Finite Set Theory in ACL2

J Strother Moore*

Department of Computer Sciences, University of Texas at Austin,
Taylor Hall 2.124, Austin, Texas 78712
moore@cs.utexas.edu telephone: 512 471 9568
WWW home page: http://www.cs.utexas.edu/users/moore

Abstract. ACL2 is a first-order, essentially quantifier free logic of com-
putable recursive functions based on an applicative subset of Common
Lisp. It supports lists as a primitive data structure. We describe how
we have formalized a practical finite set theory for ACL2. Our finite set
theory “book” includes set equality, set membership, the subset relation,
set manipulation functions such as union, intersection, etc., a choice
function, a representation of finite functions as sets of ordered pairs and a
collection of useful functions for manipulating them (e.g., domain, range,
apply) and others. The book provides many lemmas about these prim-
itives, as well as macros for dealing with set comprehension and some
other “higher order” features of set theory, and various strategies or tac-
tics for proving theorems in set theory. The goal of this work is not to
provide “heavy duty set theory” — a task more suited to other logics —
but to allow the ACL2 user to use sets in a “light weight” fashion in spec-
ifications, while continuing to exploit ACL2’s efficient executability, built
in proof techniques for certain domains, and extensive lemma libraries.

1 Introduction

Doesn’t ACL2 [4, 3] already provide sets? It contains such standard Lisp func-
tions as member, subsetp, union and intersection. These operate on lists,
ignoring duplication and order. For example, consider the two lists (1 2) and
(2 1). Both lists can be used to represent the set {1,2}. Member can be used to
determine that 1 and 2 are elements of both lists and that 3 is an element of
neither. Subsetp can be used to determine that each list is a subset of the other
and so we can say they are “set equal.”

But these primitives are like their set theory counterparts only on sets of
atoms. For example, (2 1) is not a member of ((1 2)) even though {2,1} is
a member of {{1,2}}. That is because member compares elements with Lisp’s
equal, not “set equality.” We wish to define finite sets in such a way that sets
can be elements of other sets.

Extensive set theory work has been done in both the Isabelle and the Mizar
communities. For example, Paulson [9, 10] describes a formalization of Zermelo-

* This work was supported in part by Compaq Systems Research Center, Palo Alto,
CA.

Fraenkel set theory and proves Cantor’s Theorem and Ramsey’s Theorem. Paul-
son and Grabczewski develop ZF to the point of proving equivalent twenty dif-
ferent formulations of the Axiom of Choice. The Mizar system is essentially
based on Tarski Grothendieck set theory and virtually all of the extensive results
proved by the Mizar community and published in their Journal of Formalized
Mathematics (http://www.mizar.org/JFM) may be thought of as set theoretic
in nature. See especially [1] and the other articles in Volume 1 of the Journal.
There is a little set theory work in HOL [2]. If one’s goal is to check the results
of set theory, we would recommend Isabelle or Mizar.

But our goal is not “heavy duty set theory.” Our goal is to provide sets to
the ACL2 user. A typical use of ACL2 is to build an executable model of some
system. Execution speed is essential. The ACL2 model of the microprocessor
described by Greve and Wilding in [3] executes at 3 million simulated instructions
per second (on a 733 MHz machine). Lisp’s data structures are excellent for this.
But now imagine that in formalizing some property, the ACL2 user wishes to
speak of the set of all the states visited during some execution or the powerset
of the set of all scheduled threads. A little “light weight” set theory is clearly
useful here, whether efficiently executable or not.

We could, of course, adopt a system like Isabelle or Mizar and formalize
all of ACL2’s objects as sets. For example, we could adopt the von Neumann
coding and represent the number 1 as the set containing the empty set, say. Then
natural number addition has a straightforward set theoretic definition. But the
elementary arithmetic functions are already defined in ACL2 and they do not
treat {{}} as the multiplicative identity. So, without some kind of reflection
principle, we are forced by this embedding to abandon ACL2’s native objects
and the functions for manipulating them, in favor of a set theoretic treatment
of everything. That also means abandoning ACL2’s execution efficiency, built in
decision procedures, and existing lemma libraries.

But we want to preserve those things. So we want sets of native ACL2 objects
— integers, rationals, strings, symbols and lists representing all manner of other
computational objects such as bit vectors, frames, stacks, class tables, superclass
hierarchies, etc. We want to be able to load libraries defining various computa-
tional objects and functions for manipulating them and theorems relating those
functions, and we want to collect those objects together into sets. (Our approach
also allows ACL2 objects to contain (objects to be treated as) sets. Since ACL2
is untyped, the functions manipulating those objects must “know” when a com-
ponent is to be treated as a set and use the set theory functions to manipulate
it.)

Having established the need to do something to provide first-class finite sets
in ACL2 while preserving ACL2’s native objects, here is a quick sketch of what
we will do.

We are going to develop what might be called the “hereditarily finite sets
built from the ACL2 universe of objects.” That is, the base elements, or “ur-
elements,” of our sets will be the ACL2 objects and the elements of all sets will
be these ur-elements or other such sets.

ACL2 does not support the introduction of new data types. So we will rep-
resent the set theory individuals (e.g., ur-elements and all the sets we can build)
as ACL2 objects. We define an equivalence relation, =, on these ACL2 objects
so that two objects are equivalent precisely if they represent the same set theory
individual.! We define “set theory functions and predicates” that treat objects as
though they were the set theory individuals they represent. These functions and
predicates enjoy the expected algebraic properties of their set theory counter-
parts. Throughout this paper we use “=" to mean this new equivalence relation,
not the normal Leibniz identity, which we denote as “=". Once we get going,
the distinction is not germane to this paper.

So that we do not redefine existing Lisp functions, we do all of our work in a
new symbol package named "S" (for “sets”). Common Lisp provides packages so
users can have disjoint name spaces. We “import” into our "S" package all of the
standard ACL2 symbols except for union, intersection, subsetp, add-to-set,
functionp, =, and apply, and use "S" as the selected (implicit) package in this
paper. This means that when we use a familiar Lisp symbol, such as car, we
are referring to its standard Lisp meaning. That is, car is just shorthand for the
symbol whose full name is 1isp::car. But when we use one of the imported
symbols above we are referring to the symbol of that name in our "S" package,
e.g., by union we mean s: :union.

The primitive set theory predicates and functions, such as member and union,
are defined so that = is a congruence relation for each argument position. A
unary function f admits = as a congruence relation if u = v — f(u) = f(v). This
notion is extended to functions and predicates of arbitrary arity and to different
equivalence relations in the hypothesis and conclusion. Thus, u=v — (p(z,u)
p(z,v)) is a congruence rule. It tells us that p(z,u) is equivalent (in “+” sense
of propositional equivalence) to p(z,v) when w is equivalent (in the “=" sense)
to v.

The ACL2 theorem prover contains special provisions for dealing with user-
defined equivalence relations and congruence rules. When ACL2 rewrites a term,
it maintains a given sense of equivalence, specified by an equivalence relation.
That goal equivalence relation and the known congruence rules determine the
equivalences that may be used as rewrite rules. For example, suppose the system
is rewriting p(y,union(a, 3)), maintaining the goal equivalence “+”. Then the
above congruence rule allows the system to shift from “<” to “=" while rewrit-
ing the second argument of p. That, in turn, allows it to use theorems concluding
with “=" as rewrite rules. For example, union(z,y) = union(y, z) is such a rule.
Using it, the rewriter may replace the union(a,3) here by union(3,), even
though the two terms are not necessarily equal (in the “=” sense of Leibniz
identity native to the logic).

! In ACL2, true and false are denoted by the objects T and NIL. “Relations” and
“predicates” are defined as Boolean valued functions, i.e., functions that return either
T or NIL. By proving that a relation is an equivalence relation the user may cause
the ACL2 theorem prover to manipulate it with special techniques described below.

In ACL2, a collection of definitions and theorems is called a “book.” Books
may be included into an ACL2 session to configure the theorem prover. Our
set theory book is available at http://www.cs.utexas.edu/users/moore/-
publications/finite-set-theory. In this paper we present our formulas in
an abstract syntax rather than ACL2’s concrete syntax.

Why might this work be of interest outside the ACL2 user community? First,
it highlights the importance of certain general theorem proving techniques sup-
ported by ACL2 (especially congruence based rewriting). Second, we explore a
variety of issues that arise in any attempt to embed one mathematical formalism
in another, e.g., identity versus equivalence, mutual recursion versus canonical-
ization, useful definitional schemes, transparency with respect to existing proof
techniques, etc. Third, if one takes the view that all we have done is implement
finite set theory in a programming language and prove that the implementation
satisfies the standard algebraic laws, then the paper represents an interesting
challenge to any software verification system. Fourth, if your theorem prover
provides set theory, define the powerset function recursively and see if your
system can do the proofs required in Section 9 with less guidance than ACL2
requires.

2 Basics

Definitions. The ACL2 universe consists of all ACL2 numbers (rationals and
complex rationals), characters, strings, symbols, and conses of objects in the
ACL2 universe. These notions are made clear in [4]; informally, these are the
objects the ACL2 programmer can construct and manipulate. The elements of
the ACL2 universe are called ACL2 objects.

Definition. An ur-element is an ACL2 object other than the keyword symbol
:UR-CONS.

To motivate what follows, now imagine some construction of finite sets al-
lowing us to distinguish non-empty sets from ACL2 objects and identifying the
empty set with the ACL2 object NIL. We are interested in all the finite sets
containing ur-elements and/or other such finite sets.

Definition. The hereditarily finite ACL2 sets is the smallest set S with the
property that a set s is an element of S precisely if s is finite and every element
of s is either an ur-element or is some element of S.

Definition. The ACL2 set theory universe consists of all the ur-elements and all
the hereditarily finite ACL2 sets. An element of the ACL2 set theory universe is
called an ACL2 set theory individual. Note that not every set theory individual
is a set, e.g., some are numbers, strings, etc.

We are interested in representing the ACL2 set theory individuals. In par-
ticular, each such individual can be represented by an ACL2 object, often in
multiple ways.

Definition. Let z be an ACL2 set theory individual. We define a representative
of z recursively as follows. If z is an atomic ur-element (a number, character,
string or symbol), then a (in fact, the) representative of z is z itself. If z is a

cons, then a (the) representative of z is (:UR-CONS z). If z is the empty set, a
representative is NIL. Otherwise, z is a non-empty set containing some element
e. In this case, a representative of x is the cons whose car is a representative of
e and whose cdr is a representative of the set z \ {e}.

In our set theory book we define an equivalence relation = with the following
property: two ACL2 objects are equivalent under = precisely if they represent
the same ACL2 set theory individual. We do not show the definition here. Our
equivalence relation is insensitive to the order in which elements of sets are pre-
sented and in fact allows duplications of elements. Our elimination of the symbol
:UR-CONS as an ur-element makes our representation of sets non-ambiguous. The
= relation can distinguish ur-elements from each other and from sets. Two sets
are = precisely when they are subsets of one another.

Henceforth, we speak of ACL2 objects as though they were the ACL2 set
theory individuals they represent. For example, here are three example sets.

— The set containing the symbolic names of the first three days of the week,
which ordinarily might be written {SUNDAY, MONDAY, TUESDAY}, may be writ-
ten (SUNDAY MONDAY TUESDAY). Equivalently (in the “=" sense), it may be
written (MONDAY SUNDAY TUESDAY SUNDAY).

— The set of digits, as integers, may be written (0 1 2 3 4 5 6 7 8 9).

— The set consisting of the set of even digits and the set of odd digits may be
written ((0 2 4 6 8) (1357 9))

When an ACL2 list, e.g., a machine state, thread, stack, etc., is used as an
ur-element, it must be embedded in the :UR-CONS form so it is not treated as
a set. Here is a set that contains the set of even digits, the set of odd digits,
the list of even digits in ascending order and the list of odd digits in ascending
order.

((0 246 8)
13579
(:UR-CONS (0 2 4 6 8))
(:UR-CONS (1 357 9)))

Because ACL2’s is a syntactically untyped language it is possible to use ur-
elements where sets are expected. We deal with this with a sweeping convention.
The Non-Set Convention. If a non-NIL ur-element is used where a set is
expected, all set theory functions shall behave as though the empty set had
been used instead.

For example, our answer to the question “does 3 occur as an element in the
set 57" is “no,” because 5 is not a set and hence the question is treated as though
it had been “does 3 occur as an element in the set {}?” This should not concern
the reader since such “ill-formed” questions are never asked. We tend to ignore
such issues in this paper.

Following the normal rules of Lisp, it is necessary to quote values when they
are used as literal constants in terms. For example, cardinality(’ (1 2 3))
denotes the application of the function cardinality to (a constant representing)
the set {1,2,3}.

3 Set Theoretic Functions and Theorems Proved

In Figure 1 we name some of the functions and macros defined in the "S" package.
We discuss below how other operations can be defined.

Since numbers in ACL2 set theory are just ACL2’s numbers and all the
ACL2 arithmetic functions and predicates (except =) are imported into the "S"
package, the arithmetic functions of ACL2 set theory are exactly the arithmetic
functions of ACL2.

In Figure 2 we list some of the theorems available in the set theory book.
These theorems have some subtle attractive properties that one can appreciate
only by considering alternative formulations of set theory in ACL2. One is that
most are not burdened by hypotheses restricting them to sets or individuals.
Another is the use of = as the only sense of equivalence. Any theorem concluding
with an = could be used as a rewrite rule (under certain restrictions imposed
by ACL2’s rewriter). Still another is that the proofs of most of these theorems
are extraordinarily simple. We omit many of our theorems (especially duals) for
brevity.

4 The Choice Function

In order to allow us to define certain functions on sets, such as extracting the
components of an ordered pair represented by {z,{z,y}}, we must be able to
obtain an element of a non-empty set. We therefore defined choose.

Key properties of choose(s) are that it admits = as a congruence, i.e., the
choice is independent of the representation or presentation of s, and choose(s)
is a member of s if s is non-empty. Ideally, perhaps, nothing else need be said
about choose. But it is in fact quite specifically defined. We simply opt seldom
to expose its other properties. But logically speaking those properties are present
and important.

Choose is computable. For example, choose(’ (1 2 3 4)) is 4. Our definition
of choose chooses the largest element of the set, where the ordering is a certain
(arbitrarily defined but unspecified here) total ordering on our objects.

Our definition of choose allows us to prove the following property.

Weak Choose-Scons Property:
choose(scons(e,a)) =e V choose(scons(e, a)) = choose(a).

That is, choose on scons(e, a) is either e or the choice from a. Of course, it is
possible to say exactly which of these cases obtains: choose(scons(e, a)) is e, if
e dominates choose(a), and is choose(a) otherwise. We call this stronger state-
ment the Strong Choose-Scons Property. The strong property requires mention
of the total order while the weak property does not. Since this can complicate
proofs, we avoid the use of the strong property when possible.

ACL2 allows the user to constrain undefined functions to satisfy arbitrary
properties, provided some function (a “witness”) can be shown to have those
properties. Using this feature of ACL2, it is possible to introduce an undefined

ur-elementp(a)
setp(a)
scons(e,a)
brace(as,...,ax)

a=b

mem(e, a)
subsetp(a, b)
cardinality(a)
nats(n)
union(a,b)
intersection(a,b)
diff(a,b)
choose(a)
pair(z,y)

pairp(a)
hd(a)
t1(a)

pairps(s)
functionp(f)

domain(f)

range(f)
apply(f,e)

except(f,e,v)
restrict(f,a)

sequencep(s)

shift(4, 7, f,d)

concat(r, s)

T or NIL according to whether a is an ur-element.

T or NIL according to whether a is a set.

{e}Ua.

The set whose elements are given by the values of the
k expressions; this is known as “roster notation”.

If a and b are the same individual, then T, otherwise,

NIL.
e € a. Both arguments are treated as sets.

a Cb.

|al.

{i|ieNAOD<i<nm}

aUb.

anb.

a\b.

An element of the set a, if a is non-empty.

A set representing the ordered pair (z,y). We call
such a set simply a pair. Pair(z,y) is defined to be
brace(z,brace(z,y)).

T or NIL according to whether a is a pair.

If a is the pair (z,y), then z; otherwise, NIL.

If a is the pair (z,y), then y; otherwise, NIL.

T or NIL according to whether s is a set of pairs.

If f is a set of pairs and no two elements of f have
the same hd, then T; otherwise, NIL. If a function f
contains pair(e,v), then we say v is the value of f on

e.
{e | Jz(z € f Ne=hd(z))}.
{e|3z(x € fAe=tl(x))}
If f is a function and e is in its domain, then the value

of fone.
If f is a function then the function that is everywhere

equal to f except on e where the value is v.

The image of f on those elements of a in the domain
of f.

T if s is a function whose domain is {1,...,|s|}, oth-
erwise NIL. Generally, ACL2 lists serve more directly
but we formalized sequences as an application.

If ¢ and j are integers, then the function obtained by
mapping k + d to apply(f,k), for every 1 < k < j. If 5
or j is not an integer, the result is NIL.

union(r, shift(1, cardinality(s), s,
cardinality(r))).

Fig. 1. Some Functions of Our Set Theory

esubsetp(z, z).
esubsetp(a,b) A subsetp(b,c) — subsetp(a,c).
emem(e, a) A subsetp(a,b) — mem(e, b).
esetp(a) A setp(b) = ((a=b) <> (subsetp(a,b) A subsetp(b,a))).
e—mem(e,e).
emem(e, union(a,b)) <> (mem(e, a) V mem(e, b)).
esubsetp(a,union(a,b)).
esubsetp(ai,a2) — subsetp(union(ai,b),union(as,b)).
eunion(a,b)=union(b, a).
eunion(union(a,b),c) =union(a,union(b, c)).
ecardinality(a) < cardinality(union(a,b)).
ecardinality(a)=0 <> ur-elementp(a).
eintersection(a,b)=NIL
— cardinality(union(a,b)) =cardinality(a) + cardinality(b).
emem(choose(a),a) <> " ur-elementp(a).
echoose(scons(e,a))=e V choose(scons(e, a)) = choose(a).
echoose(scons(e,NIL)) =e.
ecardinality(z)=1 A mem(e,z) — scons(e,NIL) =z.
emem(e,diff(a,b)) <> (mem(e,a) A ~mem(e,b)).
esubsetp(a1,a2) — subsetp(diff(ai,b),diff(az,b)).
esubsetp(a,b) A subsetp(b,c) — union(diff(b,a),diff(c,b))=diff(c,a).
ecardinality(diff(a,b)) < cardinality(a).
eintersection(diff(b,c),a)=diff(intersection(a,b),c).
ehd(pair(z,y))=z.
et1(pair(s,y)) = .
epairp(pair(z,y)).
epairp(a) — pair(hd(a),tl(a))=a.
epair(z1,y1) =pair(zrz, y2) < (T1=22 A y1=y2).
efunctionp(f) — functionp(except(f,z,v)).
eapply(except(f,z,v),y) = (if =y then v else apply(f,y)).
epairps(f) — domain(except(f,z,v))=scons(z,domain(f)).
esubsetp(range(except(f,z,v)), scons(v, range(f))).
edomain(union(f, g)) =union(domain(f),domain(g)).
erange(union(f, g)) =union(range(f), range(g)).
ecardinality(domain(f)) < cardinality(f).
ecardinality(range(f)) < cardinality(f).
efunctionp(f) A functionp(g) A intersection(domain(f),domain(g))=NIL
— functionp(union(f,g)).
edomain(restrict(f,s))=intersection(s,domain(f)).
efunctionp(f) A functionp(g) A intersection(domain(f),domain(g))=NIL
— apply(union(f, 9),)
= (if mem(z, domain(f)) then apply(f,z) else apply(g,z)).
esequencep(a) A sequencep(b) A sequencep(c)
— concat(concat(a,b), c) = concat(a, concat(b,c)).

Fig. 2. Some Theorems Proved

choice function, ch, which admits = as a congruence and which selects a member
of a non-empty set, without otherwise constraining the choice made. Our choose
can be used as a witness to introduce ch.

It should be noted that ch does not enjoy the analogue of the Weak Choose-
Scons Property. That is, it is impossible to prove from the properties of ch above
that ch(scons(e, s)) is either e or ch(s). For example, ch might choose the largest
element of the set if the cardinality of the set is odd and the smallest element
if the cardinality is even. Such a ch would have the required properties and
furthermore ch(scons(1, ’ (2 3))) would be 3, which is neither 1 nor ch(’ (2 3)),
which is 2.

Therefore, even when using only the weak property, we assume more about
choose than we could about an arbitrary choice function. Most importantly, our
choose is executable, which means that functions defined in terms of it are also
executable. Such functions include pair, hd, t1 and apply.

5 Behind the Scenes

Two sets are equal if and only if they are subsets of one another. If we define set
equality this way, then equality, membership and subset are mutually recursive:
set equality is defined in terms of subset, membership is iterated set equality,
and subset is iterated membership. ACL2 supports mutual recursion. But mutual
recursion can be awkward when dealing with induction. To prove an inductive
theorem about one function in a clique of mutually recursive functions, one
must often prove a conjunction of related theorems about the other functions of
the clique. While ACL2 can often manage the proofs, the user must state the
conjunction of theorems in order for the conjecture to be strong enough to be
provable. We found this often inconvenient, especially in the early going when
nothing but the definitions of the functions are available.

We considered many ways around this obstacle. The eventual solution, which
was supported by some work done concurrently by Pete Manolios, was to intro-
duce the notion of canonical forms. Without engaging in mutual recursion it is
possible to

— define a total order on our objects,

— canonicalize lists so that their elements are presented in this order and with-
out duplicates,

— define set equality to compare sets in canonical form,

— define membership as iterated set equality,

— define subset as iterated membership, and

— prove that two sets are set equal iff they are subsets of one another.

This program actually has at least two interpretations and we explored both. The
interpretation initially favored was to keep lists representing sets in canonical
form all the time. That is, the basic set constructor, e.g., scons(e, z), inserts e
(if it is not already there) at the position in z at which it belongs. This has the
powerful attraction that set equality, =, is Leibniz identity, =.

But we found this approach to complicate set construction to a degree out of
proportion to its merits. In particular, functions like union and intersection,
which are quite easy to reason about in the list world (where order and dupli-
cation matter but are simply ignored), become quite difficult to reason about in
the set world, where most of the attention is paid to the sorting of the output
with respect to the total ordering. In the end we abandoned this approach and
adopted a second interpretation of the program above: lists representing sets
are created and manipulated in non-canonical form and are canonicalized only
for determining whether two sets are equal. This was quite effective. Scons is
cons (with appropriate treatment of :UR-CONS), union is essentially append,
etc. ACL2 is designed to prove theorems about these kinds of functions.

Another question that drew our attention was: what are the “ur-elements”
of our set theory? The first attack was to formalize hereditarily finite sets: finite
sets built entirely from the empty set. Initially we felt that the details of the set
theory were irrelevant to the user, since the high level individuals with which the
user would deal — numbers, sequences, functions, etc., — would be abstractly
represented. According to this thinking, proofs about these high level individuals
would be conducted more or less algebraically, using theorems provided by the
set theory book.

However, we found the use of hereditarily finite sets to be too cumbersome.

— Concrete examples of sets representing naturals, pairs, etc., were practically
impossible to read and comprehend. Here is 3 in the von Neumann repre-
sentation of the naturals {{{{}}{}}{{}}{}}. It was hard to test definitions
and conjectures.

— The need to embed everything as sets forced ACL2 to spend its resources
unraveling the embedding rather than dealing with the gist of the user’s
problem. This was particularly evident when dealing with arithmetic.

In the final view of this project, we saw the objective as to produce a set
theory that was “natural” to ACL2’s mode of reasoning, so that its power would
be spent at the core of the user’s problem, not on getting down there. Arithmetic
in our set theory is just ACL2’s arithmetic. Arbitrary ACL2 objects can be col-
lected into sets. The set primitives are simple and their definitions are usually
easily manipulated to derive clean versions of the algebraic laws of set theory.
Because of support for congruences, these laws can then be used in the normal
way to manipulate set expressions without regard for how sets are actually rep-
resented, provided certain basic conventions are followed. The main conventions
are that = be used to compare sets and that every time a new set generating
function is introduced the appropriate congruence rules are proved establishing
that the function admits set equality as a congruence relation.

6 Codified Proof Strategies

The set theory book includes several proof strategies particular to set theory.
Such strategies are convenient because they overcome ACL2’s lack of quantifi-
cation.

10

To prove =3, where o and (3 are two set theory expressions that produce
sets (as opposed to ur-elements), it is sometimes convenient to prove that (e €
a) + (e € B). That is, a set is entirely determined by its elements. This fact
may be formalized in set theory as (Ve:e€a+ e €b) - a=0».

But ACL2 does not have the quantificational power to express this fact di-
rectly.? We have defined an ACL2 macro (named defx) that allows the user
to direct the theorem prover to prove a theorem using a specified strategy.
When defx is used to prove v — a=0 with the “set equivalence” strategy
it generates two subgoals, v A mem(e, @) — mem(e, §) and its symmetric coun-
terpart, and then proves the main theorem by “functional instantiation” [5]
of a general theorem. (The general theorem can be described as follows. Sup-
pose that alpha and beta are two 0-ary functions satisfying the constraint
mem(e, alpha()) — mem(e, beta()). Then subsetp(alpha(), beta()) is a theorem.)

Another special strategy, called “functional equivalence,” is useful when a
and g are functions: prove that applying them produces identical results. Four
subgoals are produced, (a) functionp(«), (b) functionp(s), (c) domain(a) =
domain(), and (d) mem(e,domain(c)) — apply(a,e)=apply(s,e). Proof obli-
gation (d) could be simplified by dropping the hypothesis; we included it simply
because it weakens the proof obligation. The previously mentioned theorem

esequencep(a) A sequencep(b) A sequencep(c)

— concat(concat(a, b), ¢) = concat(a, concat(b, c))
is proved with the functional equivalence strategy. (Sequences in this set theory
are functions. We would expect the ACL2 user to prefer to use the native lists,
but we formalized sequences-as-functions to test the library.) The two concat
expressions are equivalent because they yeild the same results when applied to
arbitrary indices.

Defx is defined in a general way that allows the user to add new strategies.
(Hint to ACL2 cognoscenti: define each strategy as a macro. Defx forms expand
to calls of the strategy.) The defx form provides a uniform appearance in com-
mand files (“books”) and allows the continued use of Emacs’ tag feature for
indexing names. This use of macros is novel to most ACL2 users.

7 Recursive Functions on Sets

The first order nature of ACL2, combined with the absence of quantification,
prevents the formalization of set comprehension in its general form. That is, it
is impossible in ACL2 to formalize with complete generality such notation as
“Lz | ¢(z)}.” We have implemented some macros to mitigate the problem.

The first step is to consider only notation such as {z | z € s A ¢(z)}, where
s is a (finite) set. It is then possible to map over s with a recursive function to
identify the appropriate elements. But because ACL2 is first-order, we cannot

2 Actually, ACL2 does provide full first-order quantification via defun-sk, but that is
no more convenient that what we are about to describe.

11

define a function that takes ¢ as an argument.? So the second step is to define
a recursive function, f, for any given ¢, to compute the above set from s.

The most obvious disadvantages of this approach are (a) one must introduce
a function symbol f to capture each use of set-builder notation, (b) one must
prove “the same” theorems about each such f, and (c) one must prove theorems
that relate any two such f’s that become entwined in the same problem. Much
of this can be handled by macros. We therefore deal with the most fundamental
issues here.

The general scheme for defining a recursive function to extract the ¢ subset
from a set s is:

Def f(s) = if ur-elementp(s)
then NIL
else if ¢(scar(s))
then scons(scar(s), f(scdz(s)))
else f(scdr(s)).

The test on whether s is an ur-elementp is the standard way to enforce the
Non-Set Convention. This test recognizes NIL, but also all other ur-elements, as
the base case of the recursion. They are all treated equivalently.

Otherwise, s is a non-empty set and we define f in terms of scar(s) and
scdr(s). We have not previously mentioned these functions because they are
not pure “set theory” functions: they do not admit = as a congruence relation.
It is best to think of scar and scdr as working on a presentation of a set. Scar
returns the first element presented and scdr returns the set containing all the
others. But a set may have multiple presentations. For example, > (1 2) = ’(2
1) but scar(’ (1 2)) is 1 while scar(’(2 1)) is 2.

In fact, ur-elementp, scar, scdr, and scons are exactly analogous to atom,
car, cdr, and cons, except that conses marked with :UR-CONS are treated as
atoms. Ignoring the issue raised by :UR-CONS, the definition of f above is

Def f(s) = if atom(s)
then NIL
else if ¢(car(s))
then cons(car(s), f(cdr(s)))
else f(cdr(s)).

It thus computes a list, not a set.* It may seem counterintuitive to prefer re-
cursive definitions of set theory functions in terms of functions that expose the
underlying representation. But this is a deliberate choice and is perhaps the key
discovery made in the project. (We discuss what we call “recursion by choose”

3 Using apply we could, of course, define the ACL2 function that takes a set s and a
finite predicate f represented as a set, and returns the subset of the former satisfying
the latter.

* Of course it computes a list: sets are lists in ACL2. More precisely, it presents the
set in an order determined by the presentation of its arguments.

12

in [7]. This recursive scheme is entirely set theoretic in nature but makes induc-
tive proofs a little more awkward because of the issues surrounding choose and
scons.)

The main appeal of using scar and scdr is that it usually makes it straight-
forward to prove inductively the fundamental theorems about newly defined re-
cursive set theory functions. Such proofs are generally isomorphic to the proofs
of analogous theorems about the analogous list processing functions. The lat-
ter kind of theorems are ACL2’s “bread and butter.” We illustrate a recursive
definition of a set in Section 9.

8 The Defmap Macro

We have defined a macro to make it easy to define functions corresponding to
two common set builder forms. Each use of the macro not only defines a function
but also proves certain theorems about the new function.

Def f(vi,...,v;) = for z in v; such_that ¢
defines f(v1,...,v;) to be {z | z € v; A ¢}.
Def f(v1,...,v;) = for z in v; map ¢
defines f(v1,...,v;) to be {e|Jz(z € v; ANe = ¢)}.

For example, in the case of the first form above, the lemmas proved about f
include that it produces a set, that = is a member of the answer iff z is in v;
and satisfies ¢, that the answer is a subset of v;, that the function admits = as a
congruence, and that union and intersection (in the i** argument) distribute
over f. Analogous theorems are proved about the other form.

9 Example

Set theory is so rich that the book described here barely scratches the surface.
A relevant question though is whether we can build on this foundation. In this
section we show a complete development of a simple book that defines the pow-
erset of a set and proves two facts about it: that its elements are precisely the
subsets of the set and that our definition admits set equality as a congruence.
The theorems in this section are proved automatically by ACL2 (given the hints
below) after including the set theory book. The book is shown in the abstract
syntax used throughout this paper, but every Lisp form in the book is repre-
sented somehow below.

in-package("S")

Here is the definition of powerset.

Def scons-to-every(e,s) = for z in s map scons(e,z).
Def powerset(s) =
if ur-elementp(s)
then brace(NIL)

13

else union(powerset(scdr(s)),
scons-to-every(scar(s), powerset(scdr(s)))).

Powerset builds a set.

Lemma
setp(powerset(s)).

In fact, it builds a set of sets. But to say that we must define set-of-setsp and prove
that it admits = as a congruence.
Def set-of-setsp(p) =
if ur-elementp(p)
then T
else setp(scar(p)) A set-of-setsp(scdr(p)).

We use the standard defx strategy for proving congruence for a predicate.

Defx ...
a=b — set-of-setsp(a) = set-of-setsp(b).

Powerset builds a set of sets.

Lemma
set-of-setsp(powerset(s)).

Here is the fundamental fact about membership in scons-to-every.

Lemma
setp(p) A set-of-setsp(p) A setp(s1)
— (mem(s1,scons-to-every(e, p))
And
(mem(e, s1) A (mem(s1,p) V mem(diff(s;,brace(e)),p))))

The following function is used to tell ACL2 how to induct in the next theorem. It says:
induct on b and assume two inductive hypotheses.
Def induction-hint(a,b) =
if ur-elementp(b)
then list(a,b)
else list(induction-hint(a,scdr(d)),
induction-hint(diff(a,brace(scar(b))),scdr(d))).

The powerset contains precisely the subsets. This is our main theorem here.

Theorem
setp(e) — (mem(e,powerset(s)) ¢ subsetp(e,s)).
Hint:: Induct according to induction-hint(e, s).

The next lemma is needed for the final defx command.

Lemma
set-of-setsp(s) A subsetp(s,powerset(b)) A mem(e,b)

14

— subsetp(scons-to-every(e, s),powerset(d)).
Hint: Induct according to scons-to-every(e, s).

We use the standard defx strategy for proving congruence for a set builder.

Defx ...
a=b — powerset(a) = powerset(b).

10 Conclusions

An early version of the finite set theory book is part of the general distribution
of ACL2 but this is still a work in progress.

The main application of the set theory book is an ongoing experiment by
Pacheco [8], of the Department of Computer Sciences, University of Texas at
Austin, involving the translation of proof obligations from Leslie Lamport’s TLA
[6] into ACL2. TLA is based on set theory and thus requires more than “a lit-
tle set theory” since the notation used in the TLA model frequently uses set
constructor notation. To preserve ACL2’s reasoning power, we represent TLA
numbers, strings and certain other objects with their ACL2 counterparts rather
than with Lamport’s (unspecified) set representatives. Thus, the TLA experi-
ment involves a mixture of sets and native ACL2 objects.

The TLA experiment has uncovered a few omitted lemmas about functions
in our set theory book. More problematically, it has exposed a wealth of well-
developed concepts in set theory that are definable but not defined in our book,
such as powersets, cross products between sets, the functions between two sets,
etc. Such concepts must not only be defined but the highly interconnected web
of theorems linking them must be developed. Finally, the TLA experiment has
highlighted the need for more support of set comprehension, a feature which gives
set theory much of its expressive power. Pacheco has produced prototype macro
definitions providing some additional support but much more remains. The whole
issue of “faking” higher order expressions in ACL2’s first order language will
probably require additional low-level support in the ACL2 system itself, such as
extensions to our macro feature and connections between macros and the output
routines of ACL2.

Set theory is so expressive and so well developed that such problems are
not surprising. But the TLA experiment, so far, has not led us to abandon or
seek to change the basic representational decisions discussed here. Indeed, we
are encouraged by the experiment’s success.

11 Acknowledgments
I thank Pete Manolios for his help in exploring the issues concerning mutual

recursion in the definitions of the set theory primitives. I am also grateful to
Carlos Pacheco for his willingness to dive into the undocumented set theory

15

book and begin to use it. Finally, I am grateful to Yuan Yu and Leslie Lamport
for helping clarify the goals of the set theory work.

References

10.

. Grzegorz Bancerek. A model of ZF set theory language. Journal of Formalized

Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zf_lang.html.

.M. J. C. Gordon. Higher order logic, set theory or both? In

http://www.cl.cam.ac.uk/~mjcg/papers/holst/index.html. Invited talk,
TPHOLSs 96, Turku, Finland, August 1996.

M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Press, 2000.

M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, 2000.

M. Kaufmann and J S. Moore. Structured theory development for a mechanized
logic. Journal of Automated Reasoning, 26(2):161-203, 2001.

L. Lamport. The temporal logic of actions. ACM Trans. on Programming Lan-
guages and Systems, 16(3):872-923, May 1994.

J S. Moore. Recursion by choose. In http://www.cs.utexas.edu/users/moore/-
publications/finite-set-theory/recursion-by-choose.lisp. Department of
Computer Sciences, University of Texas at Austin, 2000.

Carlos Pacheco. Reasoning about TLA actions. Technical Report CS-TR-01-16,
Computer Sciences, University of Texas at Austin, May 2001. http://www.cs.-
utexas.edu/ftp/pub/techreports/tr01-16.ps.Z.

L. C. Paulson. Set theory for verification: I. from foundations to functions. Journal
of Automated Reasoning, 11:353-389, 1993.

L. C. Paulson. Set theory for verification: Ii. induction and recursion. Journal of
Automated Reasoning, 15:167-215, 1995.

16

