] Mechanized Formal Reasoning about Programs and
Computing Machines

Robert S. Boyer
University of Texas at Austin

J Strother Moore
Computational Logic, Inc., Austin, Texas

The design of a new processor often requires the invention and use of a new machine-
level programming language, especially when the processor is meant to serve some
special purpose. It is possible to specify formally the semantics of such a pro-
gramming language so that one obtains a simulator for the new language from the
formal semantics. Furthermore, it is possible to configure some mechanical theorem
provers so that they can be used directly to reason about the behavior of programs
in the new language, permitting the expeditious formal modeling of the new de-
sign as well as experimentation with and mechanically checked proofs about new
programs. We here study a very simple machine-level language to illustrate how
such modeling, experimentation, and reasoning may be done using the ACL2 auto-
mated reasoning system. Of particular importance is how we control the reasoning
system so that it can deal with the complexity of the machine being modeled. The
methodology we describe has been used on industrial problems and has been shown
to scale to the complexity of state-of-the-art processors.

4.1 Historical Background

Why write about how to formalize the semantics of a simple programminglanguage?
The answer is that it is a skill necessary to the application of formal reasoning tools
to industrial microprocessor design. We advocate, in fact, the use of an operational
semantics expressed in a computational logic, e.g.. one supporting execution. We do
so for two reasons: such a semantics is usually accessible to the engineers involved
and is unusually effective in enabling mechanized proof. The last two decades of
our research can be seen as an effort to demonstrate the latter claim.

In the late-1970’s we were concerned with proving the correctness of a program
written in the machine code for the Bendix BDX930 computer [10]. At the time
we wrote:

To capture the semantics of the instruction set, we encoded in our logic
a recursive function that describes the state changes induced by each

BDX930 instruction. Thirty pages are required to describe the top level

2 Chapter 4

driver and the state changes induced by each instruction (in terms of cer-
tain still undefined bit-level functions such as the 8-bit signed addition
function). We encountered difficulty getting the mechanical theorem-
prover to process such a large definition. However, the system was
improved and the function was eventually admitted. We still anticipate
great difficulty proving anything about the function because of its large
size.

The formal system we used in the Bendix 930 work was the early version of
Nqthm [2, 4]. The “large size” of our BDX930 specification drove much of our work
on Ngthm’s implementation and how to use a formal logic to specify a von Neumann
computing machine. By the mid-1980’s, Nqthm was able to handle an RTL-level
description of a “home-grown” microprocessor, the FM8501, a specification of its
machine code, and the proof that the RTL description implemented the machine
code [11]. Later, the FM8502 was produced, a 32-hit wide version of the 16-bit
wide FM8301. By the late 1980’s, Nqthm had

been used to verify the “CLI Stack,” which provided the FM8502 with a linking
assembler and a compiler for a simple high-level language [1]. The stack also pro-
vided a simple operating system kernel for a machine similar to the FM8502. The
stack work was carried out by the two authors, our colleague Matt Kaufmann, and
our students Bill Bevier, Warren Hunt, and Bill Young.

However, as late as 1990, the CLI stack was still only a theoretical exercise be-
cause the FM8502 could not be practically fabricated from its RTL-level description.
This changed in 1991, when Bishop Brock and Warren Hunt produced a verified mi-
croprocessor, the FM9001 [12]. They formalized the Netlist Description Language
(NDL) of LSI Logic, Inc., in the Ngthm logic and then used that formal language
to describe a microprocessor similar to the FM8502. After the correspondence of
the NDL description and the machine code specification was proved, the NDL de-
scription was sent to LSI Logic, Inc., and a chip was fabricated. The rest of the
stack was ported to the FM9001 by re-targeting and re-verifying the link assembler,
a process that was almost entirely automatic [19]. In addition, our student Matt
Wilding implemented some applications programs on the FM9001 (using the link
assembler) and proved them correct [23].

Finally, in 1991, our student Yuan Yu used Nqthm to formalize 80% of the user
mode instruction set of a commercial microprocessor, the Motorola MC68020 [25, 5]
and then used the formal model to verify many binary machine code programs
produced by commercial compilers from source code in such high-level languages

Mechanized Formal Reasoning about Programs and Computing Machines 3

as Ada, Lisp and C. For example, Yu verified the MC68020 binary code produced
by the “gcc” compiler for 21 of the 22 C programs in the Berkeley string library.

Mechanized formal reasoning is now being used in an experimental fashion in
support of industrial microprocessor design. Such projects are carried out in col-
laborations between the industrial design team and the developers of the formal
reasoning systems.

The PVS system [21] was used to specify about half of the instructions on the
AAMPS5, an avionics processor developed by Rockwell-Collins, and the microcode
of about a dozen instructions was verified against the formal specification [17].
The ACL2 system [13, 14, 9] a successor of Nqthm was used to specify Mo-
torola’s Complex Arithmetic Processor (CAP) and many theorems were proved
about it, including the correctness of an abstraction that eliminates the pipeline
and the correctness of several microcode programs involved in digital signal pro-
cessing (DSP) [9]. In addition, ACL2 has been used to verify the microcode for
both floating-point division [20] and square root [22] on the AMD5 k86, the first
Pentium-class microprocessor produced by Advanced Micro Devices, Inc.

Common to these projects is the formalization of a machine-code-like program-
ming language and the configuration of a mechanized reasoning system so that
it can be used directly in the construction of proofs about programs in that lan-
guage. The development of reasoning tools for standard languages such as VHEDL
will undoubtedly remove some of the necessity of “rolling your own” formal seman-
tics. The Brock-Hunt NDL formalization for FM9001, for example, can be reused
to verify other hardware designs [18]. But as long as microprocessors support
new, special-purpose machine languages—i.e., as long as designers produce special-
purpose microprocessors such as the now-old fashioned BDX930, or the brand new
AAMPS5 and CAP—formal mechanical verification will require the formalization of
new machine-level languages and the construction, one way or another, of mechan-
ical aids to reasoning.

We hope that this formalization will someday be done by the engineers on the
project. This is not a farfetched notion. After all, it is the engineers on the project
who are routinely “rolling their own” languages; they simply do not so often write
down the semantics precisely. One great benefit of doing so is that it increases the
clarity and precision of the communication between team members when discussing
changes to the evolving design. We believe that an operational semantics, where one
defines the effect of each instruction, is often quite similar to the informal notions
the team members would otherwise employ to think about their language. A formal
operational semantics can immediately provide another great benefit to the design
team: an execution or simulation capability for the new language. Therefore. we

4 Chapter 4

think it is both feasible and desirable for a design team to “roll their own” formal
semantics.

But special-purpose processors especially those in which mechanically checked
proofs are seen as desirable often have arcane and complex instruction sets, for
otherwise a standard commercial chip would have been used. For example, the CAP
has six independent memories, four multiplier-accumulators, over 250 programmer-
visible registers, and allows instructions which simultaneously modify well over 100
registers. The microcode has a 64-bit instruction word that decodes to a 317-bit
control word internally. In is not unusual in typical CAP DSP application programs
to encounter instructions that simultaneously modify several dozen registers. In-
deed, it is that very complexity that encourages the design team to seek reassurance
in mechanically checked arguments.

Once the formal semantics is written down, it is often desirable to have mechani-
cal aid to support formal reasoning. A wonderful and obvious solution would be to
construct a special-purpose GUI integrated into the team’s CAD tools and which
uses a theorem prover “behind the scenes.” Unfortunately, such systems take a
great deal of time to develop but are needed before the language/machine is com-
pletely designed. Hence it is often expedient to define the semantics in a formal logic
in the first place and then use an existing theorem proving tool directly. The direct
use of a general-purpose theorem prover driven by the evolving formal semantics of
the machine is in conflict with the “wonderful and obvious” solution in which the
formal machinery is hidden from the user. But until mechanical theorem provers
are smarter or the pace slows down so that applications- and language-specific tools
can be built, we believe this is the most cost-effective scenario.

That it is possible to so use a mechanical theorem prover has now been demon-
strated repeatedly in the projects cited above. We cite especially the case study of
the CAP described in [9]. Such demonstrations are eloquent testimony to the ad-
vances in automated reasoning since the late "70s. But we are left with a problem:
somebody on the team must be prepared to formalize an evolving complex language
and configure an existing theorem prover to make it relatively straightforward to
reason about the new programs being written. There is no doubt, today, that the
person must be intimately familiar with the theorem prover, but we hope that will
change. We believe tools can be built to make the process easier. But in the mean-
time, it is important to explain how it is done. The formalization of such complex
languages is difficult to do. It is even more difficult to learn how to do formalization
by studying the industrial examples cited above. Hence this exposition.

We describe and then formalize the semantics of a simple language and then give
practical advice for how to prove theorems about programs written in the language.

[

Mechanized Formal Reasoning about Programs and Computing Machines

The approach we describe is essentially that used in the Nqthm and ACL2 projects
described above. Furthermore, the Nqthm and ACL2 users above were taught
this method of formalization via examples very similar to this one, primarily in
our graduate class, Recursion and Induction, at the University of Texas at Austin.
That this technique scales up to languages that are many orders of magnitude
more complicated than this one is demonstrated by [5, 9]. Therefore, simplicity
here should be looked upon as a virtue.

We will use ACL2 as the formal system in which the semantics is expressed and
the proof advice is given. ACL2 is merely an axiomatization of an applicative
subset of Common Lisp. The reader familiar with some Lisp will have no trouble
understanding our formalization. For readers unfamiliar with Lisp we informally
paraphrase each important formula. We believe that the value of this approach is
independent of ACL2 or any particular formalism. Therefore, we urge readers who
use other systems to read on.

To obtain ACL2 by ftp, first connect to ftp.cli.com by anonymous login. Then ‘cd’
to /pub/acl2/v1-8, ‘get README’ and follow the directions therein. Alternatively,
one may obtain ACL2 via the World Wide Web with the URL http://www.cli.com/-
software/acl2/index.html. The ACL2 system includes extensive hyper-linked on-
line documentation available via ACL2 documentation commands, HTML browsers,
Emacs Info, and in hardcopy form. See [13]. Contact the authors to obtain the file
of ACL2 definitions and theorems described here.

4.2 A Simple Machine-Level Language

4.2.1 States

The state of our machine will be represented by a 5-tuple. We define the function
statep to recognirze lists of length 5,

(defun statep (x)
(and (true-listp x)
(equal (len x) 5))) .

This definition actually introduces an axiom defining a new function, statep, of
one argument, x. The function returns t (true) if x is a “true list” (a binary tree
whose right-most branch terminates in nil) and its length is 5. Otherwise statep
returns nil. In Lisp notation, the application of the function symbol statep to
its single argument, x, is written (statep x) as opposed to the more traditional
statep(x) notation.

6 Chapter 4

Our states will consist of a program counter, pc; a control stack of suspended
program counters, stk; the data memory, mem; a flag, halt, indicating whether the
machine is halted; and an “execute only” program memory, code. Our machine
does not have a separate “register file;” instead we use low memory addresses as
though they named registers.

In Common Lisp we define the five “accessors” as follows.

(defun pc (s) (nth 0 s)) ; pe(s) = nth(0,s)
(defun stk (s) (nth 1 s)) ; stk(s) = nth(1,s)
(defun mem (s) (nth 2 s)) ; mem(s) = nth(2,s)
(defun halt (s) (nth 3 s)) ; halt(s) = nth(3,s)
(defun code (s) (nth 4 s)) ; code(s) = nth(4,s)

For example, the first defun defines the function pc to take one argument, s and
to return the 07 element of s. Remarks after semicolons are comments.

We could write (list 27 a9 x3 24 x5) to denote a state whose components
are the five objects a7, ..., 5. But such positional notation can be difficult to
decipher. We prefer the notation (st :pc x7 :stk o :mem x3 :halt x4 :code
x5) simply because it reminds us of what each component represents. The order of
the key/value pairs is unimportant.

New states are often obtained from old ones by “changing” only a few components
and leaving the others unchanged. We introduce notation so that, for example,
(modify s :pc w1 :halt w9) isthe state whose components are the same as those
of s except that the pcis 21 and the halt flag is x9. That is, the modify expression
above denotes (1ist x7 (stk s) (mem s) 9 (code s)). We omit the definition

of modify.
4.2.2 Memory, Code, and Program Counters

The machine we have in mind provides a finite (but arbitrarily sized) memory. We
enumerate the memory locations from 0; each location contains an arbitrary object.
Hence a memory can be represented by a finite list of the objects it contains. To
refer to the contents of location n in memory mem we use (nth n mem). To change
the contents of location n to v we use (put n v mem). The function put is a simple
recursively defined list processing function.
(defun put (n v mem)
(if (zp n)
(cons v (cdr mem))
(cons (car mem) (put (- n 1) v (cdr mem)))))

Roughly speaking, to put v at position n in mem, put it at the front if n is 0 and
otherwise put it into position n-1 in (cdr mem) (the list containing all but the first

-1

Mechanized Formal Reasoning about Programs and Computing Machines

element of mem) and then add (car mem) (the first element of mem) onto the front.
For example, to put 77 at position 21in °(0 1 2 3 4) we use (put 2 77 °(0 1 2
3 4)) , which is equal to >(0 1 77 3 4).

What does put do if n is negative or not an integer? The answer is that it acts
as though n were 0. How? (Zp n) is defined to be true if n not a positive integer.
What if n > (len mem)? In this case we “cdr off the end” of mem. But cdr is a
total function that returns nil if its argument is not a list. Hence, put essentially
“coerces” mem to be long enough by extending it with nils. This allows many
theorems about put to be stated accurately without having to have hypotheses
about n and mem. The simplicity of both the definition of put and theorems about
it is one of the strengths of both Nqthm and ACL2.

In our machine, the “program memory,” code, will be represented by an associ-
ation list in which each program name is paired with the list of instructions in it.
Thus, for example, a program memory containing three programs, named times,
expt and main, will be represented by the list

> ((times insSg0 tNSo1 ... NS0 k)
(expt insqi,0 tns11 ... INS1 k)
(main nszo tNS21 ... NS ky)) .

Given the name of a program, name and a program memory, code, (cdr (assoc
name code)) returns the associated list of instructions.

Individual instructions will be lists. Abstractly every instruction will have an
opcode and two arguments, a and b.

(defun opcode (ins) (nth O ins))
(defun a (ins) (nth 1 ins))
(defun b (ins) (nth 2 ins))

Because nth, like put, extends its list argument with nils, we can write instructions
in three formats: (op), (op a), and (op a b) and omitted arguments default to
nil.

For example, the constant

(times (movi 2 0) ; 0 mem[2] « 0
(jumpz 0 5) ; 1 if mem[0]=0, go to 5
(add 2 1) ; 2 mem[2] — mem[l] + mem[2]
(subi 0 1) ; 3 mem[0] « mem[(0] - 1
(jump 1) ;4 gotol
(ret))) ; 5 return to caller

defines one program in our language. The constant is a list of seven elements.
The first, times, is the name of the program and the other six elements are the

8 Chapter 4

instructions. For example, the first instruction is (movi 2 0), which has an opcode
of movi, an a argument of 2 and a b argument of 0; the last instruction is (ret),
which has an opcode of ret and a and b arguments of nil. A typical code memory
will contain many such lists, one for each program in the machine. We will use
times repeatedly and we define the function times-program to be the constant
function which returns the above constant. That is,

(defun times-program ()
’(times (movi 2 0) ... (ret)))

and so (times-program) is equal to the constant above. We discuss the program
later.

Returning now to the formalization of our machine, the program counter, pc,
will be a pair, (name . i), indicating that the “current instruction” is the i*?

instruction in the program named name. Thus, to fetch an instruction we use

(defun fetch (pc code)
(nth (cdr pc)
(cdr (assoc (car pc) code)))) ,

and so the current instruction of a state is

(defun current-instruction (s)
(fetch (pc s) (code s))) .

To construct the program counter for the first instruction in the program named
name we use (cons name 0). To increment a program counter by one we use the
function

(defun pc+l (pc)
(cons (car pc) (+ 1 (cdr pc)))) .

Thus, if pc is ’ (times . 3) then (pc+1l pc) is > (times . 4).
4.2.3 Instructions Semantics

We can now begin the main task, namely the specification of the individual instruc-
tions on our machine. We will define only as many instructions as it takes to write
a couple of simple programs.

It will be our convention to define a function, called the semantic function, for
each instruction. The function will have the same name as the opcode of the
instruction. The function will take one more argument than the instruction does
and that extra argument shall be the machine’s state.

Mechanized Formal Reasoning about Programs and Computing Machines 9

Consider the move instruction, which has two arguments, the target address and
the source address, and is written as the list constant (move a b). Here is the
semantic function for the move operation,

(defun move (a b s)
(modify s
:pc (pc+l (pc s))
:mem (put a (nth b (mem s)) (mem s)))) .

The function modifies s in two places. The pc is incremented by one and the
contents of location b is deposited into location a.
Contrast this with the semantics of the “move immediate” instruction, movi,

(defun movi (a b s)
(modify s
:pc (pc+l (pc s))
:mem (put a b (mem s)))) ,

which deposits b, not its contents, into location a.
We provide two arithmetic instructions.

(defun add (a b s)
(modify s
:pc (pc+l (pc s))
:mem (put a
(+ (nth a (mem s))
(nth b (mem s)))
(mem s))))

Add adds the contents of the two locations and deposits the sum in the first location.

(defun subi (a b s)
(modify s
:pc (pe+1l (pc s))
:mem (put a
(- (nth a (mem s)) b)
(mem s))))

Subi subtracts the second argument, not its contents, from the contents of the first
and deposits the difference in the first.
To branch unconditionally within the current program we provide

(defun jump (a s)
(modify s :pc (cons (car (pc s)) a)))

10 Chapter 4

Here, the argument a is the location within the current program to which control
is to be transferred. Observe that we stay within the current program since we do
not change the name component of the pc.

To branch conditionally within the current program we provide

(defun jumpz (a b s)
(modify s
:pc (if (zp (nth a (mem s)))
(cons (car (pc s)) b)
(pc+1 (pc s))))) .

That is, if the contents of a is 0', jump to location b in the current program; else
increment the pc by 1.
To call a subroutine we provide

(defun call (a s)
(modify s
:pc (cons a 0)
:stk (cons (pe+l (pc s)) (stk s)))) .

Call modifies the stack by incrementing the current pc by 1 to create the desired
return program counter and then pushing it onto the stack of suspended program
counters. The pc is set to the first instruction in the program named a.

Finally, to return from a subroutine call (or to halt) we provide

(defun ret (s)
(if (endp (stk s))
(modify s :halt t)
(modify s
:pc (car (stk s))
:stk (cdr (stk s))))) .

Observe that if the stack is empty when ret is executed, the halt flag is set.
Otherwise, the stack is popped and the top-most return program counter from it
becomes the new pc.

4.2.4 The Fetch-Execute Cycle

To tie the semantic functions to their instructions we define the function execute
which takes an instruction ins and a state s and executes the (semantic function
for) ins on s.

T"We find it convenient actually to test (zp a), which is true if a is not a positive integer.

Mechanized Formal Reasoning about Programs and Computing Machines 11

(defun execute (ins s)
(let ((op (opcode ins))
(a (a ins))
(b (b imns)))
(case op

(move (move a b s))
(movi (movi a b s))
(add (add a b s))
(subi (subi a b s))
(jumpz (jumpz a b s))
(jump (jump a s))
(call (call a s))
(ret (ret s))
(otherwise s))))

This syntax may be read “In the following, let op, a and b be the corresponding
parts of the instruction ins. If op is ’move the result is (move a b s), if op is
’movi, the result ..., otherwise the result is s.” Observe that if an unrecognized
instruction is executed it is a no-op.

The machine’s fetch-execute operation or “single stepper” is

(defun step (s)
(if (halt s)
s
(execute (current-instruction s) s))) .

That is, if the halt flag is set, we return s and otherwise we execute the current
instruction on s.
We can step the state s n times with

(defun sm (s n)
(if (zp n)
s
(sm (step s) (- n 1)))) .

The name sm stands for “small machine” and represents the formal model of the
machine’s fetch-execute cycle.

4.3 A Simulation Capability

Recall

(defun times-program ()
' (times (movi 2 0) ; 0 mem[2] « O

12 Chapter 4

(jumpz 0 5) ; 1 if mem[0]=0, go to 5

(add 2 1) ; 2 mem[2] « mem][l] + mem|[2]
(subi 0 1) ; 3 mem|[(] « mem[0] -1

(jump 1) ;4 gotol

(ret)))) ; 5 return to caller.

Informally, the specification of this program is that it multiplies the contents of
memory location 0 times that of location 1 and leaves the result in location 2. The
program uses the method of successive addition of location 1 into location 2, which
is initially cleared. The comments explain further. Note that the program loops
through pcs 1 4, decrementing location 0.

We can use the definition of sm to run this program. That is, by virtue of
having defined the semantics of our machine in a programming language, we get a

”

simulation capability “for free.” Below we define a constant,

(defun demo-state ()
(st :pc ’(times . 0)

:stk nil
cmem (7 11 3 4 5)
thalt nil

:code (list (times-program)))) .

which is a state poised to multiply 7 times 11. Note first the code memory; it
contains exactly one program, namely that for times. The pc points to the first
instruction in times. The stack is empty, so the ret instruction in times will halt
the machine. The memory has five locations, with 7 and 11 in the first two and 3,
4, and 5 in the remaining three. The halt flag is off.

How many steps does it take to run this program on this data? One tick executes
the initialization at pc 0 and gets us to the top of the loop at pc 1. The loop takes
four ticks and is executed 7 times, leaving us at the top of the loop with location 0
set to 0. One more tick executes the jumpz which transfers control out of the loop
to the ret. One more tick executes the ret and halts the machine. Thus, it takes
1+ (7% 4)+2 =31 ticks to execute the program here.

What is the final state? Obviously, the pc will point to the ret, the stack will
(still) be empty, the halt flag will be set and the code will be unchanged. What
about the memory? Location 0 will have been counted down to 0. Location 1 will
be unchanged at 11. Location 2 will have accumulated 7 x 11 = 77. And locations
4 and 5 are untouched. We can actually prove that this is the final state, simply by
evaluating (sm (demo-state) 31) and looking at the answer. This can be stated
as a theorem,

Mechanized Formal Reasoning about Programs and Computing Machines 13

(defthm demo-theorem
(equal (sm (demo-state) 31)
(st :pc ’(times . 5)

:stk nil
cmem (0 11 77 4 5)
thalt t

:code (list (times-program))))) .

This theorem is trivial to prove by evaluation. That is, (sm (demo-state) 31), if
executed in any Common Lisp containing ACL2 and the definitions shown above,

will create the state shown on the right-hand side of the equation above.

4.4 A Specification of the Program

Intuitively, times multiplies the contents of memory locations 0 and 1, clears loca-
tion 0, and writes the product into location 2. If a state is poised to execute a call
of times and we step it exactly enough to execute through the return statement for
that call, then the effect on memory is as just described and the program counter
is incremented by one. This can be said much more precisely as follows. Let s0
be a state whose memory contains at least three locations (in general we wish to
make sure all the memory references in the program are legal). Let 1 and j be the
contents of the first two locations and suppose that i and j are natural numbers.
Suppose that the current instruction in s0 is a call of times, where times is defined
as in times-program. Finally, suppose the halt flag is off, so the state is runnable.
Then if we run sm on s0 for a certain number of ticks, namely (times-clock i),
defined below, the result is the state obtained more simply by incrementing the
program counter of sO by one, writing a 0 into memory location 0, and writing the
product of 1 and j, (* i j), into memory location 2.

A formal rendering of this specification of times is shown below.

(defthm times-correct
(implies (and (statep s0)
(< 2 (len (mem s0)))
(equal i (nth 0 (mem s0)))
(equal j (nth 1 (mem s0)))
(natp 1)
(natp j)
(equal (current-instruction s0) ’(call times))
(equal (assoc ’times (code s0)) (times-program))
(not (halt s0)))
(equal (sm sO (times-clock 1))

14 Chapter 4

(modify sO
:pc (pet+l (pc s0))
:mem (put 0 O
(put 2 (* i j) (mem s0)))))))

The expression (times-clock i) is supposed to measure how many clock ticks
it takes to execute times to multiply i times j. We call times-clock the clock
function for the program times. Recall that in demo-theorem the time taken to
run times on the 7 x 11 problem was 14 (7 x 4) + 2 = 31. In that example the run
was started at the top of the times program itself, at pc (times . 0). In our more
general specification, the run starts at a call of times, thus adding one instruction
to the count. Therefore, (times-clock i) is equal to (+ 2 (+ (* i 4) 2)).

Note that our specification of times not only describes its functional behavior
completely (i.e., every effect on the state) but also characterizes the number of clock
ticks it takes. It is often easier to prove such strong theorems than to prove weaker
ones. Indeed, the clock plays a crucial role in our proof strategy.

In what follows, we will show how to prove times-correct and other such theo-
rems. Of particular importance is the system decomposition problem: how can we
verify complex programs by verifying their component subroutines? Furthermore,
we are not so much interested in proving theorems as in proving them mechani-
cally without building any special purpose reasoning system for that task (beyond
a theorem prover already presumed to exist).

4.5 How to Prove the Program Correct

To prove times correct we do symbolic computation. using induction to get around
the loop. That is the obvious thing to do; the question is how do we carry it out
formally and mechanically within the logic?

4.5.1 The ACL2 Proof Style

ACL2, like Ngthm, employs two main proof techniques, induction and rule-driven
simplification. For Nqthm, these techniques are discussed thoroughly in [2]; ACL2’s
techniques are quite similar and are described in the ACL2 documentation [13].

The system inducts only when its other heuristics do not apply. To choose an
induction, the system inspects the recursive definitions of the functions involved in
the conjecture and selects an induction designed to “unwind” one or more of those
functions. We discuss induction further when we describe a particular use of it
below.

Mechanized Formal Reasoning about Programs and Computing Machines 15

Of more concern here is rule-driven simplification. ACL2’s rewriter attempts
to simplify formulas by rewriting them using axioms, definitions, and previously
proved theorems as rewrite rules. When the rewriter is called, it is given a list
of “assumptions,” terms which are assumed true. When the rewriter descends
through (if test a b), it adds test to the assumptions while rewriting a and (not
test) while rewriting b. Heuristics control the “expansion” of recursive function
definitions; the basic idea is to expand a function call into its body provided the
simplified body is “simpler” or the simplified arguments to all recursive calls already
occur elsewhere in the problem. Axioms and theorems are transformed into rewrite
rules by relatively simple syntactic rules. A theorem of the form (implies (and
hi..h,) (equal lhs rhs)), once proved, is interpreted as the rule “replace each
instance of lhs by the corresponding instance of rhs, provided the corresponding
instances of the hypotheses, h;, can be rewritten to true.” The rewriter applies

rewrite rules to a term from the inside out. Thus, the term (f a; ... ag) is first
rewritten to (f a} ... a}) by rewriting each argument, a;, to a;, and then rules
whose left-hand sides match (f a} ... a}) are tried.

To simplify a formula, (implies (and hi...h,) concl), we regard the formula as
a clause, {(not hy) ... (mot h,) concl} and rewrite each literal, in turn, assuming
the other literals false.

The user of ACL2 must be cognizant of the interpretation of a formula as a
rule when each theorem is stated. In a sense, the job of the user is to “program”
the simplifier so that it carries out an appropriate simplification strategy for the
problem domain at hand.

4.5.2 Formal Symbolic Computation

Formal symbolic computation is nothing more than using the symbolic definition of
the machine and certain axioms and lemmas to simplify an expression like (sm s0
(times-clock 1i)) to a symbolic state. A key to our approach is to use the clock
as a means of driving the expansion of sm.

For example, since (times-clock i) isequalto (+ 2 (+ (* i 4) 2)), (sm s0
(times-clock 1)) is (sm s0 (+ 2 (+ (x i 4) 2))), by substitution of equals
for equals. Now we can appeal twice to the easily proved lemma
(defthm sm-+

(implies (and (natp i) (natp j))

(equal (sm s (+ i j))
(sm (sm s i) 3))))
to reduce the “big” computation to three smaller ones (sm (sm (sm s0 2) (* i
4)) 2). The representation of the clock expression allows the user to tell the system

16 Chapter 4

how to decompose the computation into its “natural” paths, in this case a 2-step
prelude, followed by a (* i 4)-step inductive loop, and finishing with a 2-step
postlude.

However, there is a problem with this: in the presence of the heavy-duty arith-
metic rules necessary to carry out proofs about practical programs, the “natu-
ral” clock expression (+ 2 (+ (¥ i 4) 2)) is liable to be rewritten to some alge-
braically equivalent but pragmatically useless form like (¥ 4 (+ i 1)). For that
reason we use special clock arithmetic operators when we write clock expressions.
For example, the actual definition of times-clock is

(defun times-clock (i)
(cplus 2 (cplus (ctimes i 4) 2))) ,

where cplus is simply + (on the naturals) and ctimes is simply * (on the naturals)
but the theorem prover is not generally allowed to use those facts. Nor is the
theorem prover “aware” that cplus and ctimes enjoy the algebraic properties of
associativity, commutativity, etc. The theorem sm-+ shown above is actually proved
with cplus in place of +.

Having taken the user’s “hint” that we should see the computation as a com-
position of three smaller executions, (sm (sm (sm s0 2) (ctimes i 4)) 2), we
focus—as always—on the innermost expression. By simplifying from the inside out
we are, in this case, doing a “forward execution” of the program.

It is easy to arrange for (sm s0 2) to simplify very quickly to (step (step s0))

using

(defthm sm-opener
(and (equal (sm s 0) s)
(implies (natp i)
(equal (sm s (+ 1 1))
(sm (step s) 1))))) .

We do not allow step to enter the problem any other way. Thus, we step only
when we have the clock’s permission (and thus the user’s permission) to do so.

Now the naive expansion of the step function produces a catastrophic case ex-
plosion because step (actually, its sub-function execute) does a case split based
on all possible instructions. Therefore, another key to our approach is to expand
a step expression only when the current instruction of the state is known. We do
this in ACL2 with the lemma

(defthm step-opener
(and (implies (halt s) (equal (step s) s))

Mechanized Formal Reasoning about Programs and Computing Machines 17

(implies (consp (current-instruction s))
(equal (step s)
(if (halt s)
s
(execute (current-instruction s) s)))))) .

This is merely the definition of step. but after proving it we “disable” the defini-
tion so that ACL2 cannot use it. The hypothesis of the second conjunct above is
irrelevant; (step s) is equal to the if-expression even without it. But by proving
this weaker theorem we arrange for ACL2 to expand step only when it can prove
that the current-instruction is a consp. This is only a “hack” but it works.

Now what do we know about the current instruction in g0, the term we want
to step first in (step (step s0))7 We know exactly what it is: (call times).
So step-opener applies and rewrites (step s0) first to (call times s0) (using
the fact that we know the halt flag is off in s0 and the definition of execute), and
thence to

(modify sO
:pc ’(times . 0)
:stk (cons (pc+l (pc s0)) (stk s0))) .

Call this state s1.

Now we wish to simplify (step s1). All we can use is step-opener. Do we
know the current instruction” Yes! The pc in si is (times . 0), so the cur-
rent instruction is the first one in times and we know the code for times! The
current instruction of s1 is (movi 2 0). Technically this deduction is trivial, but
in practice, when program counters and code memory are large, it requires that
the theorem prover efficiently execute such ground expressions as (fetch ’(times

0) (1ist (times-program))).

Applying step-opener and simplifying produces

(modify s1
ipe ’(times . 1)
:mem (put 2 0 (mem s1))) ,

which, in terms of s0, is

(modify sO
:pc ’(times . 1)
:stk (cons (pc+l (pc s0)) (stk s0))
:mem (put 2 O (mem s0))) .

Call this state s2.

18 Chapter 4

Recall now how we got here. We simplified (sm s0 (times-clock i)) to (sm
(sm (sm s0 2) (ctimes i 4)) 2) and now we have simplified the (sm s0 2) to
s2 above. We would now like to step s2 (ctimes i 4) times, but how many is
that?

So far, all of the lemmas cited are program-independent: they need be proved
only once for the given machine and cause the theorem prover to do symbolic
computation driven by the clock expression. But now we need a program-dependent
lemma, namely one that tells us what the loop in times is doing. We discuss it
below.

But first, suppose we had a lemma that explained the loop, e.g., that says “(sm
s (ctimes i 4)) changes memory so that location 0 is 0 and location 2 contains
the sum of its old value and the product of the first two memory locations.” Then
we are virtually done because our s2, above, has a 0 in location 2 and so by the
lemma, (sm s2 (ctimes i 4)). which we will call state s3, is simply s2 with a 0
in location 0 and the desired product in location 2. Then we conclude the proof
by computing (sm s3 2). This symbolically executes the jumpz at the top of the
loop and the ret, since location 0 is now 0. The ret pops the stack back into the
pc and we are left with a state in which the pc is (pc+1l (pc s0)), the memory
has a 0 in 0 and the product in 2, and all other components are unchanged. That
completes the proof of times-correct, but we assumed we had a crucial lemma
about the behavior of the loop.

4.5.3 Loop Invariants

So we now turn to the crucial lemma describing what happens when the pc is
(times . 1) and the clock is (ctimes i 4),i.e., (ctimes (nth 0 (mem s)) 4).
The lemma we prove is generally easy for the user to “invent” and always follows the
same general pattern. Because of the clock decomposition, the situation is perfect
for induction because the pc points to the top of a loop, the loop decrementslocation
0 once each time around, the loop takes 4 instructions to traverse once, and the
clock is precisely 4 times the initial value of location (. Here is the lemma we prove.

(defthm times-correct-lemma
(implies (and (statep s)
(< 2 (len (mem s)))
(equal i (nth 0 (mem s)))
(natp 1)
(equal (pc s) ’(times . 1))
(equal (assoc ’times (code s)) (times-program))
(not (halt s)))
(equal (sm s (ctimes i 4))

Mechanized Formal Reasoning about Programs and Computing Machines 19

(modify s :mem (times-fn-mem s)))))

The lemma tells us what the loop does to memory. It addressesitself to a completely
general entrance to the loop with just enough time on the clock to finish the loop.
We can paraphrase, from the top, as follows. Let s be a state with at least two
locations. Suppose location 0, which we call i, contains a natural. Suppose the
pc points to the top of the loop in our times program and the state is not halted.
Then executing the state (ctimes i 4) times modifies the memory as described
by (times-fn-mem s). We define that function below.

Before we define times-fn-mem we draw attention to a subtle aspect of the
statement of times-correct-lemma. The left-hand side of the conclusion, which
is the target pattern when the lemma is used as a rewrite rule, is (sm s (ctimes
i 4)) whereas it could have heen equivalently stated as (sm s (ctimes (nth 0
(mem s)) 4)). The preferred statement contains two variables, s and i, whereas
the equivalent alternative contains only s. Practically speaking (at least for ACL2)
the preferred statement is more general because it allows the rule to fire on (sm &’
(ctimes (nth 0 (mem s)) 4)) provided the contents of location 0 in s’ is equal
to that of location 0 in s. This is the most common triggering expression, in
fact, because s’ is generally derived from s by initializing certain locations (e.g.,
location 2). The equivalent alternative formulation does not unify with the common
triggering expression and hence would not be used.

It only remains to say what times-fn-mem is. Roughly speaking, it is a recursive
function that, in effect, performs the same series of writes to memory that executing

the loop does.

(defun times-fn-mem (s)
(let ((mO (nth O (mem s)))
(m1 (nth 1 (mem s)))
(m2 (nth 2 (mem s))))

(if (zp mO)
(mem s)
(times-fn-mem
(modify s
‘mem

(put 0 (+ m0 -1)
(put 2 (+ m1 m2) (mem s))))))))

Note that the function operates on a state, s, and returns a modified version of the
memory of s. The modification is obtained by repeatedly decrementing memory
location 0 and adding the contents of location 1 into 2 until location 0 is 0 (or not
a natural). The function terminates because the contents of location 0 decreases.

20 Chapter 4

Many of the basic ideas we have presented here for describing computation math-
ematically, including the idea of “derived functions” such as times-fn-mem, were
inspired by techniques first developed by John McCarthy [15, 16] and his students.

The recursion in times-fn-mem suggests an induction on s: the base case is
when location 0 contains a 0 and the induction step assumes the theorem for s’
and proves the theorem for s, when location 0 is non-0 and the s’ is obtained
from s by decrementing location 0 and incrementing location 2 by the contents
of location 1. Proving times-correct-lemma by this suggested induction is com-
pletely straightforward, given the previously described arrangements for symbolic
computation.?

Of course one reason times-correct-lemma is easy to prove is because of what
it does not say. It does not tell us that the loop computes the product of locations
0 and 1. It tells us that it modifies memory as described by times-fn-mem. We
prove as a separate lemma that a product is produced.

(defthm times-fn-mem-is-times
(implies (and (< 2 (len (mem s)))
(equal mO (nth O (mem s)))
(equal m1 (nth 1 (mem s)))
(equal m2 (nth 2 (mem s)))
(natp m0)
(natp m1)
(natp m2))
(equal (times-fn-mem s)
(put 0 0
(put 2 (+ m2 (* mO m1)) (mem s))))))

This lemma says that the sequence of writes done by times-fn-mem is just the same
as writing 0 into location 0 and writing (+ m2 (* m0 m1)) into location 2, where
m0, m1 and m2 are the contents of locations 0, 1 and 2 respectively. This lemma is
the mathematical crux of the entire proof: iterated addition is multiplication. But
note that the theorem makes no mention of sm or of the semantics of instructions.

The introduction of times-fn-mem is thus another key element in the methodol-
ogy. Roughly put, one should introduce the recursive function that does the same
sequence of state modifications as the program and then break the proof into two
parts. In part one, e.g.., times-correct-lemma, prove that the program has the
claimed operational behavior. In part two, e.g., times-fn-mem-is-times, prove
that the operational behavior satisfies the desired specification. The first part is

2In order to do the proof with the suggested induction, first eliminate the use of i by substitut-
ing (nth 0 (mem s)) for i. Otherwise, one must slightly modify the induction to accommodate
i.

Mechanized Formal Reasoning about Programs and Computing Machines 21

complicated only by the size of the machine and the program; since this compli-
cation is often considerable, it is convenient to deal with it in isolation from the
specification. The second part is complicated only by the difference between the
operational behavior and the specification; since this difference can be great, it is
convenient to deal with it in isolation from the machine.

4.5.4 Memory Expression Management

The discussion above omits one last class of “generic” problems that must be faced,
having to do with the normalization of such memory expressions as (put 0 x (put
2 y mem)). That expression naturally arises if the put to location 2 is done first
and then the put to location 0 is done. That is what happens in times. Note
that we might have done them in the other order (put 2 y (put 0 x mem)) and
produced the very same memory. It is not uncommon for the program to do the
puts in one order and for the specification to do them in another. Furthermore,
one needs to be able to fetch the contents of a memory location from a modified
memory, e.g., to realize that (nth 1 (put 0 x mem)) is (nth 1 mem).

If the memory locations are always small numbers, as in this example, the proof
can be done by expanding put so that both put-nests above become (list* x
(cadr mem) y (cdddr mem)). But if memory locations are large or symbolic this
is not practical. We use the following rules to normalize memory expressions.

The following rule resolves memory references.

(defthm nth-put
(implies (and (natp i)
(natp j))
(equal (nth i (put j val mem))
(cond ((equal i j) val)
(t (nth i mem))))))

To eliminate unnecessary puts we use

(defthm put-put-0
(implies (and (natp i)
(< i (len mem))
(equal (nth i mem) val))
(equal (put i val mem) mem))) .

The next rule eliminates redundant puts.

(defthm put-put-1
(equal (put i val2 (put i vall mem))
(put i val2 mem)))

22 Chapter 4

The following rule, when properly used. orders nests of puts so that the addresses
are listed lexicographically, e.g., so that (put 0 x (put 2 y mem)) is preferred
over the other ordering.

(defthm put-put-2
(implies (and (natp i)
(natp j)
(not (equal i j)))
(equal (put i vali (put j valj mem))
(put j valj (put i vali mem)))))

In ACL2 we control this rule by implementing a verified metafunction, cf. [3], which
recognizes and rewrites expressions that are out of order.

Finally, we must be able to determine the length of the memory after doing a
write.

(defthm len-put
(implies (and (natp i)
(< i (len mem)))
(equal (len (put i val mem)) (len mem))))

4.5.5 System Decomposition, Revisited

Suppose we have a program, say expt, that uses our times program and we wish
to prove expt correct. We here discuss how the form of times-correct permits it

to be used within the scheme just sketched. Recall the just proved

(defthm times-correct
(implies (and (statep s0)
(< 2 (len (mem s0)))
(equal i (nth O (mem s0)))
(equal j (nth 1 (mem s0)))
(natp 1)
(natp j)
(equal (current-instruction s0) ’(call times))
(equal (assoc ’times (code s0)) (times-program))
(not (halt s0)))
(equal (sm sO (times-clock 1))
(modify sO
:pc (pe+l (pc s0))
:mem (put O O
(put 2 (* i j) (mem s0))))))) .

Imagine we are proving a conjecture about expt. The program contains a (call
times) instruction, say at pc (expt . 5). The hypotheses of the conjecture will

Mechanized Formal Reasoning about Programs and Computing Machines 23

presumably contain the assumption that times is defined as by our times-program
(or else expt is calling a different times). The hypotheses will include analogous
assumptions about the definitions of all other subroutines used. The user is pre-
sumed to have structured the clock expression in the new conjecture so that when
the (call times) instruction is hit in the symbolic computation, the clock will
be (times-clock i) (for whatever ¢ is in location 0 of the memory). Thus, dur-
ing the symbolic computation for the proof of the expt conjecture the term (sm s
(times-clock ¢)) will arise. In the next section we illustrate an expt that uses
times as a subroutine; there we will also illustrate the proper construction of a
superior clock expression.

The above times-correct theorem is a candidate for use; indeed, it will likely be
the only rewrite rule we have telling us about how to expand sm for (times-clock
i) steps. We will have to relieve the hypotheses but this will generally be straight-
forward if times is being applied to two naturals. Note that times-correct does
not require that times be the only program in the code memory; it would be
unusable if it did. If the hypotheses can be relieved, the lemma replaces (sm s
(times-clock ¢)) by
(modify s

:pc ’(expt . 6)
:mem (put O O
(put 2 (* ¢ j) (mem s))))
Note in particular that the pc is incremented to (expt . 6), memory location 0 is
cleared. and memory location 2 is assigned the product. The code for times is not
entered or considered.

Times-correct essentially extends the abstract machine so that (call times)
is a new primitive instruction (that takes (times-clock) ticks). The above de-
scribed methodology for constructing proofs uses times-correct exactly as needed.
Furthermore, if a mistake has been made so that, for example, the clock expression
for the call is not (times-clock 7) or the preconditions for times are not satisfied,
the symbolic computation stops at (call times) because no other rules apply.

4.5.6 Summary of the Methodology

Our methodology can be summarized as follows. We define the semantics of the
new machine operationally. Then we prove the symbolic computation theorems
and the memory expression management theorems. We also provide rules for the
primitive data types on the machine, e.g., arithmetic, bit vectors, etc. All of this
work is done more or less as the machine is being formalized and is independent of

applications programs.

24 Chapter 4

When an applications program is introduced, we specify it in the style described.
We define its clock function so as to make explicit the natural decomposition of the
computation. We define the recursive function that does the same series of writes
to memory. We then prove two lemmas about the program (assuming it has exactly
one loop). In the first, we prove that the execution of the loop in the program does
the same thing as the recursive function. In the second, we prove that the recursive
function satisfies the general specification. These two lemmas allow us to prove
that the program meets its specification.

4.6 Another Example

We conclude with a concrete example, discussed very briefly. We define a suitable
expt and prove that it exponentiates, following exactly the methodology outlined
for times. The program is given by

(defun expt-program nil

’(expt (move 3 0) ; 0 mem[3] — mem|(] (save args)
(move 4 1) ; 1 mem[4] — mem([1]
(movi 1 1) ; 2 mem[l] « 1 (initialize ans)
(jumpz 4 9) ; 3 if mem[4]=0, go to 9
(move 0 3) ; 4 mem|[0] — mem[3] (prepare for times)
(call times) ; 5 mem|2] « mem[0] * mem][l]
(move 1 2) ; 6 mem[l] — mem][2]
(subi 4 1) ; 7 mem[4] «— mem[4]-1
(jump 3) ; 8 goto3
(ret))) ;9 return.

The theorem we wish to prove about expt is shown below. Note that we require
the memory to have at least five locations to insure that all the writes are legal.
We also require the code memory to contain our definitions of both expt and of

times, but we do not say which is first or whether others are present.

(defthm expt-correct
(implies (and (statep s0)

(< 4 (len (mem s0)))
(equal i (nth O (mem s0)))
(equal j (nth 1 (mem s0)))
(natp 1)
(natp j)
(equal (current-instruction s0) ’(call expt))
(equal (assoc ’expt (code s0)) (expt-program))
(equal (assoc ’times (code s0)) (times-program))

Mechanized Formal Reasoning about Programs and Computing Machines 25

(not (halt s0)))
(equal (sm sO (expt-clock i j))

(modify sO
:pc (pc+l (pc s0))
:mem
(if (zp j)
(put 1 (expt i j)
(put 3 1
(put 4 0 (mem s0))))
(put 0 0

(put 1 (expt i j)
(put 2 (expt i j)
(put 3 1
(put 4 0 (mem 50)))))))))))

This formula is more complicated than that for times because expt is a more
complicated program, not because the complexity of times is “spilling over.”
The clock function for expt is

(defun expt-clock (i j)
(cplus 4
(cplus (ctimes j (cplus 2 (cplus (times-clock i) 3)))
2))) .

Four instructions are used to get from (call expt) to the loop at pc 3. Then
the loop is traversed j times, where j is the initial value of location 1. On each
traversal, two instructions are used to get to (call times). then (times-clock
i) instructions are used to execute that (as previously established), and then three
more instructions are used to get back to the top of the loop. Upon finishing the
loop, two instructions are used to get past the ret.

The derived function, the recursive description of the loop (pcs 3 8), is defined
as

(defun expt-fn-mem (s)
(let ((m1 (nth 1 (mem s)))
(m3 (nth 3 (mem s)))
(m4 (nth 4 (mem s))))
(if (zp m4)
(mem s)
(expt-fn-mem
(modify s
‘mem
(put 0 0
(put 1 (* m3 mi1)

26 Chapter 4

(put 2 (* m3 ml1)
(put 4 (- m4 1) (mem s)))))))))) .

The first lemma we must prove 1s that the loop computes the derived function,
expt—fn-mem.

(defthm expt-correct-lemma
(implies (and (statep s)
(< 4 (len (mem s)))
(equal m3 (nth 3 (mem s)))
(equal m4 (nth 4 (mem s)))
(natp (nth 1 (mem s)))
(natp m3)
(natp m4)
(equal (pc s) ’(expt . 3))
(equal (assoc ’expt (code s)) (expt-program))
(equal (assoc ’times (code s)) (times-program))
(not (halt s)))
(equal (sm s
(ctimes m4
(cplus 2 (cplus (times-clock m3) 3))))
(modify s :mem (expt-fn-mem s)))))

The second lemma is that expt-fn-mem computes the exponential function (and
puts the result and several others into certain memory locations).

(defthm expt-fn-mem-is-expt
(implies (and (< 4 (len (mem s)))
(equal m1 (nth 1 (mem s)))
(equal m3 (nth 3 (mem s)))
(equal m4 (nth 4 (mem s)))
(natp m1)
(natp m3)
(natp m4))
(equal (expt-fn-mem s)
(if (zp m4)
(mem s)
(put 0 0
(put 1 (* m1 (expt m3 m4))
(put 2 (* m1 (expt m3 m4))
(put 4 0 (mem s)))))))))

The two lemmas are sufficient, together with the symbolic computation and mem-

ory expression management lemmas, to allow ACL2 to prove that expt is correct.

Mechanized Formal Reasoning about Programs and Computing Machines 27

4.7 Extensions and Advice

Our small machine illustrates a few elementary modeling techniques including state
representation, the fetch-execute cycle, timing and termination, and several classes
of instruction including data movement, arithmetic, branching, and subroutine call
and return. Of course, practical languages and machines contain far more complex-
ity.

The most obvious omission from our machine is any restriction on its resources.
Fabricated machines have limits on all physical resources, e.g., word size, stack size,
data memory size, and program memory size. We generally include these limits as
components in the state and generalize the handling of the halt flag so that it
can be used to hold an “error message.” We then define the semantic functions so
that when the resource limits are violated the halt flag is set appropriately, e.g.,

"arithmetic

to a pair containing the program counter and an error string such as
overflow" or "stack overflow".

Other complicating aspects of practical machines include interrupts, io, and
pipelining, to name a few. Such features can be accommodated within the general
scheme described here. The statement and proof of program properties on such
machines is more difficult than shown here. But because practical machines are
complex, this difficulty is not an artifact of formalization and must be faced if one
is to derive confidence in code from the proofs. The techniques used to manage this
complexity in the theorem prover are similar to those illustrated here — the nor-
malization of symbolic states, expansion of complicated functions only under strict
controls, the provision of rules that work or fail quickly. Examples of these tech-
niques are described in some of our larger-scale projects, such as [19, 24, 25, 6, 7, 8].

We offer three pieces of general advice. First, start small. Most successful
projects have started with a “toy” version of the machine and refined the basic
approach. For example, start with 5 instructions and add the other 195 later. To
add new features, such as interrupts or a pipeline, return to the “toy” and integrate
simplified versions of the new feature there. The benefit of having a “toy” version
of the model is that one can experiment with new features relatively quickly; often
several approaches might be tried and abandoned before a suitable one is found
and then elaborated to full complexity. When experimenting with “toys” keep in
mind that the proof techniques being used must not depend on the small scale.

Second, consider the introduction of intermediate levels of abstractions. The
“right” model might be a hierarchy of abstract machines rather than a single ab-
stract machine. For example, one might produce a finite resource model and an
infinite resource model of the abstract machine, or a pipelined model and a simpler

28 Chapter 4

sequential model. The two levels of abstraction are then proved equivalent under
certain conditions and this allows some program proofs to be carried out in a sim-
pler setting. Often designers hold several different views of the machine. These
different abstractions may not be recognized or given names by the design team
but are extremely helpful when identified. The machine’s programmers may create
a new abstract machine via programming conventions (e.g., “we treat register 3 as
a stack”); identifying these conventions and formalizing the appropriate abstract
machine makes proofs simpler.

Finally, think carefully about how the theorem prover will use the definitions and
rules you provide it. Recall for example our discussion of the difference between (sm
s (ctimes (nth 0 (mem s)) 4)) and (sm s (ctimes i 4)). It was not luck or
brilliance that led us to state our rules the way we did; it was careful thought about
how the rules would be used.

4.8 Conclusion

State-of-the-art microprocessors and the machine languages they provide can be
formally modeled operationally. This operational semantics provides a simulation
capability for the new machine or language, provided it is done in a computational
logic, such as ACL2, which provides execution. In addition, it is possible to con-
figure a mechanical theorem prover, such as Nqthm or ACL2, to use the semantics
effectively in carrying out proofs of programs written in the new language.

We have explained how we do this in a very simple setting and can assure the
reader that it scales up.

The reason one might want to do this is simple: it is the most expedient way
to track an evolving machine design and verify programs written in the evolving
programming language.

4.9 Acknowledgments

The techniques described here evolved over many years. We are therefore indebted
to our students and colleagues. especially those who experimented with these tech-
niques and helped refine and demonstrate them: Bill Bevier, Bishop Brock, Art
Flatau, Warren Hunt, David Goldschlag, Matt Kaufmann, Ken Kunen, David
Russinoff, Natarajan Shankar, Sakthikumar Subramanian, Carolyn Talcott, Matt
Wilding, Bill Young, and Yuan Yu. Most of these techniques were first developed
with the Nqthm theorem prover. Nqthm was supported primarily with grants and

Mechanized Formal Reasoning about Programs and Computing Machines 29

contracts from the National Science Foundation and the Office of Naval Research.
The formalization and proof methodology was transferred from Nqthm to the ACL2
theorem prover, as shown here. It has been carried out on a grand scale with that
system by Bishop Brock in his CAP work.

The ACL2 theorem prover was supported in part at Computational Logic, Inc.,
by the Defense Advanced Research Projects Agency, ARPA Order 7406, and the
Office of Naval Research, Contract N00014-94-C-0193. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of Computational
Logic, Inc., the Defense Advanced Research Projects Agency, the Office of Naval
Research, or the U.S. Government.

References

[1] W.R. Bevier, W. A. Hunt, J S. Moore, and W. D). Young. Special Tssue on System Verification.
Journal of Automated Reasoning, 5(4):409-530, December, 1989.

[2] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

[3] R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using Them Effi-

ciently as New Proof Procedures. In R. S. Boyer and J S. Moore, editors, The Correctness
Problem in Computer Science, pp. 103-184, Academic Press, London, 1981.
[4] R.S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, New York,

1988. The most recent release of the Nqthm prover, Nqthm-1992, may be found at either
ftp:/ /ftp.cli.com/pub/nqthm/nqthm-1992 /nqthm-1992.tar.7 or ftp://ftp.cs.utexas.edu/pub-
/boyer/nqthm-1992.tar.Z.

[5] R.S.Boyer and Y. Yu. Automated Proofs of Object Code for a Widely Used Microprocessor.
JACM, 43(1):166—192, January 1996. http://www.cs.utexas.edu/users/boyer/mc-rev3.ps.Z.

[6] B. Brock. The CAP 94 Specification, CAP Technical Report 8, Computational Logic, Inc.,
1717 W. 6th, Austin, T'X 78703, July, 1995.

[7] B. Brock. Formal Analysis of the CAP Instruction Pipeline, CAP Technical Report 10,
Computational Logic, Inc., 1717 W. 6th, Austin, TX 78703, June, 1996.

[8] B. Brock. Formal Verification of CAP Applications, CAP Technical Report 15, Computa-
tional Logic, Inc., 1717 W. 6th, Austin, 1X 78703, June, 1996.

9] B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commercial Micropro-
cessors. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-Aided Design
(FMCAD’96), Springer-Verlag (to appear). November 1996.

[10] J. Goldberg, W. Kautz, P.M. Melliar-Smith, M. Green, K. Levitt, R. Schwartz, and C. We-
instock. Development and Analysis of the Software Implemented Fault-Tolerance (SIFT)
Computer. Technical Report NASA Contractor Report 172146, National Aeronautics and
Space Administration, Langley Research Center, Hampton, Va. 23665, 1984.

[11] W. A. Hunt. FM8501: A Verified Microprocessor. Phd thesis, University of Texas at Austin,
December 1985. Lecture Notes in Computer Science 795, Springer-Verlag, 1994.

[12] W. A. Hunt and B. Brock. A Formal HDL and Its Use in the FM9001 Verification. Proceed-
ings of the Royal Society, Series A, Vol. 339, 1992.

30 Chapter 4

[13] M. Kaufmann and J S. Moore. ACL2: A Computational Logic for Applicative Common
Lisp, The User’s Manual (Version 1.8). ftp://ftp.cli.com/pub/acl2/v1-8/acl2-sources/doc-
/HTML/acl2-doc.html, 1995.

[14] M. Kaufmann and J S. Moore. ACL2: An Industrial Strength Version of Nqthm. In Pro-
ceedings of the Eleventh Annual Conference on Computer Assurance (COMPASS-96), pages
23 34. IEEE Computer Society Press, June 1996.

[15] J. McCarthy. Towards a Mathematical Science of Computation. Proceedings of 1FIP
Congress, North-Holland, pages 21 28, 1962. http://www-formal.stanford.edu/jmec/towards-
html.

[16] J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer Program-
ming and Formal Systems, P. Braffort and D. Hershberg, eds., North-Holland Publishing
Company, 1963. http://www-formal.stanford.edu/jmec/basis.html.

[17] S. P. Miller and M. Srivas. Formal Verification of the AAMP5 Microprocessor: A Case Study

in the Industrial Use of Formal Methods. In WIFT °95: Workshop on Industrial-Strength
Formal Specification Techniques, pages 2 16, Boca Raton, FI., 1995. IEEECS.

[18] J S. Moore. Mechanically Verified Hardware Tmplementing an 8-Bit Parallel TO Byzantine
Agreement Processor. Technical Report NASA CR-189588, NASA, 1992,

[19] J S. Moore. Piton: A Mechanically Verified Assembly-Level Language. Automated Reason-
ing Series, Kluwer Academic Publishers, 1996.

[20] J S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof of the Correctness
of the AMDBJKS6 Floating Point Division Algorithm. Submitted, 1996. http://devil.ece.-
utexas.edu:80/~lynch/divide/divide.html.

[21] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Kapur,
editor, 17th International Conference on Automated Deduction (CADE), pages 748-752. Lec-
ture Notes in Artificial Intelligence, Vol. 607, Springer-Verlag, June 1992.

[22] D. Russinoff. A Mechanically Checked Proof of the Correctness of the AMD K5 Floating-
Point Square Root Algorithm. 1106 W. 9th St., Austin, TX 78703, July 1996.

[23] M. Wilding. Machine-Checked Real-Time System Verification. PhD thesis, University of
Texas, 1996. f{tp://{tp.cs.utexas.edu/pub/boyer/wilding-diss.ps.gz.

[24] W. D. Young. A Verified Code-Generator for a Subset of Gypsy. PhD thesis, University of
Texas, 1988.

[25] Y. Yu. Automated Proofs of Object Code For a Widely Used Microprocessor. PhD thesis,
University of Texas at Austin, 1992. Lecture Notes in Computer Science, Springer-Verlag (to
appear). ftp://ftp.cs.utexas.edu/pub/techreports/tr93-09.ps.7.

