
A Mechanically Checked Proof of aComparator Sort AlgorithmBishop Brock�J Strother MooreyFebruary 22, 1999AbstractWe describe a mechanically checked correctness proof for the compara-tor sort algorithm underlying a microcode program in a commerciallydesigned digital signal processing chip. The abstract algorithm uses anunlimited number of systolic comparator modules to sort a stream of data.In addition to proving that the algorithm produces an ordered permuta-tion of its input, we prove two theorems that are important to verifyingthe microcode implementation. These theorems describe how positive andnegative \in�nities" can be streamed into the array of comparators toachieve certain e�ects. Interesting generalizations are necessary in orderto prove these theorems inductively. The mechanical proofs were carriedout with the ACL2 theorem prover. We �nd these proofs both mathemat-ically interesting and illustrative of the kind of mathematics that must bedone to verify software.1 Informal Discussion of the ProblemIt is often necessary to perform statistical �ltering and peak location in dig-ital spectra for communications signal processing. In this paper we consideran abstraction of the algorithm implemented on one such microprocessor, theMotorola CAP digital signal processor [5]. One of the major functional unitsof the CAP is the adder array, a collection of 20-bit adder/subtracters, each ofwhich has 8 dedicated input registers and a dedicated path to a local memory.The CAP adder array was originally designed to support fast FFT computa-tions, but the designers also included the datapaths necessary to accelerate peak�nding.�IBM Austin Research Laboratory, 11501 Burnet Road, Austin, TX 78756,brock@austin.ibm.comyDepartment of Computer Sciences, University of Texas, Austin, TX 78712,moore@cs.utexas.edu. 1

The so-called \5PEAK" program of the CAP [3] uses the microprocessor'sadder array as a systolic comparator array as shown in Figure 1. The programstreams data through the comparator array and �nds the �ve largest data pointsand the �ve corresponding memory addresses. In this informal discussion we
min

max

min

max

min

max

min

max

min

maxP

C

P

C

PP

CC1

P1

2

2

3

3

4

4

5

5

C▲ ▲ ▲ ▲ ▲Figure 1: Abstract View of Comparator Arraylargely ignore memory addresses paired with each data point.Candidate data points enter the array by way of register C1 and movethrough the array, towards the right in the diagram. Maximum values (peaks)remain in the array in the Pn registers, and the minima are eventually discardedwhen they pass out of the last comparator. On each cycle the comparator arrayupdates the registers as follows:C1 = next data point;Cn = min(Cn�1; Pn�1); n > 1;Pn = max(Cn; Pn):Informally, the peak registers, Pi, maintain the maximum value that has passedby that point in the comparator array. How can we use this array to sort? Or,more particularly, to identify the n highest peaks in the stream of data?Using the comparator array to �nd the �ve maxima requires several steps.We explain the algorithm by example here. In the following we will represent thecontents of the comparator array registers in the format shown below, with thecontents of each peak register above the contents of the corresponsing candidateregister. � P1 P2 P3 P4 P5C1 C2 C3 C4 C5 �The next state of the comparator array on each cycle is� max(P1; C1) max(P2; C2) max(P3; C3) max(P4; C4) max(P5; C5)d min(P1; C1) min(P2; C2) min(P3; C3) min(P4; C4) � ;where d represents the next data point.We will illustrate the peak search for the 10-element data vector� 2 9 3 5 4 1 8 7 10 6 � :Although this example uses small unsigned numbers for simplicity, the CAPimplementation of comparator array and 5PEAK microcode will correctly search2

any vector of signed, 20-bit 2's complement data values, subject to a few obviousrestrictions.The comparator array is initialized by setting C1 to the �rst (leftmost) el-ement of the data vector, and setting every other register to �1. In the �xedbit-width hardware realization of the comparator array on the CAP, the role of�1 is played by the most negative number, �219.� �1 �1 �1 �1 �12 �1 �1 �1 �1 �Carrying out the comparator array operations for 9 more steps results in thecon�guration � 10 8 5 3 26 9 7 4 1 � :Up to this point the algorithm described here is essentially identical tothe two VLSI sorting algorithms described in [8, 4]. These researchers o�eredspecial-purpose hardware designs with the same basic compare-exchange stepdescribed above. There is a key di�erence, however, in that the VLSI sortingproposals require reversing the direction of data ow to extract the sorted data.In these approaches the sorting machine is a stack that accepts data pushes inarbitrary order but pops data in sorted order. For example, if after loading thesample vector we were to rede�ne the next-state function of our sorting arrayto be Output = max(C1; P1);Pn = max(Cn+1; Pn+1);Cn = min(Cn; Pn); n < 5;P5 = �1and pump ten times, the original input vector would be popped to the outputin descending order. As long as there are enough registers and comparators forthe input data set size, a machine of this type can sort data as fast as it canbe physically moved to and from the sorting array. Reference [8] also describesways to pipeline the use of these sorting machines to increase throughput.Although the CAP provided numerous data paths in the adder array, revers-ing the direction of data ow was not possible, and another solution to extractingthe maxima had to be found. Among the many possiblities that were supportedby the hardware, the most straightforward involved simply continuing to stepthe original compare-exchange algorithm and collecting the maxima as they areejected out the array. This was the algorithm ultimately encoded in CAP mi-crocode. In the CAP algorithm, data input is completed by stepping the arrayone more cycle with a dummy input of +1. In the �xed bit-width hardwarerealization on the CAP the role of +1 is played by the most positive data value,3

219 � 1. � 10 9 7 4 2+1 6 8 5 3 � :At this point register P1 holds the maximum value, yet the rest of the array isnot yet ordered in any discernable way, except that the Pn registers satisfy theinvariant given above. As we will show later, this invariant guarantees that ifwe `pump' the array four times with +1, then the maxima will collect at theend of the array in registers P3, C4, P4, C5, and P5.� +1 +1 10 8 6+1 +1 +1 9 7 � :At this point the comparator array data registers C1; P1; C2; : : : ; C5; P5 are or-dered, and the array acts like a shift register as long as +1 is pumped intoC1. Pumping the array �ve times with +1 forces the �ve maxima out of thecomparator array in reverse order, where they can be collected and stored.To summarize, the systolic comparator array can be used to compute the�ve maxima of a data vector by the following steps:� The �rst data point is loaded into C1, and the rest of the comparatorarray is initialized to �1.� The data vector is pumped into the array one point at a time, and a single+1 is inserted to �nish the data input.� Pumping four times with +1 causes the maxima to collect at the end ofthe array.� Pumping �ve times with +1 forces the maxima out of the array in reverseorder, where they are collected and stored.The algorithm above is implemented in microcode on the CAP. It is amongseveral microcode programs for that processor that we have mechanically ver-i�ed. As described briey in [3], we formalized the CAP in the ACL2 logic,sketched below. We then extracted the microcode for the 5PEAK program fromthe CAP ROM, obtaining a sequence of bit vectors, and used the ACL2 theo-rem prover to show that when the abstract CAP machine executes the extractedcode on an appropriate initial state and for the appropriate number of cycles,the �ve highest peaks and their addresses are deposited into certain locations.We de�ned the \highest peaks and their addresses" by de�ning, for speci�cationpurposes only, a sort function in ACL2 which sorts such address/data pairs intodescending order. The reader will see that this sorting function is exactly thestack-like sorting method of the VLSI implementations described above. In our5PEAK speci�cation we refer to the �rst �ve pairs in the ordering.The argument that the microcode is correct is quite subtle, in part becausean arbitrary amount of data is streamed through and in part because the positive4

and negative in�nities involved in the algorithm can be legitimate data valuesbut are accompanied by bogus addresses; correctness depends on a certain \anti-stability" property of the comparator array. A wonderfully subtle generalizationof a key lemma was necessary in order to produce a theorem that could be provedby mathematical induction.In this paper we discuss only the high-level algorithm sketched above andits correctness proof. We do not discuss the microcode itself.The event list is available at http://www.cs.utexas.edu/users/moore/publi-cations/csort/csort.lisp.2 ACL2Before we present this work in detail we briey describe the ACL2 logic andtheorem prover.ACL2 stands for \A Computational Logic for Applicative Common Lisp."ACL2 is both a mathematical logic and system of mechanical tools which can beused to construct proofs in the logic. The logic formalizes a subset of CommonLisp. The ACL2 system is essentially a re-implemented extension, for applica-tive Common Lisp, of the so-called \Boyer-Moore theorem prover" Nqthm [1, 2].The ACL2 logic is a �rst-order, essentially quanti�er-free logic of total recur-sive functions providing mathematical induction and two extension principles:one for recursive de�nition and one for \encapsulation."The syntax of ACL2 is a subset of that of Common Lisp. However, we do notuse Lisp syntax in this paper. The rules of inference are those of propositionalcalculus with equality together with instantiation and mathematical inductionon the ordinals up to �0 = !!!::: . The axioms of ACL2 describe �ve primitivedata types: the numbers (actually, the complex rationals), characters, strings,symbols, and ordered pairs or \conses".Essentially all of the Common Lisp functions on the above data types areaxiomatized or de�ned as functions or macros in ACL2. By \Common Lispfunctions" here we mean the programs speci�ed in [9] that are (i) applicative,(ii) not dependent on state, implicit parameters, or data types other than thosein ACL2, and (iii) completely speci�ed, unambiguously, in a host-independentmanner. Approximately 170 such functions are axiomatized or de�ned. Thefunctions used in Table 1 are particularly important here.Common Lisp functions are partial; they are not de�ned for all possibleinputs. In ACL2 we complete the domains of the Common Lisp functions andprovide a \guard mechanism" by which one can establish that the completionprocess does not a�ect the value of a given expression. See [6].The most important data structure we use in this paper is lists. The emptylist is usually represented by the symbol nil. The non-empty list whose �rstelement is x and whose remaining elements are those in the list y is represented5

expression meaningendp (x) true i� x is the empty listcons (x; y) the ordered pair < x; y >car (x) the left component of (the ordered pair) xcdr (x) the right component of xcadr (x) the left component of the right component of xcddr (x) the right component of the right component of xzp (x) x = 0 (or x is not a natural number)len (x) the number of elements in the list xTable 1: The Meaning of Certain Expressionsby the ordered pair < x; y >. This ordered pair is the value of the expressioncons (x, y).Here is an example of a simple list processing function, namely, the functionfor concatenating two lists. In the syntax of Common Lisp we could write thisas(defun append (x y)(if (endp x)y(cons (car x) (append (cdr x) y)))).but we will here use the notationDefinition:append (x; y)=if endp (x) then yelse cons (car (x);append (cdr (x); y))� The concatenation of the empty x to y yeilds y. The concatenation of anon-empty x to y is obtained by consing the �rst element of x, car (x), to theconcatenation of the rest of x, cdr (x), to y.Readers interested in learning more about Common Lisp should consult [9].Readers interested in the logical foundations of applicative Common Lisp as for-malized in ACL2 should see [7]. Readers interested in the ACL2 system shouldsee [6, 3] as well as the home page for ACL2, http://www.cs.utexas.edu/users/-moore/acl2, which contains the source code, 5 megabytes of hypertext docu-mentation, a bibliography, and many applications.6

3 High-Level Speci�cationWe typically approach the veri�cation of a machine code program in two phases,by �rst characterizing what the machine code computes at a low level, and thenshowing that the low-level behavior meets, or is somehow equivalent to, a higher-level speci�cation. If we had approached the veriication of the 5PEAK algorithmin this way we would have �rst speci�ed the exact function computed by thecomparator array, and then proved that this function computed the �ve peaks.For this particular application, it turned out to be more convenient to directlyprove that the machine code execution satis�es the high-level speci�cation, butto formalize the speci�cation in a way particularly oriented toward the code.To that end, we speci�ed the 5PEAK application in terms of an abstract sortingalgorithm. We proved that the 5PEAKmicrocode computes the �rst �ve elementsof the output vector of this abstract algorithm, i.e., the �ve maxima.We de�ned the abstract sorting algorithm in a way that made the corre-spondence proof relatively easy. But it was then encumbent upon us to provethat the abstract algorithm was actually a sorting algorithm, i.e., that it returnsan ordered permutation of its input. In addition, in relating the abstract algo-rithm to the microcode it was necessary to prove several theorems about howthe signed in�nities are handled by the abstract algorithm. These theorems areespecially interesting to prove.Therefore, this paper presents the abstract sorting algorithm and the keytheorems about it. We focus on the hardest of these theorems to prove, namelythe treatment of positive in�nities. Despite the general nature of these theorems{ e.g., the absence of bounds on the lengths of the vectors being sorted or the sizeof the data { the reader is reminded that these theorems play a direct role in thevery practical problem of the 5PEAK microcode veri�cation and are illustrativeof the kind of general mathematics one must handle in code veri�cation.The abstract sorting algorithm sorts lists of \records" with integer keys.The algorithm is inspired by the operation of a comparator array, except that ituses an unlimited number of comparators.. The records are represented as conspairs as constructed by cons (other, data), where where the data �eld representsthe integer sort key, and the other �eld is arbitrary (but, in practice, containsthe address from which the data was obtained). The basic systolic cycle of thegeneral algorithm is captured by the function cstep.Definition:cstep (acc)=if endp (acc) then nilelseif endp (cdr (acc)) then accelse cons (max-pair (cadr (acc), car (acc)),cons (min-pair (cadr (acc), car (acc)),cstep (cddr (acc)))) 7

�whereDefinition:max-pair (pair1 , pair2)=if data (pair1) � data (pair2) then pair2else pair1�Definition:min-pair (pair1 , pair2)=if data (pair1) � data (pair2) then pair1else pair2� The function cstep orders adjacent records in the accumulator acc pairwise,just as the comparator array orders Cn; Pn into Pn; Cn+1 on each cycle.Feeding the input vector into the unlimited resource comparator array ismodeled by the function cfeedDefinition:cfeed (lst , acc)=if endp (lst) then accelse cfeed (cdr (lst),cstep (cons (car (lst), acc)))�The function cfeed maintains an important invariant on the accumulator men-tioned earlier in reference to the comparator array. If we number the elementsof the accumulator, acc, acc0; acc1; : : : ; accnwhere acc0 is the �rst element of the accumulator, thenacci � accj ; for i even and i < j:That is, the even numbered elements dominate the elements to their right. Callthis property � (acc). It is not di�cult to prove that � is invariant under cfeed.That is, if an accumulator has property � and a list of records is fed into it8

with cfeed then the result satis�es �. Since � (nil) holds, we can create anaccumulator satisfying � by feeding an arbitrary list of records into the emptyaccumulator.Furthermore, we can also prove that if a non-empty accumulator acc hasproperty �, then the �rst element of acc is a maximal element and the result ofapplying cstep to cdr (acc) satis�es �. Thus, we can sort such an accumulatorby `draining' o� the maxima while stepping the remainder.1Definition:cdrain (n, acc)=if zp (n) then accelse cons (car (acc),cdrain (n � 1, cstep (cdr (acc))))� The �nal sorting algorithm feeds the input data vector into an empty accu-mulator and then drains o� the maxima.Definition:csort (lst)=cdrain (len (lst), cfeed (lst , nil))4 The Key TheoremsGiven the foregoing claims about � it is not di�cult to proveTheorem: Ordered Permutation PropertyThe function csort returns an ordered (weakly descending) permu-tation of its input.To relate these abstractions to the microcode, we had to develop two otherinteresting and crucial properties. First, observe that in the de�nition of csortabove the cfeed operation is done with the initial accumulator nil. But in thecode, the corresponding operation is done with the peak and candidate valueregisters initialized to the most negative CAP integer. To prove that the codeimplements csort (in the sense described) we had to prove1We de�ne cdrain with a counter n because this is convenient for mapping operationsfrom the actual �xed-size comparator array on the CAP to the unlimited resource comparatorsorter. 9

Theorem: Negative In�nity PropertyLet lst be a list of records and min be one record, and suppose everyelement of lst dominates (i.e., has data greater than or equal to thedata of)min. Let minlst be a list of n repetitions of min. Thencfeed (lst, minlst) is just append (cfeed (lst, nil), minlst).This theorem tells us that if we initialize the comparator array to \negativein�nities" as done on the CAP (i.e., to minlst where min is a record containingthe most negative CAP integer) and then feed the input vector into it, theabstract result is the same as feeding the vector into an empty comparator array,as in our de�nition of csort, and then concatenating the \negative in�nities" tothe right. Since we are only interested in the �rst �ve elements, we can seethat the negative in�nities are irrelevant to the �nal answer if the input vectorcontains more than �ve elements.The second interesting property concerns the fact that our csort uses thefunction cdrain while the second phase of the microcode performs this step byfeeding in \positive in�nities." We prove the following theorem to overcome thisdi�erence:Theorem: Positive In�nity PropertyLet acc be a list of records satisfying �. Let max be a record thatdominates every element of acc. Finally, let maxlst be a list of nrepetitions of max, where n is an integer, 0 � n � jaccj. Thencfeed (maxlst, acc) is append (maxlst, cdrain (n, acc)).Note that the accumulator produced from nil by cfeed satis�es � and thushas the property required of acc in the theorem above. Furthermore, a list of nrepetions of the \positive in�nity" record has the property required of maxlstabove. The theorem thus tells us that when the second phase of the CAP codefeeds positive in�nitives into the array the result is the same as concatenatingpositive in�nities to the result of draining the comparators as speci�ed in ourde�nition of csort. Thus, at the conclusion of the second phase, the rightmostregisters in the CAP array contain the answer computed by cdrain.We �nd this relationship between cfeed and cdrain to be both surprising andbeautiful.5 Proof of the Positive In�nity PropertyThe two in�nity properties are challenging to prove. We will briey discuss ourproof of the Positive In�nity Property. The problem is a familiar one to anyonewho has proved theorems by induction: the theorem must be generalized. Thisproblem is a mathematical one and is independent of the particular mechanizedlogic or mechanical theorem prover employed.10

The theorem we wish to prove involves feeding a series of n max's into acc.What happens when you do that? The max's pile up (in reverse order) at thefront and acc is stepped with cstep, except that odd/even parities of the elementsof acc alternate because of the max's being added to the front. We leave to thereader the problem of discovering what goes wrong with an attempt to provethe theorem directly by induction, but dealing with these changing parities isone of the problems.To prove the Positive In�nity Property we prove a stronger property by in-duction. We state the stronger property, Positive In�nity Property Generalized,below. But we motivate (and sketch the proof of) the property in the discussionbelow, where we explain how to strengthen the original property. The originalproperty involves feeding a list of max's into an accumulator acc. We will gen-eralize the theorem by generalizing both the list of max's and the accumulator.We start with the latter.From the discussion above it is clear that the general state of the accumulatoris not one merely satisfying � but one containing a pile of max's at the frontand satisfying �. Thus, the accumulator should have the form append(s; acc0).At �rst it may appear su�cient to require that s be a list of max's and thatappend(s; acc0) satisfy �, but we need to generalize further. In particular, werequire that s be an ordered (weakly descending) list of records such that jsj iseven and every element of s dominates every element of acc0.Note that under these conditions, if acc0 satis�es � then so does the concate-nation of s and acc0. The facts that jsj is even and every element of s dominatesevery element of acc0 allows us to distribute � over the concatenation, e.g.,append(s; acc0) has property � i� both s and acc0 have the property. Note alsothat if jsj is even, then cstep distributes over append also: the result of steppingthe concatenation of s and acc0 is the concatenation of the results of steppings and stepping acc0. Such observations are crucial and we use them implicitlybelow.So the general shape of the accumulator is append (s; acc0) where s and acc0are as above.Instead of feeding in a list of max's, we feed in an arbitrary list of records,lst, such that lst is ordered but weakly ascending, every element of lst dominatesthe elements of s and of acc0, and jlstj < jacc0j.To see why this version of the theorem is necessary, consider inductivelyproving a theorem involving the expressioncfeed(lst; append(s; acc0))where lst, s and acc0 have the properties required above.In the induction step, lst is non-empty, i.e., is cons (mx; lst0). Considerwhat happens when we feed in the �rst element, mx, to the comparator. Thefunction cfeed conses mx onto append(s; acc0), steps it, and recursively handles11

lst0. That is, the expression above becomescfeed (lst0; cstep (cons (mx; append (s; acc0))))and we seek an induction hypothesis that will enable us to manipulate thisexpression further. But the inductive hypothesis will be of the formcfeed (lst0; append (�; �));for lst0 and some � and � satisfying our general conditions on lst, s and acc0above. Clearly, we must manipulate the cstep expression above, which we shallcall , into the append form.Because jlstj < jacc0j we can write acc0 as cons (a; acc00). Thus, = cstep (cons (mx; append (s; acc0)))= cstep (cons (mx; append (s; cons (a; acc00))))= cstep (append (cons (mx; append (s; cons (a;nil))); acc00))Because jsj is even, so is jcons(mx; append(s; cons(a;nil)))j. Thus, we can dis-tribute cstep over the append to obtain = append (cstep (cons (mx; append (s; cons (a;nil))));cstep (acc00))Since s is ordered, weakly descending, mx dominates everything in s and ais dominated by everything in s, the list cons (mx; append (s; cons (a;nil))) isordered, weakly descending. Thus the �rst cstep expression above is a no-op. = append (cons (mx; append (s; cons (a;nil)));cstep (acc00))Hence, is in the form append(�; �), where� : cons (mx; append (s; cons (a;nil)))� : cstep (acc00)A little thought will show that these values of � and � satisfy the conditions ons and acc0 required by the theorem.In short, an inductive proof of the following general theorem is straight-forward, given the fairly subtle relationships between the conditions illustratedabove.Theorem: Positive In�nity Property GeneralizedLet acc0 be a list of records satisfying �. Let lst be a list of recordssuch that jlstj < jacc0j and suppose that lst is ordered weakly as-cending. Let s be a list of records such that jsj is even and s isordered weakly descending. Finally, suppose every element of lstdominates every element of s and of acc0 and that every element ofs dominates every element of acc0. Then12

cfeed (lst; append (s; acc0))=append (reverse (lst); s; cdrain (jlstj; acc0)).Note that our Positive In�nity Property follows from the one above, if welet s be nil, acc0 be acc and lst be a list of n max's.6 A Tour of the ACL2 Proof ScriptProofs of all three of the key theorems noted here have been checked withthe ACL2 theorem prover. Ninety-�ve ACL2 de�nitions and theorems areinvolved in our proof of these theorems. This includes the de�nitions nec-essary to de�ne all of the concepts. The ACL2 input script or \book" ishttp://www.cs.utexas.edu/users/moore/publications/csort/csort.lisp. We givea brief sketch of the book here. The book is divided into six \chapters."Chapter 1 deals with elementary list processing and is completely indepen-dent of the speci�cs of the comparator sort problem. It de�nes functions forretrieving the �rst n elements of a list and for producing a list of n repetitionsof an element, and it de�nes the predicate that determines whether one list isa permutation of another. The chapter then proves fundamental properties ofseveral primitive ACL2 functions and these functions, including� the concatenation function is associative,� the length of the concatenation of two lists is the sum of their lengths,� the �rst n element of a list of length n is the list itself, and� the reverse of n repetitions of an element is just n repetitions of the ele-ment.The most important contribution of this chapter is that it establishes thatthe permutation predicate is an equivalence relation and that it is a congruencerelation for certain Lisp primitives such as list membership, concatenation, andlength. Here we will denote that a is a permutation of b by \a ' b". Whenwe say that the permutation predicate is a congruence relation for (the secondargument of) list membership, we mean \a ' b! (x 2 a)$ (x 2 b)".ACL2 supports congruence-based rewriting. When ACL2 rewrites an ex-pression it does so in a context in which it is trying to maintain some givenequivalence relation. Generally, at the top-level of a formula, it rewrites tomaintain propositional equivalence. Because of the above congruence relation,when ACL2 rewrites an expression like \ 2 �" to maintain propositional equiv-alence (\$") it can rewrite � to maintain the permutation relation (\'").How does ACL2 rewrite maintaining \'"? The answer is that it uses rewriterules that use \'" as their top-level predicate. For example, the theorem that13

reverse(x) ' x can be so used as a rewrite rule in the second argument of \2".Thus, \e 2 reverse(x)" rewrites to \e 2 x". This rewrite rule about reverse(modulo ') is included in the �rst chapter of our book. In all, Chapter 1contains 37 de�nitions and theorems.Chapter 2 deals with the idea of ordering lists of pairs by the \data" compo-nent. It de�nes the function \data" and the predicate \ordered" and also de�nestwo other predicates. The �rst (\all-gte") checks that one pair dominates allthe pairs in a given list, in the sense that the pair's data �eld is greater than orequal to that of each of the other pairs. The second (\all-all-gte") checks thatevery pair in one list dominates all the pairs in another. These predicates areused in our formalizations of the two in�nity properties.The chapter then lists about 20 theorems about these functions and predi-cates, including,� that permutation is a congruence relation for all-gte and all-all-gte, e.g.,that a ' b! all-gte (p; a)$ all-gte (p; b).� that the concatenation of two lists is ordered precisely when the two listsare ordered and all the elements of the �rst dominate those of the second,� that a pair dominates the elements of the concatenation of two lists pre-cisely when it dominates all the elements of each list, and� that the list consisting of n repetitions of an element is ordered.A total of 25 events are in this chapter.Chapter 3 contains the six events de�ning min-pair, max-pair, cstep, cfeed,cdrain and csort.Chapter 4 establishes the basic properties of the above-mentioned functions,including that cstep, cfeed, and cdrain produce permutations of their arguments,the corollaries that the lengths of their outputs are suitably related to the lengthsof their inputs, and that cstep has these three properties:� cstep distributes over the concatenation of two lists if the �rst list haseven length,� cstep distributes over the concatenation of two lists if the second list isordered and is dominated by the elements of the �rst list,� cstep is a no-op on ordered lists.Thirteen theorems are in this chapter.In Chapter 5 we are concerned with the invariant �. We de�ne it and prove� �(cdr(acc))! �(cstep(acc)), and� �(acc)! �(cfeed(lst; acc)). 14

Two other lemmas are proved to help ACL2 to �nd the proofs of these twotheorems.Finally, in Chapter 6 we prove the three theorems discussed in this paper.The theorem that csort produces an ordered permutation of its input is decom-posed into two parts. The permutation part, csort(acc) ' acc, is trivial, giventhe work done in Chapter 4. The ordered part is ordered(csort(lst)) and isproved using the lemma:� If n is a natural number such that n � jaccj and acc has property �, thenordered(�rstn(2 + n; cdrain(n; acc))).The Positive In�nity Property is proved using the lemma below.� Suppose data (p1) � data (p2). Suppose s is an ordered list of even length,p1 dominates every element of s, and every element of s dominates p2.Then cstep (cons (p1; append (s; cons (p2; acc))))= cons (p1; append (s; cons (p2; cstep (acc)))):This lemma is the key simpli�cation step in the proof discussed above of PositiveIn�nity Property Generalized, which is the next theorem proved in this chapter.It is necessary to tell ACL2 to use the particular induction scheme used in ourdiscussion. The Positive In�nity Property is then proved by instantiation.The Negative In�nity Property relies on a similar, inductively proved gen-eralization:� Suppose acc is ordered. Suppose further that every element of lst dom-inates every element of acc and that every element of s dominates acc.Then cfeed (lst; append (s; acc)) = append (cfeed (lst; s); acc).It takes about 25 seconds to prove all of theorems in all of the chapters. Thismeasurement is taken on a 200 MHz Sun Microsystems Ultra-2.References[1] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press:New York, 1979.[2] R. S. Boyer and J S. Moore. A Computational Logic Handbook, SecondEdition, Academic Press: London, 1997.[3] B. Brock, M. Kaufmann and J S. Moore, \ACL2 Theorems aboutCommercial Microprocessors," in M. Srivas and A. Camilleri (eds.)Proceedings of Formal Methods in Computer-Aided Design (FM-CAD'96), Springer-Verlag, pp. 275{293, 1996.15

[4] M. J. Curey, P. M. Hansen, and C. D. Thompson, \Sorting Records inVLSI," in L. Snyder, L. H. Jamieson, D. B. Gannon, and H. J. Siegel(eds) Algorithmically Specialized Parallel Computers, Academic Press,New York, NY, pp. 27{36, 1985.[5] S. Gilfeather, J. Gehman, and C. Harrison. Architecture of a Com-plex Arithmetic Processor for Communication Signal Processsing inSPIE Proceedings, International Symposium on Optics, Imaging, andInstrumentation, 2296 Advanced Signal Processing: Algorithms, Ar-chitectures, and Implementations V, July, 1994, pp. 624{625.[6] M. Kaufmann and J Strother Moore \An Industrial Strength TheoremProver for a Logic Based on Common Lisp,"IEEE Transactions onSoftware Engineering, 23(4), pp. 203{213, April, 1997.[7] M. Kaufmann and J Strother Moore \A Precise Description of theACL2 Logic," http://www.cs.utexas.edu/users/moore/publications/-km97a.ps.Z, April, 1998.[8] G. Miranker, L. Tang, and C. K. Wong, A \Zero-Time' VLSI Sorter,IBM J. Res. Develop, 27(2), March, 1983, pp. 140{148.[9] G. L. Steele, Jr. Common Lisp The Language, Second Edition. DigitalPress, 30 North Avenue, Burlington, MA 01803, 1990.

16

