An ACL2 Proof of the Correctness of the
Preprocessing for a Variant of the Boyer-Moore
Fast String Searching Algorithm

Erik Toibazarov

April 30, 2012

Abstract

We describe a mechanically checked proof that a straigh#iat implementa-
tion of the preprocessing for a version of the Boyer-Moorst&tring Searching
Algorithm is correct. We say “straightforward” because itmplementation does
not attempt to do the preprocessing quickly (unlike progucimplementations).
We say “a version” of the algorithm because the algorithnifieeris not the one in
the classic paper but one that uses a single 2-dimensioipeiadite. The proof is
done at the “JVM bytecode” level. We implement a formal maxfed subset of the
JVM, M3, in ACL2, generate the bytecode for the preprocegalgorithm in M3,
formally specify the methods and verify the effects of exemuthose methods.
The top-level theorem proves that as a result of calling tieprecessing algo-
rithm on a given string pattern we get a correctly set 2-disieral array contain-
ing the skip information for the fast string searching aition. The proof includes
verifying four methods, three singly-nested loops and ebtienested loop. Be-
cause 2-dimensional arrays are represented as 1-dimahaivays of references
to 1-dimensional arrays, our proof involves pointer matspan.

1 Background

The fast string searching algorithm was invented by Boyet oore in 1975 [2].
The algorithm finds the leftmost occurrence of one strindgtepa, in another string,
text. The original version of the algorithm used two preconep tablesgel t al and
del t a2, to determine the skip information when the mismatch betwbe pattern
and the text occurs. The original algorithm’s worst-casetiine was linear including
the time needed for setting up the preprocessed tables [6].

Around 2005, Moore came up with a version of the algorithnt tised a two-
dimensional arraylel t a that contained better skip information. The algorithm was
implemented by Moore and Martinez in bytecode for the M1 nhofldVM written in
ACL2 and they proved the correctness of the bytecode asgpiimat the preprocessed
arraydel t a was set up correctly [10].

A detailed description of the string searching algorithratttve verified can be
found in [10]. We assume the reader is familiar with that pagpel recommend that

those readers not familiar with it read it before gettingittie details of the current
proof. The operational semantics for M1 and the general wayave correctness of
M1 programs can be found in [11]; in this paper we use the eggprdescribed there.

Toibazarov, with the help of Moore, extended M1 to what we B8 in which
the modeling of 2-dimensional arrays allocated on the hesgatne possible, then
Toibazarov wrote the bytecode for preprocessing, spedfiedy loop and every method,
including specifying the runtime, and in collaborationiwifloore proved the code cor-
rectness.

The top-level method of the preprocessing algoritipmepr ocessi ng, when
invoked with a string argumenpat t er n, terminates and returns a reference (i.e., a
pointer to an Object in the heap) to a two-dimensional amaguch thaa(i, j)
is(delta (code-char i) j pattern),wheredelt aisdefinedin ACL2 to
be the amount by which the fast string searching algorithoukhskip when it has
matched the lagt characters opatt er n but then read a mismatchingfrom the
text.

The main problems that we faced in this proof included foinirad a way to rep-
resent two-dimensional arrays as one-dimensional arrbyeferences, handling the
possible “aliasing” problem (if some of the rows of the agahared the heap loca-
tions with other rows), and specifying and verifying 125knof bytecode, including
four methods, three singly nested loops, and a doubly nésbgd

Moore later used the results of this proof to produce a tatakctness proof of an
M3 version of the string searching algorithm. This projdidvaed him to relieve the
assumption about the correctness of the preprocessing #@m

In Section 2 we show the Java code for the preprocessingitgothat we used
to produce the corresponding bytecode. In Section 3 we ibesttre M3 model and
how it is different from the M1 model. Section 4 explains th€l& implementation
of the preprocessing algorithm, and the specification optioblem. In Section 5 we
talk about proving the correctness of a loop inside a metlsirtgithe example of one
of the methods of the preprocessing algorithm. In Sectigrs 8 and 9 we describe
the proofs of the functiongmat ch, x, del t a andpr epr ocessi ng respectively.
Section 10 shows how the proof of preprocessing is used ify\tbe correctness of
the fast string searching algorithm. Finally, Section lkgabout the contributions
that proof brings.

The verification time for proving everything — that the byide implements the
preprocessing and the fast algorithm and that the resutstglgorithm is correct — is
about 35 seconds on a Macbook Pro with a 2.3 GHz Intel Corea@gssor with 8GB
of 1333 MhZ DDRS3 running ACL2 Version 4.3 in CCL.

2 The Java Code for A Boyer-Moore Search

In this section we provide the Java code for producing a 2edsional array containing
the skip information for the Boyer-Moore fast string seamghalgorithm. We also show
the actual implementation of the algorithm in Java that tiseSpreprocessed” array
and briefly discuss the code that we verified.

The top-level function is calledr epr ocessi ng. In this function we initialize

a 2-dimensional array, fill it in with the skip informationrfthe string searching algo-
rithm and return a reference to it. The array contains 25&r@me for each extended
ASCII character) and as many columns as there are letteheisdarch pattern. The
stringpat t er n is the only parameter that is passed to the function. Therithgo
references the array by the ASCII index corresponding tdetier that is currently
being looked at and the position of that letter in the pattern

public static int[][] preprocessing(String pattern)

{
int[][] preprocessed = new int[256][pattern.length()];
for (int i =0; i < 256; i++)
{
for (int j = 0; j < pattern.length(); j++)
{
preprocessed[i][j] = delta((char)i, j, pattern);
}
}
return preprocessed;
}

As you might have noticegr epr ocessi ng callsdel t a whenever it assigns a
value to a specified location in the array. The codedfir t a is shown below.

public static int delta(char v, int j, String pat)
{

return (pat.length() - 1) + (-x(v, j + 1, pat, j - 1));
}

Del t a takes in three arguments: the charaetethat represents the letter from
the text first mismatching the corresponding letter fromttreninal substring of the
pattern, the integér, that represents the index of the corresponding letteeipéttern,
and stringpat t er n. It returns an integer, representing a skip distance forirt@ioto
the text.Del t a calls functionx for which the code is shown below.

public static int x(char v, int lastMatch, String pattern, int j)

{
while (!pmatch(v, |astMatch, pattern, j))

i--s
}

return j;

As you can see, x takes in four parameters. Three of them asegén bydel t a:
v, andpattern. The last onel ast Mat ch, represents an index of the leftmost
letter in the terminal substring of pattern matching theregponding letter from the
text — this letter is preceded in the pattern by the lettdragt Mat ch- 1 which is
different from the corresponding letter from the text, whisv. X works by searching
backwards fronj looking for an interior substring of the pattern (possibheahat
“falls off” the lefthand end) that starts with and otherwise matches the terminal sub-
string starting at ast Mat ch. To check for a “partial matchx callspmat ch, which
is the last function of the preprocessing algorithm.

public static bool ean pmatch(char v, int |astMatch,
String pattern, int j)

{
int dtLength = pattern.length() - lastMatch + 1;
int firstN= dtLength + j;
if (j <0
{
int offset = pattern.length() - firstN
for (int i =0; i <firstN i++)
if (pattern.charAt(i) != pattern.charAt(offset + i))
{
return fal se;
}
}
}
el se
{
if (v != pattern.charAt(j))
{
return fal se;
}
for (int i =j +1; i <firstN, i++)
if (pattern.charAt(i) != pattern.charAt(lastMatch))
{
return fal se;
}
| ast Mat ch++;
}
}
return true;
}

Pmat ch takes in four arguments which are the same arguments thatpassed to
X, and returns a boolean value indicating whether or not aigfamatch of character
v concatenated on the portion of text that matched occursttempeaat specified index
j . We are, however, not usirgf r i ng concatenation here because (a) it is a native
Java method not supported by M3 and (b) a practical impleatientof preprocessing
would not repeatedly build substring objects but do sometttiose to what we do
here. This is why we have loops to check the substring egualit

We also provide the code for the functibast that callspr epr ocessi ng and
uses the array returned by it for determining the skip distén the string searching
algorithm. The M3 version of the bytecode foast was verified by Moore using the
correctness of thpr epr ocessi ng code proved in this project.

public static int fast(String pattern, String text)

{

if (text.length() !'= 0)

{
if (pattern.length() == 0)
{

return O;

}
el se

int pnex = pattern.length();

int tmax text.length();

int j = pmax - 1;

int i =j;

int[][] preprocessed = preprocessing(pattern);

while (j >= 0)

if ((tmax - i) <= 0)
{

}
char v = text.charAt(i);
if (pattern.charAt(j) == v)

return -1;

el se

{
i += preprocessed[Vv][j];
j = pmax - 1,

} .
returni + 1;
}
}

return -1;

We did not verify the Java code shown above in this projece Jdva is shown for
illustrative purposes only. We took the bytecode corredpamnto this Java and hand-
generated bytecode for the M3 model of JVM. The M3 bytecdde cbrrectness of
which we proved, can be found in Appendix A. All the functigerevided here keep
the same names and parameters as in the M3 bytecode.

The code that we generated by hand for the M3 model of JVM dlrexactly
mimics the actual bytecode generated by the Java compilehéofunctions shown
above. The only significant difference is that as discussglieein this section we do
not implement Jav&t r i ng class native methods. In order to avoid usitg i ng
concatenation we implement our partial equality checkugloloops and character
by character comparison. Wheneveriarvokevi rtual to String. char At ()
orString. | engt h appeared in thpavac-produced JVM bytecode we replaced it
with the M3 instructiong char at) and(st rl engt h) that we implemented.

3 The M3 Model

In this section we give a brief overview of M3 model that welbto do our proof
in, and most importantly explain how M3 model is differerdrfr the simplest JVM
model implemented in ACL2 — M1, which is described in [11]. §#®w the semantics
of certain M3 instructions and discuss what those instonstdo and how they work.

The first extension broughtinto an M3 model is the existerfiescall-stack used for
method invocations. An M1 state consists of a program copatest of local variables
and a stack, associated with the program, and a list of ictsbns that constitute the
program. The first element of an M3 state is the call-stack¢hvive can think of as
being a stack of M1 states, we call them frames, with the maithod always being
the deepest element of the call-stack. The only differemteden an M1 state and an
M3 frame is the presence sf/nc- f | g in an M3 frame, which is used for threading,
and is not relevant to our discussion, since we do not dehltwieads in this proof.

Going back to the M3 state we should point out that it congét3 elements of
which we described only the first one — the call-stack. Thesdand the third ele-
ments are a heap and a class-table, both of which are abgbetsimpler M1 model.
In M3 we introduce an object model, and use a heap to holdrinstof objects and a
class-table to hold the descriptions of classes. In ourfpaeostore the preprocessed
2—dimensional array containing the skip information onhieap and later reference it
in the actual search algorithm.

The class table of M3 contains a set of base clas3gsect , Ar r ay andThr ead.
Each class definition consists of the name, a list of supesels a list of fields and a list
of methods that the class contains. For our proof we defiress chlleBoyer - Moor e
where we have all the methods for producing a skip array.

Finally M3 introduces some new instructions that are nos@neéin M1. The ad-
ditional instructions includ€ONST, POP, | NC, DUP, NEG, | F_CMPGE, | F_CMPEQ,
| F_ACVPNE, | FEQ | FGT, | FGTEQ NEW GETFI ELD, PUTFI ELD, | NVOKEVI R-
TUAL, XRETURN, RETURN, MULTI ANEWARRAY, AALOAD, AASTORE, CHARAT,
STRLENGTHandl NVOKESTATI C.

All the instructions defined in M3 resemble the semantichefrtJVM analogues.
In some cases we do not follow the exact names of JVM inststiespecially where
the difference is due only to Java “type-checking” (bytezeerification). For example,
we do not distinguish between JVM'4. OAD, ALQAD, andL L CAD; we use M3'd. OAD
in all three cases.

Below we show the semantics of one of the instructibASTORE to give an idea
of the ACL2 approach to modeling instructions:

(defun execut e- AASTORE (i nst s)
(declare (ignore inst))
(letx ((instance (deref (top (pop (pop (stack (top-frame s)))))
(heap s)))
(index (top (pop (stack (top-frame s)))))
(field-value (field-value "Array" "contents" instance))
(val ue (update-nth index
(top (stack (top-frame s)))
field-value)))
(nmodify s
:stack (pop (pop (pop (stack (top-frame s)))))
:heap (bind (cadr (top (pop (pop (stack (top-frame s))))))
(set-instance-field "Array"”
"contents”
val ue
i nstance)

(heap s)))))

AASTORE stores a given value to a specified location in a 1-dimensanay. The
functionexecut e- AASTORE is what we call thesemantic functiofor AASTORE. It
describes the functionality of the given instruction. Adhsantic functions in the M3
model take two argumentgnst , the instruction to be executed, asdan M3 state.
In the case oAASTORE the instruction contains no components other than the apcod
(Some instructions lik¢ CONST 1) and(LOAD 3) contain components that affect
the semantics of the instruction, e.g., the constant opec#ely, the index of the
local variable to be pushed.) Thuesgecut e- AASTORE ignoresi nst . But ACL2
requires that ignored parameters be explicitly declaradrigd.

Thel et = -expression allows us to give temporary names to certaimesié¢s in
order to make the code more readable. So here we give the hagteance to a
1-dimensional array (obtained by dereferencing the hedpead three items down in
the stack)j ndex to the index of slot to which we will writef i el d- val ue to the
row of the array, andal ue to the item we will write into the specified slot.

AASTORE pops three elements from the stack: the value to be writtenindex
of the slot, and the reference to the array. The heap is clsswthat array reference
points to arAr r ay object like the previous one but containing the value in pexfied
slot. The ACL2 macrorodi fy allows us to write only those parts of the state which
are affected by execution of the given instruction. In tlisewe modify onlyt ack
andheap, leaving all other elements of state unchanged.

Below we briefly describe all the bytecodes used in this gtoj#°c” and “stack”
refer to the program counter and operand stack, respegtinethe top frame of the
call stack. Unless otherwise noted, “push” and “pop” retetite obvious operations
on the operand stack of the top frame of the call stack. Thriévaf local variable”
is thei*" element in the locals field of the top frame of the call stackleds otherwise
noted all instructions increment the pc by 1.

e Arithmetic Operations on the Stack

(CONST ¢) push constant

(ADD) pop two items and push their sum

(SUB) pop two items and push their difference
(NEG pop an item and push its negation

e Operations on Local Variables

(LOAD 1) push the value of local variable
(STORE) pop an item and store it as the value of local variable
(I NC i ¢) increment the value of local variabldy ¢

e Operations on Arrays

(MULTI ANEWARRAY n) build an n-dimensional array (an array of 1-dimen-
sional array references) in the heap and push its referéeep @ddress)

(AALQAD) pop an array reference and index and push the indexed item fro
the array

(AASTORE) pop an array reference, index, and value and write the value t
the indexed slot in the array

e Control Flow

(1 F_ACMPNE §) pop two references,; andas, and increment the pc hyif
a1 # as

(1 F_CVWPCGE §) popwv; andve and increment the pc byif vy > vo

(1 F_CVPEQ ¢) popwv; andvs and increment the pc byif v; = vo

(1 FLT 6) popw and increment the pc byif v < 0

(1 FLE 0) popw and increment the pc byif v <0

(1 FNE 0) popw and increment the pc byif v # 0

(1 FGTEQ 6) popwv and increment the pc hyif v > 0

(GOTO) increment the pc by

o Methods

(1 NVOKESTATI C a 8 n) popn items, increment the pc, and push a new
frame on the call stack poised to run meth®drom classa with those
n items as the local variable values; note that this trangfensrol to the
first instruction in the called method since the meaning a’‘fpas now
changed

(XRETURN) popwv from the operand stack of the top frame of the call stack,
pop and discard the top frame, and pushnto the operand stack of the
newly exposed top frame, whevds the return value of the method; note
that this transfers control to the first instruction in théing method since
the meaning of “pc” has now changed

e Bytecodes for Nativé&t r i ng Methods

(CHARAT) pop a strings and index; and push the Latin 1 (extended ASCII)
code of the characteti]

(STRLENGTH) pop a string and push its length

4 The Specification

Before we proceed to the proof we will discuss the ACL2 impdatation of the prepro-
cessing algorithm. We provide the ACL2 code for functides$ t a, x, andpmat ch.
Remember that the string searching algorithm always mamtao indexesi , index
into the source text, and, index into the pattern for which we are searching. The top-
most function of the preprocessing algorithagl t a takes in three arguments — the
charactew, the last read character from the text and the first charadtenatched, the
indexj , which points to the corresponding character in patterd pat , the pattern.
Del t a returns the skip amount for indéx

(defun delta (v j pat)
(decl are (xargs :guard (and (characterp v)
(natp j)
(stringp pat))))
(letx ((patl (coerce pat ’'list))
(dt1 (cons v (nthecdr (+ j 1) patl))))
(+ (- (len patl) 1) (- (x dtl patl (- j 1))))))

Del t a calls functionx to which it passes three arguments. As explained in [10],
we here shift the representation of strings from ACL2 ssirgyg.,' Hel | 0", to lists of
characterq, #\H #\e #\| #\I #\0),to make subsequent traversal of the “string”
easier. Sx takesdt 1, the list created by adding the first mismatched charaaben fr
pattern onto that portion of the text that matchpdt 1, the list containing charac-
ters from pattern, anf, which in this context represents the first index iptat 1 at
whichdt 1 could possibly occur. The conversion of a string to a listhdracters only
happens in the specification of the preprocessing, not thealksytecode (where we
maintain the pattern as a string and index into it approglsigt

(defun x (dt1 patl j)
(cond ((prmatch dtl patl j) j)
(t (x dtl patl (- j 1)))))

Xreturns an index intpat 1 at whichdt 1 occurred. To find that index calls
prat ch until pmat ch returnst r ue meaning that it has found an occurrencelbfl
inpat 1. Itisimportantto point out that the index returnedgoyat ch can be negative
which guarantees terminationxf as explained in [10]. As you can speat ch takes
the same arguments asand checks whether or not a partial matctdofl in pat 1
occurs at specified indgx

(defun pmatch (dtl1 patl j)
(if (< 0)
(equal (firstn (len (nthecdr (- j) dtl)) patl)
(nthedr (- j) dt1))
(equal (firstn (len dtl) (nthcdr j patl))
dt1)))

When we were implementing the above functions in Java weddddio avoid the
String creation methods suggested by the constructiatt éfabove, for the reasons
previously mentioned. So the Java code shown in Section 2 laees to check the
substring equality while the ACL2 uses the more eleganttfansequal , fi rstn,
andnt hcdr .

Our goal is to prove that preprocessing fills in the array withrectly computed
values ofdel t a. However, the definition oflel t a is complicated and one might
ask “how do you know that the ACL2 functiatel t a is correct?” The answer is that
Moore has used ACL2 to prove that the fast string searchiopgrhm is correct based
on the assumption that the array contains the values deschjpdel t a. So it our
only job is to prove that the bytecode computes t a; Moore’s proof establishes that
del t a, however it is defined in ACL2, is sufficient to establish tloerectness of the
fast string searching algorithm.

To fill in the 2-dimensional array with skip information forery letter of the alpha-
bet (which is assumed fixed at size 256 and which maps eaeh déthe alphabet to a

natural number via the Latin 1 mapping) theepr ocessi ng function for which the
Java code is provided in Section 2 callsl t a passing in each letter of the alphabet
as first argument, and every possible index into pattern as second argujmearid
writes the value returned el t ato the(v, j) location of the array.

The goal of this paper is to prove the correctness of the pogsising part of the
string searching algorithm. Two top-level theorems of theop arepr epr ocess-
i ng- correct-1andpreprocessi ng-correct-2. The first theorem is typi-
cal for proving the correctness of M3 programs. It says thHa¢mwe are in a state
when the next instruction executed is the call to prepraogs®oi sed-t o-i n-
voke- pr epr ocessi ng) then running preprocessing for a number of steps specified
by the schedule function puts us into the expected statgdhaf the calling program
is incremented by 1, the heap address of a 2-dimensiongl @rom top of the stack,
and the heap has been changed to contain, at that addrespealypsized and filled
2-dimensional array containing the skip distances for ttéepn.

(defthm preprocessing-correct-1
(inmplies (poised-to-invoke-preprocessing pattern s)
(equal (runl (preprocessing-sched pattern) s)
(rmodify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (preprocessing-aref pattern s)
(pop (stack (top-frane s))))

- heap
(preprocessing-heap pattern s)))))

To use this theorem in the verification of bytecode (such asftr the fast string
searching algorithm) we need to know that when the referenaep of the stack is
dereferenced in the new heap and then indexed at locatign) (ve obtain the value
(delta (code-char i) j pattern) used in the proof of the correctness of
the string searching algorithm itself [10]. (The functioade- char maps from the
Latin 1 code to the corresponding character.)

The second theorem states this formally in a form that makef#iriect use in byte-
code verification easy:

(deft hm preprocessi ng-correct-2
(inmplies (and (poi sed-to-invoke-preprocessing pattern s)
(natp i)
(natp j)
(< i 256)
(stringp pattern)
(<j (length pattern)))
(equal (nth j
(field-value "Array" "contents"
(deref
(nth i
(field-value "Array" "contents"
(deref (preprocessing-aref pattern s)
(preprocessing-heap pattern s))))
(preprocessing-heap pattern s))))
(delta (code-char i) j pattern))))

The two functiongr epr ocessi ng- ar ef andpr epr ocessi ng- heap used
in the theorems above may be thought of as “Skolem functjdasittions that con-

10

struct objects establishing claims made with existentiamifiers. In essence our the-
orems say that there exists a reference, célpitepr ocessi ng- aref pattern

s) and aheap,pr epr ocessi ng- heap pattern s),suchthat(a)they are pro-
duced by running the bytecode (theor@mepr ocessi ng- correct-1) and (b)
they allow us to use array indexing to obtéithel t a (code-char i) j pattern)
(theorenpr epr ocessi ng- corr ect - 2). Otherwise, we do not care to know more
about them.

The first theorem usegr epr ocessi ng- sched, which, again, is a Skolem
function which really just means “there exists a humber epst so that executing
the bytecode that number of steps will return the correctites

These two theorems were sufficient for Moore to verify thatiy8code allegedly
implementing the fast string searching algorithm actuatiplements the algorithm
verified by Moore and Martinez. That is, Moore used theserdmas to prove that
an M3 method nametlast is equivalent to the ACL2 function namddst , and
Moore and Martinez proved that the ACL2 function nani@st is actually a correct
string searching algorithm. Since the function narhedt uses the function named
del t a, it was necessary for tHeast bytecode to computgel t a. Computing, with
M3 bytecode, all possibléel t as and storing them into a 2-dimensional array is what
was verified in this project.

5 \Verifying A Loop Inside a Method

The strategy of the overall proof is to first prove the comess of the deepest method
of the algorithm, then use the fact that it is correct to prtwe correctness of the
method that calls it and continue until we prove the top-léwection.

Proving the correctness of a single method is thus a “subtfdbe proof strategy
described above: if there are loops in the method, we firstgaifte correctness of each
of the loops and then use that knowledge to prove the coesstof the method.

The deepest method in the preprocessing algorithpmest ch, and it is the first
one that we prove correct. If you look at the definitionpafat ch in Section 2 you
will see that it has twd or loops inside. As said earlier, we need to verify each loop
before we proceed tprat ch verification.

We show how we verified the correctness of the second loopesepted by this
portion of Java:
for (int i =j + 1, i <firstN i++)

{
if (pattern.charAt(i) != pattern.charAt(lastMatch))

{

}
| ast Mat ch++;

return fal se;
return true;

The first thing we do is specify what we expect this loop to metuVe write an
ACL2 function for that. This specification is just paraphngsn ACL2 what the loop
does in Java.

11

(defun pmat ch-1oop2-spec (lastMatch pattern firstNi)
(if (equal (firstn (- firstNi)
(nthcdr i (coerce pattern 'list)))
(firstn (- firstNi)
(nthcdr | astMatch (coerce pattern 'list))))
1

0))

The next step is to define the schedule for the portion of logte¢hat represents
the loop. The schedule is a recursive function that detegsitow many instructions
to execute based on the limits set by the loop. The schedslemaelement for ev-
ery step to be taken by M3. The identity of the element iseéwaht: the length of the
schedule determines the number of steps taken. (The reasoark used for schedules
is historical and pedagogical: M3 is one machine in a seffiéisooeasingly sophisti-
cated machines. Eventually the models include threadsheneléments of a schedule
specify which thread is to be run on each step.) M3 scheduletifans just construct
lists ofti cks, using(repeat ’'tick k) toconstructa list of length.

Sometimes, however, we are forced to use numeric schedugedist schedules.
The reason is that some M3 programs require hundreds ofdhdaf instructions to
be executed and constructing huge lists bt ks causes stack overflows. As you will
see later we use two different functions to run the schedules andr unl . The first
one is used when we have the schedule defined in terms of napalnelrthe second one
is used when the schedule is a list ofcks. The functionality of the two is equivalent
and(runl sched s) isreallyjust(run (Il en sched) s),wherel enisthe
length of the schedule defined as a list ofcks.

(defun pmat ch-1 oop2-sched (lastMatch pattern firstN i)
(decl are (xargs :neasure (nfix (- firstNi))))
(if (and (natp i) (natp firstN))
(if (>=1i firstN
(repeat 'tick 5)
(if (equal (char pattern i)
(char pattern | astMatch))
(append (repeat 'tick 13)

(prmat ch-1 oop2-sched (+ | astMatch 1)
pattern
firstN
(+i 1))

(repeat 'tick 12)))
nil))

The function says if is greater than or equal fd r st Nexecute five instructions,
otherwise execute 13 and incrementAfter the loop is done, execute 12 instructions
that follow the loop. Those limits are set by the Java code@bwhich says increment
i until it is less tharf i r st N. We know the number of instructions to be executed
from counting them in the loop portion of the bytecode.

Next, we define the hypotheses about the arguments that widshtorder for loop
to be “legally” executed. For example, we guaranteeithiatalways an integer, arid
is less thari i r st Nat each iteration of the loop.

(defun pmat ch-1oop2-hyps (lastMatch pattern firstNi)

12

(and (natp | astMatch)
(<= lastMatch (len (coerce pattern 'list)))
(stringp pattern)
(natp firstN)

(<= firstN (len (coerce pattern 'list)))

(natp i)

(<=1 firstN)

(equal (- (len (coerce pattern 'list)) |astMatch)

(- firstNi))))

Finally we define the theorem that states the correctne$sedbbp. The theorem
says that if we are in the state of the program where the nexisexecuting the second
loop of prrat ch (i.e., the pc is 48 in the pmat ch- codex), and all the hypotheses
about the arguments are satisfied, then running the loopdiagao the schedule that
we defined will push the same number on the stack (0 or 1) aptwfication of the
loop that we defined would.

(defthm pnat ch- 1 oop2-correct
(implies (pnatch-1oop2-hyps | astMatch pattern FirstN i)
(equal
(runl
(prmat ch-1 oop2-sched | ast Match pattern firstN i)
(make-state
(push
(make-frane
48
(list v lastMatch pattern
j dtlength firstNi)
ni
*pmat ch- codex
" unl ocked)
(push (make-frame caller-pc
caller-locals
cal |l er-stack
cal | er-program
cal | er-sync)
rest-of-call-stack))
heap
cl ass-table))
(make-state
(push
(make-frame caller-pc
caller-locals
(push (pmat ch-1oop2-spec | ast Match

pattern
firstN
i)
cal | er-stack)
cal I er-program
cal l er-sync)
rest-of-call-stack)
heap
class-table)))
chints (("Goal" :in-theory (disable acl2::firstn-too-big))))

The hint above is supplied only to help ACL2 discover the peoal is not relevant
to the meaning of the formula.

13

6 Verifying the pmatch Method

We prove the first loop in pmatch in a manner similar to the cgsedbed above. Now

that we know that both of the loops pmrat ch are correct we can rely on those facts

to prove the overall correctness of the deepest functiohepteprocessing algorithm.
Similar to what we did for the loop we first define the specifaafor the function

in terms of what arguments it takes and what it is supposedttor to the call-stack

once it is finished executing.

(defun pmatch-spec (v lastmatch pattern j)
(letx ((patternl (coerce pattern 'list))
(patternLength (len patternl)
(dtLength (+ (- patternLength | astnatch) 1))
(firstn (+ dtLength j))
(offset (- patternLength firstn))
(i (+] 1))
(if (or (and (< j 0)
(equal (firstn firstn patternl)
(nthcdr offset patternl)))
(and (>=j 0)
(equal v (char-code (char patternj)))
(equal (firstn (- firstn i) (nthcdr i patternl))
(nthcdr | astmatch patternl))))
1

0)))

As described in the previous sectiopsat ch takes in 4 arguments and returns
true orfalsq 1 or 0) based on whether or not a partial match of the discovered text
occurs in the pattern at specified ingexWe split the spec in two cases, the first one is
whenj is less than 0, which allows the discovered text to “fall dfié left end of the
pattern. The second is the “regular” case, whes positive.

Next we describe the state at which the programis ready t@maiknvokest at i ¢
call topmat ch. Thepoi sed-t o-i nvoke- predicate is the “precondition” for in-
voking the function expressed in terms of what state thénggfirogram is in.

(defun poi sed-to-i nvoke-pmatch (v lastmatch pattern j s)
(and (boyer-npore-cl ass-loadedp (class-table s))
(equal (next-inst s) '(invokestatic "Boyer-More" "pmatch" 4))
(equal v (top (pop (pop (pop (stack (top-frane s))))))) ; local O
(equal |astnmatch
(top (pop (pop (stack (top-frame s)))))) ; local 1
(equal pattern

(top (pop (stack (top-frame s))))) ; local 2
(equal j (top (stack (top-franme s)))) ; local 3
(natp v)
(< v 256)

(natp | astmatch)
(and (>= lastMatch 1)
(<= lastMatch (len (coerce pattern 'list))))

(stringp pattern)

14

(integerp j)
(and (<=j (- lastMatch 2))
(>=j (- (- lastMatch (len (coerce pattern '"list))) 1)))))

Here we say that we expect the calling function to have 4 asgison top of the
stack to be passed fmmat ch, and also assume that those arguments are “legal”. In
particular, we expect to be a natural number less than 256, as it is the Latin 1 rep-
resentation of the charactérast mat ch to be a natural index into pattern which is
between 1 (the last index at which the match could occuratise the string search-
ing algorithm would match the whole pattern and succeed)thedength of pattern
(the upper limit indicating that the last letter of the pattand the first letter of the dis-
covered text didn’t matchpat t er n to be a string, angl to be an integer index into
pattern that is less thdrast Mat ch - 2 (j can't be larger because the “discovered
text” is something that has matched - at least one charadteowe mismatched char-
acter appended onto the matched portion), and greated thahMat ch minus the
length of the pattern - 1, because that is the maximum amgunhixh the discovered
text can fall of the left end of the pattern.

We also say that we expect amvokest at i ¢ call to prmat ch to be the next
instruction to be executed.

Next, we define the schedule for pmatch - the function thdtreilirn the number
of ' ti cks to run the function to completion.

(defun pmatch-sched (v lastmatch pattern j)
(letx ((patternl (coerce pattern 'list))
(patternlength (len patternl))
(dtlength (+ (- patternlength |l astmatch) 1))
(firstn (+ dtlength j))
(offset (- patternlength firstn))
(i (+]j 1))
(append
(repeat 'TICK 14)
(if (<] 0
(append
(repeat 'TICK 7)
(prmat ch-1 oopl-sched pattern firstn offset 0))
(append
(repeat 'TICK 5)
(if (equal v
(char-code (char pattern j)))
(append (repeat 'TICK 4)
(prmat ch-1 oop2-sched | astmatch pattern firstn i))
(repeat ' TICK 2)))))))

The schedule fopmat ch is defined in terms of the schedules for the loops. We
first count how many instructions we need to execute to détermhat loop we need
to enter, which depends on whether or pas less than 0. If is less than O we enter
and complete the first loop by callipgrat ch- | oop1- sched, otherwise, we check
if v is equal topat [j], and based on that either enter and execute the second loop or
exit and return.

Finally we define actual correctness theorem. The theorgstbat if we are in
the state “poised-to-invokgimat ch, then running according to the schedule function

15

would put a 1 or a 0 on top of the stack in accordance with what@L 2 function
that is proved to be correct would return.

(def t hm pmat ch- correct
(implies (poised-to-invoke-pmatch v |astnatch pat | s)
(equal (run (pmatch-sched v lastmatch pat j)
s)
(nmodify s
:stack
(push
(if (pmatch
(cons (code-char v)
(nthedr |astnatch
(coerce pat 'list)))
(coerce pat 'list)
i)
1
0)
(popn 4 (stack (top-frame s))))))))

When ACL2 proves this it simulates forward from the inititdte and when it gets
to either of the loops it appeals to the previously provedners establishing their
behaviors.

We use the correctness pifrat ch to prove the correctness »f the function that
calls it by allowing the theorem prover to skip thavokest at i ¢ call topmat ch
assuming that it is correct.

7 Verifying the x method

We can now prove the correctnessxoflust as wittprmat ch we start by defining the
specification of the return value for the function. We definia iterms of the ACL2
functionx that is proven to be correct.

(defun x-spec (v lastmatch pattern j)
(letx ((patternl (coerce pattern 'list))
(dt1 (cons (code-char v) (nthcdr |astmatch patternl))))
(acl2::x dtl patternl j)))

We expect the M3 functior to return the same value the ACL2 functiometurns.

As with pmat ch we continue by formally specifying the “poised-to-invokeéd-
icate, which describes the state the program is in when tkieimgtruction to execute
is thei nvokest ati c calltox.

(defun poised-to-invoke-x (v |lastmatch pattern j s)
(and (boyer-noore-cl ass-l1oadedp (class-table s))
(equal (next-inst s) ’'(invokestatic "Boyer-More" "x" 4))
(equal v (top (pop (pop (pop (stack (top-frane s))))))) ; local O
(equal |astnatch
(top (pop (pop (stack (top-franme s)))))) ; local 1
(equal pattern
(top (pop (stack (top-frame s))))) ; local 2
(equal j (top (stack (top-frame s)))) ; local 3

16

(natp v)
(< v 256)
(natp | astmatch)
(>= lastmatch 1)
(<= lastmatch (len (coerce pattern 'list)))
(stringp pattern)
(integerp j)
(and (<=j (- lastMatch 2))
(>=j (- (- lastMatch (len (coerce pattern 'list))) 1)))))

The requirements for the arguments and the elements on titlye chll-stack ok
are similar to those gbmat ch, as two functions take the same set of arguments. The
only difference between two predicates is that we expectrarokest at i ¢ call to
X rather than tgonat ch to be executed next.

Next, we define the schedule functiofhas only one instruction before calling the
loop, so we only append one i ck before calling the loop schedule.

(defun x-sched (v | astMatch pattern j)
(cons ' TICK
(x-1oop-sched v | astMatch pattern j)))

where

(defun x-1oop-sched (v lastMatch pattern j)
(decl are
(xargs :nmeasure
(+ 2 (nfix (+ (+1 (- (len (coerce pattern "list)) lastMtch))
i)))))
(if (and (integerp j)
(natp | ast Mat ch)
(<= lastMatch (len (coerce pattern '"list))))
(if (acl2::pmatch (cons (code-char v)
(nthcdr | astMatch
(coerce pattern 'list)))
(coerce pattern ’'list)
i)
(append (repeat ’'TICK 4)
(pmat ch-sched v | ast Match pattern j)
(repeat 'TICK 3))
(append (repeat 'TICK 4)
(pmat ch-sched v | ast Match pattern j)
(repeat 'TICK 3)
(x-1oop-sched v lastMatch pattern (- j 1))))
0))

The schedule for the loop illustrates three important points. First, the admissibn o
x- 1 oop- sched requires a measure to “explain” why it terminates; even gfiguis
decreasing in the recursign,is not tested against O (indepdnay become negative).
But eventuallyj gets “so negative” that themat ch must succeed. This measure is
actually the same measure used to admitxttienction itself. Second, the number of
instructions thex method takes depends on how many iteratiotskes, which means
testingprat ch to determine when the partial match is found. Third, the naimb
of instructions depends on how many instructionsgh@at ch method takes, which

17

means callingprmat ch- sched for each test done. These same issues arise virtually
every time we define a schedule function.

Finally, we define the correctness theoremxomvhich says that if we are in the
state “poised-to-invokex then running the schedule faron states would increment
the program counter of the top frame by 1 and push the same wealto the stack as
the specification fox would.

(deft hm x-correct
(i nmplies (poised-to-invoke-x v |astmatch pattern j s)
(equal (runl (x-sched v lastmatch pattern j)
s)
(rmodify s
:pc (+ 1 (pc (top-frane s)))
:stack
(push (x-spec v lastmatch pattern j)
(popn 4 (stack (top-frame s))))))))

As was the case withmat ch we first proved the correctness of the loop inside
X to allow the theorem prover to skip the loop part of the praad assume that it is
correct.

8 Verifying the delta method

Next we prove the correctnessaél t a function in a very similar manner. The spec-
ification fordel t a is also defined in terms of what the corresponding ACL2 fuomcti
does.

(defun delta-spec (v j pattern)
(delta (code-char v) | pattern))

Next we define the “poised-to-invoke” predicate for the fiimm.

(defun poi sed-to-invoke-delta (v j pattern s)

(and (boyer-npore-cl ass-loadedp (class-table s))

(equal (next-inst s)
"(invokestatic "Boyer-More" "delta" 3))

(equal v (top (pop (pop (stack (top-frame s))))))
(equal j (top (pop (stack (top-frane s)))))
(equal pattern (top (stack (top-frane s))))
(natp v)
(< v 256)
(natp j)
(<j (len (coerce pattern 'list)))
(stringp pattern)))

The schedule fodel t a calls the schedule fot, asdel t a does not do anything
other than calling« and then subtracting the result frgmat t ern. ength - 1.

(defun delta-sched (v j pattern)
(append (repeat ’'TICK 13)
(x-sched v (+] 1) pattern (- j 1))
(repeat "TICK 3)))

18

And finally we show the correctness theoremdet t a. Just as before the idea is
that if we are in the state “poised-to-invok&él t a then running the schedule on the
current state would modify the state in the same way the AQI2tiondel t a would
(which is defined formally in our specification).

(def thm del t a-correct
(inmplies (poised-to-invoke-delta v j pattern s)
(equal (runl (delta-sched v j pattern)

s)
(nmodify s
:pc (+ 1 (pc (top-frane s)))
:stack (push (delta-spec v j pattern)
(popn 3 (stack (top-frame s)))))))
chints (("Goal" :in-theory (e/d (delta) (x)))))

9 Verifying the preprocessing Method

Finally, the main and the hardest proof is the correctneshepr epr ocessi ng
function for which the two top-level theorems are shown iottea 4.

We start describing this proof by providing the scheduledoepr ocessi ng
and describing the “poised-to-invoke” predicate, juselike did for all of the other
functions.

Preprocessi ng has a nesteflor -1 oop in it and so the top-level schedule
function calls the schedule of the outer loop, which in tuatiscthe schedule of the
inner loop.

(defun preprocessi ng-sched (pattern)
(append (repeat ’'TICK 8)
(preprocessing-outerl oop-sched 0 pattern)))

(defun preprocessi ng-outerloop-sched (i pattern)
(declare (xargs :measure (nfix (- 256 i))))
(cond ((or (not (natp i))
(>=i 256))
(repeat 'TICK 5))
(t (append (repeat 'TICK 5)
(preprocessing-i nnerl oop-sched i 0 pattern)
(repeat 'TICK 2)
(preprocessi ng-outerl oop-sched (+ i 1) pattern)))))

(defun preprocessing-innerloop-sched (i j pattern)
(declare (xargs :measure (nfix (- (len (coerce pattern 'list)) j))))
(cond ((or (not (natp j))
(not (stringp pattern))
(>=j (length pattern)))
(repeat 'TICK 4))
(t (append (repeat ’'TICK 11)
(delta-sched i j pattern)
(repeat 'TICK 3)
(preprocessing-innerloop-sched i (+ j 1) pattern)))))

The “poised-to-invoke” predicate f@r epr ocessi ng is different from the ones
that we have seen in the previous sections in having threii@ta requirements -

19

pseudo- heap, which checks whether the heap is well-formed in accordaiittethe
M3 representation of the hegpseudo- cl ass-t abl ep, which checks if the class
table is well-formed, andscendi ng- addr esesp, which checks that addresses in
the heap are listed in ascending order.

(defun poi sed-to-invoke-preprocessing (pattern s)
(and (boyer-noore-class-loadedp (class-table s))
(equal (next-inst s)
"(invokestatic "Boyer-NMore" "preprocessing" 1))

(equal pattern (top (stack (top-frane s))))
(stringp pattern)
(pseudo- heap (heap s))
(ascendi ng- addr essesp (heap s))
(pseudo-cl ass-tablep (class-table s))))

From the proof perspective the codgwfepr ocessi ng can be viewed as having
three phases: the initialization, where we allocate a timoedsional array, outer loop
and inner loop. In the inner loop we start with some heap, ereeice to a 2D array,
an index: that indicates the row, and an indg:xhat points to some element in row
1 of the 2D array. We prove that inner loop correctly sets updieenents of row
starting with indexj and up to the end of the row. Then we go to the outer loop
and follow the same logic, proving that all rows startinghwitand up to 256 are set
correctly. The complication that we face here is that we rieedake sure that setting
up one row doesn’t overwrite the rows that have already be#étew. This goes back
to the mechanism of allocating new Objects used by M3, wheassigns the address
for the new Object one greater than the last address albbeatehe heap. This is
whereascendi ng- addr essesp predicate defined in “poised-to-invoke” becomes
important as we require that heap addresses always comednding order. This is
intuitive for our M3 model.

After proving the correctness of both the inner and the dotgys we prove the two
top-level theorems aboptr epr ocessi ng shown in 4. The details from the proofs
can be found in the scrifr epr ocessi ng. | i sp.

10 \Verifying the Fast String Searching Algorithm

In conclusion we want to show how Moore used the proof of ainess of the pre-
processing to verify the overall total correctness of thebyiecode version of the fast
string searching algorithm.

As usual, we start with the “poised-to-invoke” predicatés ttime for the call to
f ast —the function that implements the string searching algorit

(defun poi sed-to-invoke-fast (pat txt s)
(and (boyer-npore-cl ass-1oadedp (class-table s))

(equal (next-inst s) '(invokestatic "Boyer-More" "fast" 2))
(equal pat (top (pop (stack (top-frane s)))))
(equal txt (top (stack (top-frame s))))
(stringp pat)
(stringp txt)
(pseudo- heap (heap s))

20

(ascendi ng- addr essesp (heap s))
(pseudo-cl ass-tablep (class-table s))))

Notice, how it also has thascendi ng- addr essesp requirement similar to
the one thapr epr ocessi ng had.

The main theorermB- f ast -i s- correct uses thef ast - cl k function in-
stead of the regular schedule. The reason is that we canmsthedule functions on
large pieces of bytecode because appentingk’s that is done by them causes stack
overflows.Fast - cl k is a numeric equivalent to list #fi ck’s and the equivalence is
provenin scripsched-to-cl k. | i sp.

(defthm nB-fast-is-correct
(implies (poised-to-invoke-fast pat txt s)
(equal (run (fast-clk pat txt) s)
(rmodify s
:pc (+ 1 (pc (top-franme s)))
:stack (push (if (correct pat txt)
(correct pat txt)
-1)
(pop (pop (stack (top-frame s)))))
- heap
(fast-heap pat s)))))

The theorem says that runnih@st - cl k on some state modifies that state in the
same way as the obviously correct string searching alguorilefined incor r ect
would modify it. We show the definition of the obviously cartestring searching
algorithm below, and it is also described in [10].

(defun correct (pat txt)
(correct-1oop pat txt 0))

(defun correct-1oop (pat txt i)
(decl are (xargs :neasure (nfix (- (length txt) i))))
(cond ((not (natp i)) nil)
((>=1i (length txt)) nil)
((xmatch pat 0 txt i) i)
(t (correct-loop pat txt (+ 11i)))))

(defun xmatch (pat j txt i)
(declare (xargs :nmeasure (nfix (- (length pat) j))))
(cond ((not (natp j)) nil)
((>=] (length pat)) t)
((>=1i (length txt)) nil)
((equal (char pat j)
(char txt i))
(xmatch pat (+ 1 j)
txt (+1i)))
(t nil)))

We would also like to include the demonstration of actuallpring the fast al-
gorithm using the preprocessing and producing the resattttie obviously correct
string searching algorithm produces. In this demonstnati@ bytecode is executed
for 371,571 steps to find the first occurrence (at locationo83yomedy" in the string

21

"subject of a running joke on the comedy show". Note that #egphstarts empty, and
the final heap contains 257 objects allocated during the fufasb. While it is not
recorded in the defthm below, if one times the computatiofrain cl k s0), one
learns that it takes 1.40 seconds runtime on a 2.3 GHz Inte¢ @o Thus, M3 is
executing 226,836 bytecodes/second in this example.

(def t hm denonstrati on
(letx ((pat "conedy")
(txt "subject of a running joke on the conedy show')
(clk (fast-clk pat txt))
(sO (nodify nil
:pc O
:locals nil
:stack (push txt (push pat nil))
:program’ ((invokestatic "Boyer-More" "fast" 2)
(halt))
:sync-flg ’unl ocked
s heap nil
:class-tabl e (make-cl ass- def
(lI'i st *boyer-npore-classx))))
(sfin (run clk s0)))
(and (equal clk 371571)
(equal (top (stack (top-frame sfin))) 33)
(equal (correct pat txt) 33)
(equal (len (heap sfin)) 257)))
:rul e-classes nil)

11 Contributions

The proof of the correctness of the preprocessing algorittireved the assumption
made about the preprocessing in the Moore-Martinez work [IDis also completes
the first complete verification of the Boyer-Moore fast sjrgearching algorithm at the
code level. The only other mechanical proof of the corrextrod the algorithm is [1],

and it was the algorithm level proof.

This is also the first time for any JVM model implemented in AQkhere things
about writing to a two-dimensional array are proved. Beeanfsthe way we repre-
sent 2D arrays in ACL2 (as an array of references) this ha® moodo with pointer
manipulation than mere array manipulation.

Moore says that “this project also demonstrated that oustcocted (but very in-
efficient) schedule functions work perfectly well for totadrrectness via direct oper-
ational semantics, even for algorithms with complicatechteation measures”. The
point here is that unlike in simple programs where the nunabénstructions to be
executed is precomputed and the schedule can be defined mpla sirithmetic ex-
pression, e.g.3 + 11n, here the schedule is defined as a recursive function. Like in
prmat ch the number of instructions to be executed depends on théittepef the
characters in the pattern. “So while intellectually | knéwe schedule-function works
just fine I've never seen it in action in a more sophisticatdtireg than this,” he says.

22

12 Acknowledgments

I'd like to thank J Moore and his endowed chair — the AdmirdRBinman Centennial
Chair in Computing Theory — for the support | received fromarththat made this
project possible. I'd also like to acknowledge Matt Martitsecontributions to building
an M3 model that the code for the proof is written in and Haghiiu whose M6 model
[9] served as a partial base for our M3 model.

A The Bytecode

Here is the bytecode we verified. Toibazarov was in charge ethadspnat ch,

del ta, x andpr eprocessi ng. Moore later ported the M1 implementation of

f ast, the function that implements the fast string searchingrilgm described in
[10] to M3, inserted the part that invokes epr ocessi ng method, and re-verified
the correctness dfast using the theorems about the correctnegg @pr ocessi ng,
proved in this paper. Theai n method was used for debugging purposes only and was
not verified.

(" Boyer - Moor e"

("Onject")

NI L

(("fast" (PAT TXT) NL
(LOAD 0)
(CONST "")
(1 F_ACMPNE 8)
(LOAD 1)
(CONST "")
(1 F_ACMPNE 3)
(CONST -1)
(XRETURN)
(CONST 0)
(XRETURN)
(LOAD 0)
(STRLENGTH)
(STORE 4)
(LOAD 1)
(STRLENGTH)
(STORE 5)
(LQAD 4)
(CONST 1)
(SuB)
(STORE 2)
(LOAD 2)
(STORE 3)
(LOAD 0)
(1 N\VOKESTATI C " Boyer - Mbore" "preprocessi ng" 1)
(STORE 6)
(LOAD 2)
(1 FLT 37)
(LOAD 5)
(LOAD 3)
(SuB)
(1 FLE 37)

23

(LOAD 0)
(LOAD 2)
(CHARAT)
(LOAD 1)
(LOAD 3)
(CHARAT)
(STORE 7)
(LOAD 7)
(SuB)
(I FNE 10)
(LOAD 2)
(CONST 1)
(SuB)
(STORE 2)
(LOAD 3)
(CONST 1)
(SuB)
(STORE 3)
(GOTO - 24)
(LOAD 3)
(LOAD 6)
(LOAD 7)
(AALOAD)
(LOAD 2)
(AALOAD)
(/ADD)
(STORE 3)
(LOAD 4)
(CONST 1)
(SuB)
(STORE 2)
(GOTO -37)
(LOAD 3)
(CONST 1)
(/ADD)
(XRETURN)
(CONST - 1)
(XRETURN))
(“pmatch” (V LASTMATCH PATTERN J) NIL
(LOAD 2)
(STRLENGTH)
(LOAD 1)
(SuB)
(CONST 1)
(ADD)
(STORE 4)
(LOAD 4)
(LOAD 3)
(/ADD)
(STORE 5)
(LOAD 3)
(1| FGTEQ 25)
(LOAD 2)
(STRLENGTH)
(LOAD 5)
(SuB)
(STORE 6)

24

(CONST 0)

(STORE 7)

(LOAD 7)

(LOAD 5)

(| F_CVPGE 14)

(LOAD 2)

(LOAD 7)

(CHARAT)

(LOAD 2)

(LOAD 6)

(LOAD 7)

(ADD)

(CHARAT)

(I F_CVPEQ 3)

(CONST 0)

(XRETURN)

(INC 7 1)

(GOTO - 15)

(GOTO 27)

(LOAD 0)

(LOAD 2)

(LOAD 3)

(CHARAT)

(I F_CVPEQ 3)

(CONST 0)

(XRETURN)

(LOAD 3)

(CONST 1)

(/ADD)

(STORE 6)

(LOAD 6)

(LOAD 5)

(| F_CVPGE 13)

(LOAD 2)

(LOAD 6)

(CHARAT)

(LOAD 2)

(LOAD 1)

(CHARAT)

(I F_CVPEQ 3)

(CONST 0)

(XRETURN)

(INC 1 1)

(INC 6 1)

(GOTO - 14)

(CONST 1)

(XRETURN))

("x" (V LASTMATCH PATTERN J) NIL

(LOAD 0)
(LOAD 1)
(LOAD 2)
(LOAD 3)
(I NVOKESTATI C " Boyer - Mbor e" "pmat ch" 4)
(I FNE 3)
(INC 3 -1)
(GOTO -7)
(LOAD 3)

25

(XRETURN))
("delta" (V J PATTERN) NIL
(LOAD 2)
(STRLENGTH)
(CONST 1)
(SuB)
(LOAD 0)
(LOAD 1)
(CONST 1)
(ADD)
(LOAD 2)
(LOAD 1)
(CONST 1)
(SuB)
(1 NVOKESTATI C " Boyer - Moore" "x" 4)
(NEG
(ADD)
(XRETURN))
("preprocessing" (PATTERN) N L
(CONST 256)
(LOAD 0)
(STRLENGTH)
(MULTI ANEWARRAY 2)
(STORE 1)
(CONST 0)
(STORE 2)
(LOAD 2)
(CONST 256)
(1 F_CWPGE 20)
(CONST 0)
(STORE 3)
(LOAD 3)
(LOAD 0)
(STRLENGTH)
(1 F_CWPGE 12)
(LOAD 1)
(LOAD 2)
(AALOAD)
(LOAD 3)
(LOAD 2)
(LOAD 3)
(LOAD 0)
(| NVOKESTATI C "Boyer - Mbore" "delta" 3)
(AASTORE)
(INC 3 1)
(GOT0 -14)
(INC 2 1)
(GOoro -21)
(LOAD 1)
(XRETURN))
("main" (X) NL
(CONST "abcgbchbccbce")
(STORE 1)
(LOAD 1)
(1 NVOKESTATI C " Boyer - Mbore" "preprocessi ng" 1)
(RETURN))))

26

References

[1] M. Besta and F. Stomp. A complete mechanization of a cbness proof of a
string-preprocessing algorithiormal Methods in System Desi#v(1-2):5-27,
2005.

[2] R. S. Boyer and J S. Moore. A fast string searching alparit Comm. ACM
20(10):762-772,1977.

[3] R.S.BoyerandJS. Moord Computational LogicAcademic Press, New York,
1979.

[4] R. S. Boyer and J S. Moore. A verification condition generdor FORTRAN.
In The Correctness Problem in Computer Scienages 9-101, London, 1981.
Academic Press.

[5] Richard Cole. Tight bounds on the complexity of the begreyore string match-
ing algorithm. INSODA '91: Proceedings of the second annual ACM-SIAM sym-
posium on Discrete algorithmpages 224-233, Philadelphia, PA, USA, 1991.
Society for Industrial and Applied Mathematics.

[6] L. Guibas and A. Odlyzko. A new proof of the linearity ofthoyer-moore string
searching algorithmSIAM Journal of Computind:672-682, 1980.

[7]1 M. Kaufmann, P. Manolios, and J S. Moor&€omputer-Aided Reasoning: An
Approach Kluwer Academic Press, Boston, MA., 2000.

[8] D. Knuth, V. Pratt, and J. Morris. Fast pattern matchimgtrings.SIAM Journal
of Computing6(2):323-350, 1977.

[9] H. Liu. Formal Specification and Verification of a JVM and its Bytex&bbri-
fier. PhD Dissertation, Department of Computer Science, Usiiyeof Texas at
Austin, 2006.

[10] JS. Moore and M. Martinez. A Mechanically Checked Pfdhe Correctness of
the Boyer-Moore Fast String Searching Algorithm.Bngineering Methods and
Tools for Software Safety and Security (Proceedings of thederdorf Summer
School, 2008)M. Broy, W. Sitou, and T. Hoare (eds), pages 267-284, 2@DS. |

Press.
[11] J S. Moore. Mechanized operational semantics: Lestuaead sup-
plementary material. InMarktoberdorf Summer School 2008: Engi-

neering Methods and Tools for Software Safety and Securk@08.
http://www.cs.utexas.edu/users/moore/publicatiafisstmarktoberdort-
08/index.html.

27

