arguments – the
characterv, the last read character from the text and the first charactermismatched, the
indexj, which points to the corresponding character in pattern, and pat, the pattern.
Delta returns the skip amount for indexi.

8



(defun delta (v j pat)
(declare (xargs :guard (and (characterp v)

(natp j)
(stringp pat))))

(let* ((pat1 (coerce pat ’list))
(dt1 (cons v (nthcdr (+ j 1) pat1))))

(+ (- (len pat1) 1) (- (x dt1 pat1 (- j 1))))))

Delta calls functionx to which it passes three arguments. As explained in [10],
we here shift the representation of strings from ACL2 strings, e.g.,"Hello", to lists of
characters,(#\H #\e #\l #\l #\o), to make subsequent traversal of the “string”
easier. Sox takesdt1, the list created by adding the first mismatched character from
pattern onto that portion of the text that matched,pat1, the list containing charac-
ters from pattern, andj, which in this context represents the first index intopat1 at
whichdt1 could possibly occur. The conversion of a string to a list of characters only
happens in the specification of the preprocessing, not the actual bytecode (where we
maintain the pattern as a string and index into it appropriately).

(defun x (dt1 pat1 j)
(cond ((pmatch dt1 pat1 j) j)

(t (x dt1 pat1 (- j 1)))))

X returns an index intopat1 at whichdt1 occurred. To find that indexx calls
pmatch until pmatch returnstrue meaning that it has found an occurrence ofdt1
in pat1. It is important to point out that the index returned bypmatch can be negative
which guarantees termination ofx, as explained in [10]. As you can seepmatch takes
the same arguments asx and checks whether or not a partial match ofdt1 in pat1
occurs at specified indexj.

(defun pmatch (dt1 pat1 j)
(if (< j 0)

(equal (firstn (len (nthcdr (- j) dt1)) pat1)
(nthcdr (- j) dt1))

(equal (firstn (len dt1) (nthcdr j pat1))
dt1)))

When we were implementing the above functions in Java we decided to avoid the
String creation methods suggested by the construction ofdt1 above, for the reasons
previously mentioned. So the Java code shown in Section 2 uses loops to check the
substring equality while the ACL2 uses the more elegant functionsequal, firstn,
andnthcdr.

Our goal is to prove that preprocessing fills in the array withcorrectly computed
values ofdelta. However, the definition ofdelta is complicated and one might
ask “how do you know that the ACL2 functiondelta is correct?” The answer is that
Moore has used ACL2 to prove that the fast string searching algorithm is correct based
on the assumption that the array contains the values described bydelta. So it our
only job is to prove that the bytecode computesdelta; Moore’s proof establishes that
delta, however it is defined in ACL2, is sufficient to establish the correctness of the
fast string searching algorithm.

To fill in the 2-dimensional array with skip information for every letter of the alpha-
bet (which is assumed fixed at size 256 and which maps each letter of the alphabet to a

9



natural number via the Latin 1 mapping) thepreprocessing function for which the
Java code is provided in Section 2 callsdelta passing in each letter of the alphabet
as first argumentv, and every possible index into pattern as second argumentj, and
writes the value returned bydelta to the(v, j) location of the array.

The goal of this paper is to prove the correctness of the preprocessing part of the
string searching algorithm. Two top-level theorems of the proof arepreprocess-
ing-correct-1 andpreprocessing-correct-2. The first theorem is typi-
cal for proving the correctness of M3 programs. It says that when we are in a state
when the next instruction executed is the call to preprocessing (poised-to-in-
voke-preprocessing) then running preprocessing for a number of steps specified
by the schedule function puts us into the expected state: thepc of the calling program
is incremented by 1, the heap address of a 2-dimensional array is on top of the stack,
and the heap has been changed to contain, at that address, a properly sized and filled
2-dimensional array containing the skip distances for the pattern.

(defthm preprocessing-correct-1
(implies (poised-to-invoke-preprocessing pattern s)

(equal (runl (preprocessing-sched pattern) s)
(modify s

:pc (+ 1 (pc (top-frame s)))
:stack (push (preprocessing-aref pattern s)

(pop (stack (top-frame s))))
:heap
(preprocessing-heap pattern s)))))

To use this theorem in the verification of bytecode (such as that for the fast string
searching algorithm) we need to know that when the referenceon top of the stack is
dereferenced in the new heap and then indexed at location (i, j) we obtain the value
(delta (code-char i) j pattern) used in the proof of the correctness of
the string searching algorithm itself [10]. (The functioncode-char maps from the
Latin 1 codei to the corresponding character.)

The second theorem states this formally in a form that makes its direct use in byte-
code verification easy:

(defthm preprocessing-correct-2
(implies (and (poised-to-invoke-preprocessing pattern s)

(natp i)
(natp j)
(< i 256)
(stringp pattern)
(< j (length pattern)))

(equal (nth j
(field-value "Array" "contents"
(deref
(nth i

(field-value "Array" "contents"
(deref (preprocessing-aref pattern s)

(preprocessing-heap pattern s))))
(preprocessing-heap pattern s))))

(delta (code-char i) j pattern))))

The two functionspreprocessing-aref andpreprocessing-heap used
in the theorems above may be thought of as “Skolem functions”, functions that con-

10



struct objects establishing claims made with existential quantifiers. In essence our the-
orems say that there exists a reference, call it(preprocessing-aref pattern
s) and a heap,(preprocessing-heap pattern s), such that (a) they are pro-
duced by running the bytecode (theorempreprocessing-correct-1) and (b)
they allow us to use array indexing to obtain(delta (code-char i) j pattern)
(theorempreprocessing-correct-2). Otherwise, we do not care to know more
about them.

The first theorem usespreprocessing-sched, which, again, is a Skolem
function which really just means “there exists a number of steps” so that executing
the bytecode that number of steps will return the correct results.

These two theorems were sufficient for Moore to verify that M3bytecode allegedly
implementing the fast string searching algorithm actuallyimplements the algorithm
verified by Moore and Martinez. That is, Moore used these theorems to prove that
an M3 method namedfast is equivalent to the ACL2 function namedfast, and
Moore and Martinez proved that the ACL2 function namedfast is actually a correct
string searching algorithm. Since the function namedfast uses the function named
delta, it was necessary for thefast bytecode to computedelta. Computing, with
M3 bytecode, all possibledeltas and storing them into a 2-dimensional array is what
was verified in this project.

5 Verifying A Loop Inside a Method

The strategy of the overall proof is to first prove the correctness of the deepest method
of the algorithm, then use the fact that it is correct to provethe correctness of the
method that calls it and continue until we prove the top-level function.

Proving the correctness of a single method is thus a “subtree” of the proof strategy
described above: if there are loops in the method, we first prove the correctness of each
of the loops and then use that knowledge to prove the correctness of the method.

The deepest method in the preprocessing algorithm ispmatch, and it is the first
one that we prove correct. If you look at the definition ofpmatch in Section 2 you
will see that it has twofor loops inside. As said earlier, we need to verify each loop
before we proceed topmatch verification.

We show how we verified the correctness of the second loop, represented by this
portion of Java:

for (int i = j + 1; i < firstN; i++)
{

if (pattern.charAt(i) != pattern.charAt(lastMatch))
{

return false;
}
lastMatch++;

}
return true;

The first thing we do is specify what we expect this loop to return. We write an
ACL2 function for that. This specification is just paraphrasing in ACL2 what the loop
does in Java.

11



(defun pmatch-loop2-spec (lastMatch pattern firstN i)
(if (equal (firstn (- firstN i)

(nthcdr i (coerce pattern ’list)))
(firstn (- firstN i)

(nthcdr lastMatch (coerce pattern ’list))))
1
0))

The next step is to define the schedule for the portion of bytecode that represents
the loop. The schedule is a recursive function that determines how many instructions
to execute based on the limits set by the loop. The schedule has one element for ev-
ery step to be taken by M3. The identity of the element is irrelevant: the length of the
schedule determines the number of steps taken. (The reason lists are used for schedules
is historical and pedagogical: M3 is one machine in a series of increasingly sophisti-
cated machines. Eventually the models include threads and the elements of a schedule
specify which thread is to be run on each step.) M3 schedule functions just construct
lists ofticks, using(repeat ’tick k) to construct a list of lengthk.

Sometimes, however, we are forced to use numeric schedules over list schedules.
The reason is that some M3 programs require hundreds of thousands of instructions to
be executed and constructing huge lists ofticks causes stack overflows. As you will
see later we use two different functions to run the schedules: run andrunl. The first
one is used when we have the schedule defined in terms of numbers, and the second one
is used when the schedule is a list ofticks. The functionality of the two is equivalent
and(runl sched s) is really just(run (len sched) s), wherelen is the
length of the schedule defined as a list ofticks.

(defun pmatch-loop2-sched (lastMatch pattern firstN i)
(declare (xargs :measure (nfix (- firstN i))))
(if (and (natp i) (natp firstN))

(if (>= i firstN)
(repeat ’tick 5)
(if (equal (char pattern i)

(char pattern lastMatch))
(append (repeat ’tick 13)

(pmatch-loop2-sched (+ lastMatch 1)
pattern
firstN
(+ i 1)))

(repeat ’tick 12)))
nil))

The function says ifi is greater than or equal tofirstN execute five instructions,
otherwise execute 13 and incrementi. After the loop is done, execute 12 instructions
that follow the loop. Those limits are set by the Java code above, which says increment
i until it is less thanfirstN. We know the number of instructions to be executed
from counting them in the loop portion of the bytecode.

Next, we define the hypotheses about the arguments that must hold in order for loop
to be “legally” executed. For example, we guarantee thati is always an integer, andi
is less thanfirstN at each iteration of the loop.

(defun pmatch-loop2-hyps (lastMatch pattern firstN i)

12



(and (natp lastMatch)
(<= lastMatch (len (coerce pattern ’list)))
(stringp pattern)
(natp firstN)
(<= firstN (len (coerce pattern ’list)))
(natp i)
(<= i firstN)
(equal (- (len (coerce pattern ’list)) lastMatch)

(- firstN i))))

Finally we define the theorem that states the correctness of the loop. The theorem
says that if we are in the state of the program where the next step is executing the second
loop ofpmatch (i.e., the pc is 48 in the*pmatch-code*), and all the hypotheses
about the arguments are satisfied, then running the loop according to the schedule that
we defined will push the same number on the stack (0 or 1) as the specification of the
loop that we defined would.

(defthm pmatch-loop2-correct
(implies (pmatch-loop2-hyps lastMatch pattern FirstN i)

(equal
(runl
(pmatch-loop2-sched lastMatch pattern firstN i)
(make-state
(push
(make-frame
48
(list v lastMatch pattern

j dtlength firstN i)
nil

*pmatch-code*
’unlocked)

(push (make-frame caller-pc
caller-locals
caller-stack
caller-program
caller-sync)

rest-of-call-stack))
heap
class-table))

(make-state
(push
(make-frame caller-pc

caller-locals
(push (pmatch-loop2-spec lastMatch

pattern
firstN
i)

caller-stack)
caller-program
caller-sync)

rest-of-call-stack)
heap
class-table)))

:hints (("Goal" :in-theory (disable acl2::firstn-too-big))))

The hint above is supplied only to help ACL2 discover the proof and is not relevant
to the meaning of the formula.

13



6 Verifying the pmatch Method

We prove the first loop in pmatch in a manner similar to the one described above. Now
that we know that both of the loops inpmatch are correct we can rely on those facts
to prove the overall correctness of the deepest function of the preprocessing algorithm.

Similar to what we did for the loop we first define the specification for the function
in terms of what arguments it takes and what it is supposed to return to the call-stack
once it is finished executing.

(defun pmatch-spec (v lastmatch pattern j)
(let* ((pattern1 (coerce pattern ’list))

(patternLength (len pattern1)
(dtLength (+ (- patternLength lastmatch) 1))
(firstn (+ dtLength j))
(offset (- patternLength firstn))
(i (+ j 1)))

(if (or (and (< j 0)
(equal (firstn firstn pattern1)

(nthcdr offset pattern1)))
(and (>= j 0)

(equal v (char-code (char pattern j)))
(equal (firstn (- firstn i) (nthcdr i pattern1))

(nthcdr lastmatch pattern1))))
1

0)))

As described in the previous sectionspmatch takes in 4 arguments and returns
true or false(1 or 0) based on whether or not a partial match of the discovered text
occurs in the pattern at specified indexj. We split the spec in two cases, the first one is
whenj is less than 0, which allows the discovered text to “fall off”the left end of the
pattern. The second is the “regular” case, whenj is positive.

Next we describe the state at which the program is ready to make aninvokestatic
call topmatch. Thepoised-to-invoke- predicate is the “precondition” for in-
voking the function expressed in terms of what state the calling program is in.

(defun poised-to-invoke-pmatch (v lastmatch pattern j s)
(and (boyer-moore-class-loadedp (class-table s))

(equal (next-inst s) ’(invokestatic "Boyer-Moore" "pmatch" 4))
(equal v (top (pop (pop (pop (stack (top-frame s))))))) ; local 0
(equal lastmatch

(top (pop (pop (stack (top-frame s)))))) ; local 1
(equal pattern

(top (pop (stack (top-frame s))))) ; local 2
(equal j (top (stack (top-frame s)))) ; local 3

(natp v)
(< v 256)

(natp lastmatch)
(and (>= lastMatch 1)

(<= lastMatch (len (coerce pattern ’list))))

(stringp pattern)

14



(integerp j)
(and (<= j (- lastMatch 2))

(>= j (- (- lastMatch (len (coerce pattern ’list))) 1)))))

Here we say that we expect the calling function to have 4 arguments on top of the
stack to be passed topmatch, and also assume that those arguments are “legal”. In
particular, we expectv to be a natural number less than 256, as it is the Latin 1 rep-
resentation of the character,lastmatch to be a natural index into pattern which is
between 1 (the last index at which the match could occur, otherwise the string search-
ing algorithm would match the whole pattern and succeed) andthe length of pattern
(the upper limit indicating that the last letter of the pattern and the first letter of the dis-
covered text didn’t match),pattern to be a string, andj to be an integer index into
pattern that is less thanlastMatch - 2 (j can’t be larger because the “discovered
text” is something that has matched - at least one character with one mismatched char-
acter appended onto the matched portion), and greater thanlastMatch minus the
length of the pattern - 1, because that is the maximum amount by which the discovered
text can fall of the left end of the pattern.

We also say that we expect aninvokestatic call to pmatch to be the next
instruction to be executed.

Next, we define the schedule for pmatch - the function that will return the number
of ’ticks to run the function to completion.

(defun pmatch-sched (v lastmatch pattern j)
(let* ((pattern1 (coerce pattern ’list))

(patternlength (len pattern1))
(dtlength (+ (- patternlength lastmatch) 1))
(firstn (+ dtlength j))
(offset (- patternlength firstn))
(i (+ j 1)))

(append
(repeat ’TICK 14)
(if (< j 0)

(append
(repeat ’TICK 7)
(pmatch-loop1-sched pattern firstn offset 0))

(append
(repeat ’TICK 5)
(if (equal v

(char-code (char pattern j)))
(append (repeat ’TICK 4)

(pmatch-loop2-sched lastmatch pattern firstn i))
(repeat ’TICK 2)))))))

The schedule forpmatch is defined in terms of the schedules for the loops. We
first count how many instructions we need to execute to determine what loop we need
to enter, which depends on whether or notj is less than 0. Ifj is less than 0 we enter
and complete the first loop by callingpmatch-loop1-sched, otherwise, we check
if v is equal topat[j], and based on that either enter and execute the second loop or
exit and return.

Finally we define actual correctness theorem. The theorem says that if we are in
the state “poised-to-invoke”pmatch, then running according to the schedule function

15



would put a 1 or a 0 on top of the stack in accordance with what the ACL2 function
that is proved to be correct would return.

(defthm pmatch-correct
(implies (poised-to-invoke-pmatch v lastmatch pat j s)

(equal (run (pmatch-sched v lastmatch pat j)
s)

(modify s
:stack
(push
(if (pmatch

(cons (code-char v)
(nthcdr lastmatch

(coerce pat ’list)))
(coerce pat ’list)
j)

1
0)

(popn 4 (stack (top-frame s))))))))

When ACL2 proves this it simulates forward from the initial state and when it gets
to either of the loops it appeals to the previously proved lemmas establishing their
behaviors.

We use the correctness ofpmatch to prove the correctness ofx, the function that
calls it by allowing the theorem prover to skip theinvokestatic call to pmatch
assuming that it is correct.

7 Verifying the x method

We can now prove the correctness ofx. Just as withpmatch we start by defining the
specification of the return value for the function. We define it in terms of the ACL2
functionx that is proven to be correct.

(defun x-spec (v lastmatch pattern j)
(let* ((pattern1 (coerce pattern ’list))

(dt1 (cons (code-char v) (nthcdr lastmatch pattern1))))
(acl2::x dt1 pattern1 j)))

We expect the M3 functionx to return the same value the ACL2 functionx returns.
As withpmatch we continue by formally specifying the “poised-to-invoke”pred-

icate, which describes the state the program is in when the next instruction to execute
is theinvokestatic call tox.

(defun poised-to-invoke-x (v lastmatch pattern j s)
(and (boyer-moore-class-loadedp (class-table s))

(equal (next-inst s) ’(invokestatic "Boyer-Moore" "x" 4))
(equal v (top (pop (pop (pop (stack (top-frame s))))))) ; local 0
(equal lastmatch

(top (pop (pop (stack (top-frame s)))))) ; local 1
(equal pattern

(top (pop (stack (top-frame s))))) ; local 2
(equal j (top (stack (top-frame s)))) ; local 3

16



(natp v)
(< v 256)
(natp lastmatch)
(>= lastmatch 1)
(<= lastmatch (len (coerce pattern ’list)))
(stringp pattern)
(integerp j)
(and (<= j (- lastMatch 2))

(>= j (- (- lastMatch (len (coerce pattern ’list))) 1)))))

The requirements for the arguments and the elements on top ofthe call-stack ofx
are similar to those ofpmatch, as two functions take the same set of arguments. The
only difference between two predicates is that we expect aninvokestatic call to
x rather than topmatch to be executed next.

Next, we define the schedule function.X has only one instruction before calling the
loop, so we only append one’tick before calling the loop schedule.

(defun x-sched (v lastMatch pattern j)
(cons ’TICK

(x-loop-sched v lastMatch pattern j)))

where

(defun x-loop-sched (v lastMatch pattern j)
(declare
(xargs :measure

(+ 1 (nfix (+ (+ 1 (- (len (coerce pattern ’list)) lastMatch))
j)))))

(if (and (integerp j)
(natp lastMatch)
(<= lastMatch (len (coerce pattern ’list))))

(if (acl2::pmatch (cons (code-char v)
(nthcdr lastMatch

(coerce pattern ’list)))
(coerce pattern ’list)
j)

(append (repeat ’TICK 4)
(pmatch-sched v lastMatch pattern j)
(repeat ’TICK 3))

(append (repeat ’TICK 4)
(pmatch-sched v lastMatch pattern j)
(repeat ’TICK 3)
(x-loop-sched v lastMatch pattern (- j 1))))

0))

The schedule for the loop inx illustrates three important points. First, the admission of
x-loop-sched requires a measure to “explain” why it terminates; even thoughj is
decreasing in the recursion,j is not tested against 0 (indeedj may become negative).
But eventuallyj gets “so negative” that thepmatch must succeed. This measure is
actually the same measure used to admit thex function itself. Second, the number of
instructions thex method takes depends on how many iterationsx takes, which means
testingpmatch to determine when the partial match is found. Third, the number
of instructions depends on how many instructions thepmatch method takes, which

17



means callingpmatch-sched for each test done. These same issues arise virtually
every time we define a schedule function.

Finally, we define the correctness theorem forx, which says that if we are in the
state “poised-to-invoke”x then running the schedule forx on states would increment
the program counter of the top frame by 1 and push the same value onto the stack as
the specification forx would.

(defthm x-correct
(implies (poised-to-invoke-x v lastmatch pattern j s)

(equal (runl (x-sched v lastmatch pattern j)
s)

(modify s
:pc (+ 1 (pc (top-frame s)))
:stack
(push (x-spec v lastmatch pattern j)

(popn 4 (stack (top-frame s))))))))

As was the case withpmatch we first proved the correctness of the loop inside
x to allow the theorem prover to skip the loop part of the proof and assume that it is
correct.

8 Verifying the delta method

Next we prove the correctness ofdelta function in a very similar manner. The spec-
ification fordelta is also defined in terms of what the corresponding ACL2 function
does.

(defun delta-spec (v j pattern)
(delta (code-char v) j pattern))

Next we define the “poised-to-invoke” predicate for the function.

(defun poised-to-invoke-delta (v j pattern s)
(and (boyer-moore-class-loadedp (class-table s))

(equal (next-inst s)
’(invokestatic "Boyer-Moore" "delta" 3))

(equal v (top (pop (pop (stack (top-frame s))))))
(equal j (top (pop (stack (top-frame s)))))
(equal pattern (top (stack (top-frame s))))
(natp v)
(< v 256)
(natp j)
(< j (len (coerce pattern ’list)))
(stringp pattern)))

The schedule fordelta calls the schedule forx, asdelta does not do anything
other than callingx and then subtracting the result frompattern.length - 1.

(defun delta-sched (v j pattern)
(append (repeat ’TICK 13)

(x-sched v (+ j 1) pattern (- j 1))
(repeat ’TICK 3)))

18



And finally we show the correctness theorem fordelta. Just as before the idea is
that if we are in the state “poised-to-invoke”delta then running the schedule on the
current state would modify the state in the same way the ACL2 functiondelta would
(which is defined formally in our specification).

(defthm delta-correct
(implies (poised-to-invoke-delta v j pattern s)

(equal (runl (delta-sched v j pattern)
s)

(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (delta-spec v j pattern)

(popn 3 (stack (top-frame s)))))))
:hints (("Goal" :in-theory (e/d (delta) (x)))))

9 Verifying the preprocessing Method

Finally, the main and the hardest proof is the correctness ofthe preprocessing
function for which the two top-level theorems are shown in Section 4.

We start describing this proof by providing the schedule forpreprocessing
and describing the “poised-to-invoke” predicate, just like we did for all of the other
functions.

Preprocessing has a nestedfor-loop in it and so the top-level schedule
function calls the schedule of the outer loop, which in turn calls the schedule of the
inner loop.

(defun preprocessing-sched (pattern)
(append (repeat ’TICK 8)

(preprocessing-outerloop-sched 0 pattern)))

(defun preprocessing-outerloop-sched (i pattern)
(declare (xargs :measure (nfix (- 256 i))))
(cond ((or (not (natp i))

(>= i 256))
(repeat ’TICK 5))
(t (append (repeat ’TICK 5)

(preprocessing-innerloop-sched i 0 pattern)
(repeat ’TICK 2)
(preprocessing-outerloop-sched (+ i 1) pattern)))))

(defun preprocessing-innerloop-sched (i j pattern)
(declare (xargs :measure (nfix (- (len (coerce pattern ’list)) j))))
(cond ((or (not (natp j))

(not (stringp pattern))
(>= j (length pattern)))

(repeat ’TICK 4))
(t (append (repeat ’TICK 11)

(delta-sched i j pattern)
(repeat ’TICK 3)
(preprocessing-innerloop-sched i (+ j 1) pattern)))))

The “poised-to-invoke” predicate forpreprocessing is different from the ones
that we have seen in the previous sections in having three additional requirements -

19



pseudo-heap, which checks whether the heap is well-formed in accordancewith the
M3 representation of the heap,pseudo-class-tablep, which checks if the class
table is well-formed, andascending-addresesp, which checks that addresses in
the heap are listed in ascending order.

(defun poised-to-invoke-preprocessing (pattern s)
(and (boyer-moore-class-loadedp (class-table s))

(equal (next-inst s)
’(invokestatic "Boyer-Moore" "preprocessing" 1))

(equal pattern (top (stack (top-frame s))))
(stringp pattern)
(pseudo-heap (heap s))
(ascending-addressesp (heap s))
(pseudo-class-tablep (class-table s))))

From the proof perspective the code ofpreprocessing can be viewed as having
three phases: the initialization, where we allocate a two-dimensional array, outer loop
and inner loop. In the inner loop we start with some heap, a reference to a 2D array,
an indexi that indicates the row, and an indexj that points to some element in row
i of the 2D array. We prove that inner loop correctly sets up theelements of rowi
starting with indexj and up to the end of the row. Then we go to the outer loop
and follow the same logic, proving that all rows starting with i and up to 256 are set
correctly. The complication that we face here is that we needto make sure that setting
up one row doesn’t overwrite the rows that have already been written. This goes back
to the mechanism of allocating new Objects used by M3, where it assigns the address
for the new Object one greater than the last address allocated on the heap. This is
whereascending-addressesp predicate defined in “poised-to-invoke” becomes
important as we require that heap addresses always come in ascending order. This is
intuitive for our M3 model.

After proving the correctness of both the inner and the outerloops we prove the two
top-level theorems aboutpreprocessing shown in 4. The details from the proofs
can be found in the scriptpreprocessing.lisp.

10 Verifying the Fast String Searching Algorithm

In conclusion we want to show how Moore used the proof of correctness of the pre-
processing to verify the overall total correctness of the M3bytecode version of the fast
string searching algorithm.

As usual, we start with the “poised-to-invoke” predicate, this time for the call to
fast – the function that implements the string searching algorithm.

(defun poised-to-invoke-fast (pat txt s)
(and (boyer-moore-class-loadedp (class-table s))

(equal (next-inst s) ’(invokestatic "Boyer-Moore" "fast" 2))
(equal pat (top (pop (stack (top-frame s)))))
(equal txt (top (stack (top-frame s))))
(stringp pat)
(stringp txt)
(pseudo-heap (heap s))

20



(ascending-addressesp (heap s))
(pseudo-class-tablep (class-table s))))

Notice, how it also has theascending-addressesp requirement similar to
the one thatpreprocessing had.

The main theoremm3-fast-is-correct uses thefast-clk function in-
stead of the regular schedule. The reason is that we cannot run schedule functions on
large pieces of bytecode because appendingtick’s that is done by them causes stack
overflows.Fast-clk is a numeric equivalent to list oftick’s and the equivalence is
proven in scriptsched-to-clk.lisp.

(defthm m3-fast-is-correct
(implies (poised-to-invoke-fast pat txt s)

(equal (run (fast-clk pat txt) s)
(modify s

:pc (+ 1 (pc (top-frame s)))
:stack (push (if (correct pat txt)

(correct pat txt)
-1)

(pop (pop (stack (top-frame s)))))
:heap
(fast-heap pat s)))))

The theorem says that runningfast-clk on some state modifies that state in the
same way as the obviously correct string searching algorithm defined incorrect
would modify it. We show the definition of the obviously correct string searching
algorithm below, and it is also described in [10].

(defun correct (pat txt)
(correct-loop pat txt 0))

(defun correct-loop (pat txt i)
(declare (xargs :measure (nfix (- (length txt) i))))
(cond ((not (natp i)) nil)

((>= i (length txt)) nil)
((xmatch pat 0 txt i) i)
(t (correct-loop pat txt (+ 1 i)))))

(defun xmatch (pat j txt i)
(declare (xargs :measure (nfix (- (length pat) j))))
(cond ((not (natp j)) nil)

((>= j (length pat)) t)
((>= i (length txt)) nil)
((equal (char pat j)

(char txt i))
(xmatch pat (+ 1 j)

txt (+ 1 i)))
(t nil)))

We would also like to include the demonstration of actually running the fast al-
gorithm using the preprocessing and producing the result that the obviously correct
string searching algorithm produces. In this demonstration the bytecode is executed
for 371,571 steps to find the first occurrence (at location 33)of "comedy" in the string

21



"subject of a running joke on the comedy show". Note that the heap starts empty, and
the final heap contains 257 objects allocated during the run of fast. While it is not
recorded in the defthm below, if one times the computation of(run clk s0), one
learns that it takes 1.40 seconds runtime on a 2.3 GHz Intel Core i7. Thus, M3 is
executing 226,836 bytecodes/second in this example.

(defthm demonstration
(let* ((pat "comedy")

(txt "subject of a running joke on the comedy show")
(clk (fast-clk pat txt))
(s0 (modify nil

:pc 0
:locals nil
:stack (push txt (push pat nil))
:program ’((invokestatic "Boyer-Moore" "fast" 2)

(halt))
:sync-flg ’unlocked
:heap nil
:class-table (make-class-def

(list *boyer-moore-class*))))
(sfin (run clk s0)))

(and (equal clk 371571)
(equal (top (stack (top-frame sfin))) 33)
(equal (correct pat txt) 33)
(equal (len (heap sfin)) 257)))

:rule-classes nil)

11 Contributions

The proof of the correctness of the preprocessing algorithmrelieved the assumption
made about the preprocessing in the Moore-Martinez work [10]. This also completes
the first complete verification of the Boyer-Moore fast string searching algorithm at the
code level. The only other mechanical proof of the correctness of the algorithm is [1],
and it was the algorithm level proof.

This is also the first time for any JVM model implemented in ACL2 where things
about writing to a two-dimensional array are proved. Because of the way we repre-
sent 2D arrays in ACL2 (as an array of references) this has more to do with pointer
manipulation than mere array manipulation.

Moore says that “this project also demonstrated that our constructed (but very in-
efficient) schedule functions work perfectly well for totalcorrectness via direct oper-
ational semantics, even for algorithms with complicated termination measures”. The
point here is that unlike in simple programs where the numberof instructions to be
executed is precomputed and the schedule can be defined as a simple arithmetic ex-
pression, e.g.,3 + 11n, here the schedule is defined as a recursive function. Like in
pmatch the number of instructions to be executed depends on the repetition of the
characters in the pattern. “So while intellectually I knew the schedule-function works
just fine I’ve never seen it in action in a more sophisticated setting than this,” he says.

22



12 Acknowledgments

I’d like to thank J Moore and his endowed chair — the Admiral B.R. Inman Centennial
Chair in Computing Theory — for the support I received from them that made this
project possible. I’d also like to acknowledge Matt Martinez’s contributions to building
an M3 model that the code for the proof is written in and Hanbing Liu whose M6 model
[9] served as a partial base for our M3 model.

A The Bytecode

Here is the bytecode we verified. Toibazarov was in charge of methodspmatch,
delta, x andpreprocessing. Moore later ported the M1 implementation of
fast, the function that implements the fast string searching algorithm described in
[10] to M3, inserted the part that invokespreprocessing method, and re-verified
the correctness offast using the theorems about the correctness ofpreprocessing,
proved in this paper. Themainmethod was used for debugging purposes only and was
not verified.

("Boyer-Moore"
("Object")
NIL
(("fast" (PAT TXT) NIL
(LOAD 0)
(CONST "")
(IF_ACMPNE 8)
(LOAD 1)
(CONST "")
(IF_ACMPNE 3)
(CONST -1)
(XRETURN)
(CONST 0)
(XRETURN)
(LOAD 0)
(STRLENGTH)
(STORE 4)
(LOAD 1)
(STRLENGTH)
(STORE 5)
(LOAD 4)
(CONST 1)
(SUB)
(STORE 2)
(LOAD 2)
(STORE 3)
(LOAD 0)
(INVOKESTATIC "Boyer-Moore" "preprocessing" 1)
(STORE 6)
(LOAD 2)
(IFLT 37)
(LOAD 5)
(LOAD 3)
(SUB)
(IFLE 37)

23



(LOAD 0)
(LOAD 2)
(CHARAT)
(LOAD 1)
(LOAD 3)
(CHARAT)
(STORE 7)
(LOAD 7)
(SUB)
(IFNE 10)
(LOAD 2)
(CONST 1)
(SUB)
(STORE 2)
(LOAD 3)
(CONST 1)
(SUB)
(STORE 3)
(GOTO -24)
(LOAD 3)
(LOAD 6)
(LOAD 7)
(AALOAD)
(LOAD 2)
(AALOAD)
(ADD)
(STORE 3)
(LOAD 4)
(CONST 1)
(SUB)
(STORE 2)
(GOTO -37)
(LOAD 3)
(CONST 1)
(ADD)
(XRETURN)
(CONST -1)
(XRETURN))

("pmatch" (V LASTMATCH PATTERN J) NIL
(LOAD 2)
(STRLENGTH)
(LOAD 1)
(SUB)
(CONST 1)
(ADD)
(STORE 4)
(LOAD 4)
(LOAD 3)
(ADD)
(STORE 5)
(LOAD 3)
(IFGTEQ 25)
(LOAD 2)
(STRLENGTH)
(LOAD 5)
(SUB)
(STORE 6)

24



(CONST 0)
(STORE 7)
(LOAD 7)
(LOAD 5)
(IF_CMPGE 14)
(LOAD 2)
(LOAD 7)
(CHARAT)
(LOAD 2)
(LOAD 6)
(LOAD 7)
(ADD)
(CHARAT)
(IF_CMPEQ 3)
(CONST 0)
(XRETURN)
(INC 7 1)
(GOTO -15)
(GOTO 27)
(LOAD 0)
(LOAD 2)
(LOAD 3)
(CHARAT)
(IF_CMPEQ 3)
(CONST 0)
(XRETURN)
(LOAD 3)
(CONST 1)
(ADD)
(STORE 6)
(LOAD 6)
(LOAD 5)
(IF_CMPGE 13)
(LOAD 2)
(LOAD 6)
(CHARAT)
(LOAD 2)
(LOAD 1)
(CHARAT)
(IF_CMPEQ 3)
(CONST 0)
(XRETURN)
(INC 1 1)
(INC 6 1)
(GOTO -14)
(CONST 1)
(XRETURN))

("x" (V LASTMATCH PATTERN J) NIL
(LOAD 0)
(LOAD 1)
(LOAD 2)
(LOAD 3)
(INVOKESTATIC "Boyer-Moore" "pmatch" 4)
(IFNE 3)
(INC 3 -1)
(GOTO -7)
(LOAD 3)

25



(XRETURN))
("delta" (V J PATTERN) NIL
(LOAD 2)
(STRLENGTH)
(CONST 1)
(SUB)
(LOAD 0)
(LOAD 1)
(CONST 1)
(ADD)
(LOAD 2)
(LOAD 1)
(CONST 1)
(SUB)
(INVOKESTATIC "Boyer-Moore" "x" 4)
(NEG)
(ADD)
(XRETURN))

("preprocessing" (PATTERN) NIL
(CONST 256)
(LOAD 0)
(STRLENGTH)
(MULTIANEWARRAY 2)
(STORE 1)
(CONST 0)
(STORE 2)
(LOAD 2)
(CONST 256)
(IF_CMPGE 20)
(CONST 0)
(STORE 3)
(LOAD 3)
(LOAD 0)
(STRLENGTH)
(IF_CMPGE 12)
(LOAD 1)
(LOAD 2)
(AALOAD)
(LOAD 3)
(LOAD 2)
(LOAD 3)
(LOAD 0)
(INVOKESTATIC "Boyer-Moore" "delta" 3)
(AASTORE)
(INC 3 1)
(GOTO -14)
(INC 2 1)
(GOTO -21)
(LOAD 1)
(XRETURN))

("main" (X) NIL
(CONST "abcgbchbccbc")
(STORE 1)
(LOAD 1)
(INVOKESTATIC "Boyer-Moore" "preprocessing" 1)
(RETURN))))

26



References

[1] M. Besta and F. Stomp. A complete mechanization of a correctness proof of a
string-preprocessing algorithm.Formal Methods in System Design, 27(1-2):5–27,
2005.

[2] R. S. Boyer and J S. Moore. A fast string searching algorithm. Comm. ACM,
20(10):762–772, 1977.

[3] R. S. Boyer and J S. Moore.A Computational Logic. Academic Press, New York,
1979.

[4] R. S. Boyer and J S. Moore. A verification condition generator for FORTRAN.
In The Correctness Problem in Computer Science, pages 9–101, London, 1981.
Academic Press.

[5] Richard Cole. Tight bounds on the complexity of the boyer-moore string match-
ing algorithm. InSODA ’91: Proceedings of the second annual ACM-SIAM sym-
posium on Discrete algorithms, pages 224–233, Philadelphia, PA, USA, 1991.
Society for Industrial and Applied Mathematics.

[6] L. Guibas and A. Odlyzko. A new proof of the linearity of the boyer-moore string
searching algorithm.SIAM Journal of Computing, 9:672–682, 1980.

[7] M. Kaufmann, P. Manolios, and J S. Moore.Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA., 2000.

[8] D. Knuth, V. Pratt, and J. Morris. Fast pattern matching in strings.SIAM Journal
of Computing, 6(2):323–350, 1977.

[9] H. Liu. Formal Specification and Verification of a JVM and its Bytecode Veri-
fier. PhD Dissertation, Department of Computer Science, University of Texas at
Austin, 2006.

[10] J S. Moore and M. Martinez. A Mechanically Checked Proofof the Correctness of
the Boyer-Moore Fast String Searching Algorithm. InEngineering Methods and
Tools for Software Safety and Security (Proceedings of the Martoberdorf Summer
School, 2008), M. Broy, W. Sitou, and T. Hoare (eds), pages 267–284, 2009. IOS
Press.

[11] J S. Moore. Mechanized operational semantics: Lectures and sup-
plementary material. InMarktoberdorf Summer School 2008: Engi-
neering Methods and Tools for Software Safety and Security, 2008.
http://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-
08/index.html.

27


