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tToday it is impra
ti
al to prove { formally and me
hani
ally { the 
orre
tnessof entire 
omputing systems of 
ommer
ial interest. There are many reasonsfor this, both te
hni
al and e
onomi
. Me
hanized theorem proving is never-theless relevant in 
ommer
ial hardware and software produ
tion. But pra
ti
al
onsiderations require that we fo
us our attention on problems that are bothte
hni
ally feasible within the time limits available and of interest to systemdesigners.Why might designers turn to a me
hani
al theorem prover? Be
ause theproblems { even the little ones { are so 
ompli
ated they do not have 
on�den
ethat their reasoning is sound. Formal, me
hanized reasoning is 
ru
ial.In this paper we brie
y will des
ribe several su
h \little theorems," that is,theorems that address issues of 
on
ern to designers without trying to addressthe 
omplete 
orre
tness of the system. The theorems have all been formalizedand proved with the ACL2 theorem prover. \ACL2" stands for A ComputationalLogi
 for Appli
ative Common Lisp. It is a theorem prover in the Boyer-Mooretradition that uses rewriting, de
ision pro
edures, mathemati
al indu
tion andmany other proof te
hniques to prove theorems in a �rst-order mathemati
altheory of re
ursively de�ned fun
tions and indu
tively 
onstru
ted obje
ts [6℄.However, these des
riptions are just motivational. The real purpose of thispaper is to answer the question how does one 
onstru
t and manage large me-
hani
ally 
he
ked proofs (in ACL2)? After mention of the big industrial exam-ples, we turn our attention to truly simple formal theorems about list pro
essingand develop some advi
e to the reader. Most of this advi
e is meant to be helpfulno matter what me
hanized system or mathemati
al logi
 you are using.The paper 
ontains exer
ises. To learn how to do proofs, it is 
ru
ial that youwork the exer
ises. The ACL2 system is available without 
harge on the net; seethe ACL2 home page [8℄.However, it is not ne
essary to use the ACL2 system to do the exer
ises. They
an be done with pen
il and paper or with other me
hani
al theorem provingsystems with whi
h you might be familiar. But the only way to learn how to doproofs is to do proofs!



Answers to the exer
ises are available on the web. See http://www.
s-.utexas.edu/users/moore/publi
ations/how-to-prove-thms/index.html.Early exer
ises ask the reader to de�ne some fun
tions used in 
hallengetheorems in later exer
ises. To ensure those 
hallenges are understood, we havein
luded in Appendix A our de�nitions of all fun
tions mentioned in any 
hal-lenge theorem.Keywords: ACL2, hardware veri�
ation, software veri�
ation, formal veri�
a-tion, theorem proving, automated reasoning.2 Ba
kground\ACL2" is the name of a fun
tional programming language (based on CommonLisp), a �rst-order mathemati
al logi
, and a me
hani
al theorem prover. ACL2,whi
h is sometimes 
alled an \industrial strength version of the Boyer-Mooresystem," is the produ
t of Kaufmann and Moore, with many early design 
on-tributions by Boyer. It has been used for a variety of important formal methodsproje
ts of industrial and 
ommer
ial interest, in
luding:{ veri�
ation that the register-transfer level des
ription of the AMD AthlonTMpro
essor's elementary 
oating point arithmeti
 
ir
uitry implements theIEEE 
oating point standard [14, 15℄; similar work has been done for 
om-ponents of the AMD-K5 pro
essor [13℄, the IBM Power 4 [16℄, and the AMDOpteronTM pro
essor.1{ veri�
ation that a mi
roar
hite
tural model of a Motorola digital signal pro-
essor (DSP) implements a given mi
ro
ode engine [1℄ and veri�
ation thatspe
i�
 mi
ro
ode extra
ted from the ROM implements 
ertain DSP algo-rithms [2℄;{ veri�
ation that mi
ro
ode for the Ro
kwell Collins AAMP7 implements agiven se
urity poli
y having to do with pro
ess separation [3℄;{ veri�
ation that the JVM byte
ode produ
ed by the Sun 
ompiler java
on 
ertain simple Java 
lasses implements the 
laimed fun
tionality [12℄ andthe veri�
ation of properties of importan
e to the Sun byte
ode veri�er asdes
ribed in JSR-139 for J2ME JVMs [10℄;{ veri�
ation of the soundness and 
ompleteness of a Lisp implementation ofa BDD pa
kage that has a
hieved runtime speeds of about 60% those ofthe CUDD pa
kage (however, unlike CUDD, the veri�ed pa
kage does notsupport dynami
 variable reordering and is thus more limited in s
ope) [17℄;{ veri�
ation of the soundness of a Lisp program that 
he
ks the proofs pro-du
ed by the Ivy theorem prover from Argonne National Labs; Ivy proofsmay thus be generated by unveri�ed 
ode but 
on�rmed to be proofs by averi�ed Lisp fun
tion [11℄.1 AMD, the AMD logo, AMD Athlon, AMD Opteron, and 
ombinations thereof, aretrademarks of Advan
ed Mi
ro Devi
es, In
.



Other appli
ations are des
ribed in [5℄ and in the papers distributed as part ofthe periodi
 ACL2 workshops, the pro
eedings of whi
h may be found via theWorkshops link on the ACL2 home page [8℄.As these examples demonstrate, it is possible to 
onstru
t me
hani
ally
he
ked proofs of properties of great interest in industrial hardware and softwaredesigners. The properties proved are typi
ally not 
omplete 
hara
terizations ofthe 
orre
tness of the systems studied. For example, the proofs about the AMDmi
ropro
essors { the AMD-K5 pro
essor, the AMD Athlon pro
essor, and theAMD Opteron pro
essor { just deal with the IEEE 
omplian
e of 
ertain 
oat-ing point operations modeled at the register transfer level. The mi
ropro
essors
ontain many unveri�ed 
omponents and the veri�ed ones 
ould fail due to vio-lations of their input 
onditions.Nevertheless, these theorems were proved for good reason: the designers were
on
erned about their designs. Aspe
ts of these designs are quite subtle or 
om-pli
ated and formal spe
i�
ation and me
hanized proof o�er the most 
ompleteway to relieve the 
on
erns that something 
riti
al to 
orre
t fun
tionality hadbeen overlooked in the designs.In addition to being interesting, these theorems are hard to prove. That isa relative judgment of 
ourse. Compared to longstanding open problems, thesetheorems are all trivial. But by many measures ea
h of these proofs is mu
h more
ompli
ated than any proof ever en
ountered by most readers. For example, theIEEE 
omplian
e proof for the 
oating point division mi
ro
ode for the AMD-K5 pro
essor (in 1995) required the formal statement and proof of approximately1,200 lemmas. Subsequent AMD 
oating-point proofs are harder to measure be-
ause they build on libraries of lemmas that have been a

umulating sin
e 1995.The 
orresponden
e result between the Motorola DSP mi
roar
hite
ture and itsmi
ro
ode engine involved intermediate formulas that, when printed, 
onsumed25 megabytes (approximately 5000 pages of densely pa
ked text) per formula.And the proof involved hundreds of su
h formulas. The 
orre
tness argumentfor one parti
ular DSP mi
ro
ode program required an extremely subtle gener-alization that took many days for the author to 
raft. The formal model of theConne
ted Limited Devi
e Con�guration (CLDC) JVM and byte
ode veri�er isalmost 700 pages of densely pa
ked text. The proof that a simple Java 
lass,whi
h spawns an unbounded number of threads, produ
es a monotoni
 in
reasein the value of a 
ertain shared 
ounter produ
es about 19,000 subgoals andrequires about 84 megabytes to print.In these senses, the theorems in whi
h we are interested are little (but hard)theorems about big systems, or put another way, they are valuable and non-trivial theorems about parts of very 
ompli
ated systems.How do we prove theorems like this? There is no mystery. We prove theo-rems like this the same way we prove simple theorems: by properly de�ning the
on
epts and 
arefully stating the theorem, by separating 
on
erns, by appropri-ate de
omposition of the proof into more general lemmas, and by the re
ursiveappli
ation of the same methodology. But to do it on a grand s
ale takes morethan the usual attention to detail and good taste. Minor misjudgments that are



tolerable in small proofs are blown out of proportion in big ones. Unne
essarily
ompli
ated fun
tion de�nitions or messy, hand-guided proofs are things that
an be tolerated in small proje
ts without endangering su

ess; but in largeproje
ts, su
h things 
an doom of the proof e�ort.If you aim to produ
e big proofs, it pays to learn how to produ
e small oneswell.3 The Me
hani
s of Using the SystemYou do not need to use the ACL2 system to learn from this paper. This pa-per is primarily about how to state and prove theorems in a parti
ular formalmathemati
al logi
. Students do not often do that! Students studying mathe-mati
al logi
 mostly read about meta-theorems proved about formal logi
s, e.g.,
ompleteness, unde
idability, et
. Students studying mathemati
s and 
omputers
ien
e see \theorems" stated informally (in a mixture of English and mathe-mati
al notation) and \prove" them informally.We study theorems and proofs in a rigorous setting. Expressing every 
laimformally { as a formula in a well-de�ned syntax { takes some getting used to!Proving them rigorously { justifying every step with formulas and appeals torules of inferen
e { takes even more! Our logi
 is supported by a me
hanizedtheorem prover that prints out its proofs in an informal style that should befamiliar to most mathemati
ally literate readers. But when the theorem proverfails and you are 
alled upon to help it, that help almost always takes the formof a formula or a hint to use a 
ertain formula. Thus, to use the theorem provere�e
tively you must learn to think with formulas.You may read this paper in 
onjun
tion with the ACL2 system to learn bothhow to express your ideas in formulas and how to use the system. We re
ommendreading this se
tion even if you do not intend to use the ACL2 system; at leastit will give you a sense of what is involved with produ
ing large me
hani
ally
he
ked proofs.If you want to use the system, �rst install it on your ma
hine (if it is notalready there), following the instru
tions in the Obtaining and Installing link ofthe ACL2 home page [8℄.Next, learn to navigate The User's Manual linked to from the home page. Inparti
ular, learn to use the Index. For example, �nd and read the do
umentationunder STARTUP. Try the SEARCH link near the top of the home page.Throughout the rest of this do
ument, when we say \see name," we mean�nd and read the do
umentation of name in the online do
umentation.Most users use ACL2 from within Ema
s. See Appendix B for a few helpfulnotes. Within Ema
s, 
reate a shell bu�er (by typing meta-x shell enter).Typi
ally, the bu�er 
reated is named *shell*. Lines typed into the bottomof the *shell* are fed as input to a Linux or other operating system \shell"pro
ess running under Ema
s; output is streamed into the *shell* bu�er. Inthe *shell* bu�er invoke ACL2. Thus, the *shell* bu�er be
omes an editableand sear
hable log of all your transa
tions with ACL2.



ACL2 presents itself as a read-eval-print loop, with the prompt ACL2 !>.Whatever you type after this prompt is read by ACL2, evaluated, and the resultsare printed. Then you are prompted for another input. However, it is rare thatyou will type dire
tly to the ACL2 loop. Instead, we 
reate our de�nitions andproof plans in another bu�er and submit 
ommands from that bu�er to ACL2.So 
reate another bu�er, whi
h here we 
all s
ript, by typing 
trl-x bs
ript enter. In this bu�er you will write down your proposed proof s
ripts.It will typi
ally 
onsist of a sequen
e of de�nitions and lemmas, 
on
luding withyour main theorem. These s
ripts typi
ally 
ontain many Lisp 
omments, pre-
eded on ea
h line by a semi-
olon. After typing the initial draft of the problemand its solution, position the Ema
s 
ursor at the top of the s
ript bu�er.We maintain the following invariant between the s
ript bu�er and the*shell* bu�er: every 
ommand in the s
ript pre
eding the 
ursor has beensu

essfully exe
uted in the *shell* (in the same order) and those are the only
ommands that have been exe
uted. That is, the 
ursor of the s
ript bu�erde�nes a \barrier" between what has been done and what is left to do. The
ommand immediately after the 
ursor is the \next 
ommand" to try.You should learn how to 
opy that 
ommand into the *shell* bu�er, at thebottom, and to advan
e the s
ript bu�er 
ursor past the 
ommand. This ishow you will submit previously prepared ACL2 forms to ACL2.Before 
ontinuing we answer two 
ommonly asked questions. First Question:Why are we bothering to show Ema
s in a dis
ussion of how to use a me
han-i
al theorem prover? Answer: It serves as a warning. Don't aspire to prove bigtheorems me
hani
ally unless you are prepared to use a variety of sophisti
atedtext pro
essing tools. When you have to inspe
t multi-megabyte formulas, youwill be happy to know of the existen
e of Ema
s 
ommands like meta-1 meta-x
ompare-windows (whi
h 
ompares two windows 
ontaining s-expressions, ig-noring di�eren
es in prettyprinting style).Se
ond Question: Why don't we implement an Ema
s/ACL2 interfa
e insteadof re
ommending that the user learn Ema
s? Answer: We have learned that usersevolve their own styles, both for ACL2 and for Ema
s. Using somebody else'sstyle is often 
umbersome. We are des
ribing our style. Use it as a starting pointbut understand how personal it is and how 
exible Ema
s is.Having prepared the initial draft of the s
ript, we submit 
ommands su

es-sively. If a 
ommand is su

essful (i.e., the de�nition is admitted or the theoremis proved) we submit the next 
ommand. If the 
ommand is unsu

essful, wemove the s
ript 
ursor ba
k in front of the failed 
ommand and inspe
t theoutput of ACL2 in the *shell* bu�er.Typi
ally, one of two things must be done. Either the 
ommand is faulty(e.g., synta
ti
ally ill-formed) and must be edited, or additional lemmas mustbe proved before it 
an be su

essfully submitted. Learning how to read ACL2output and determine what to do is the biggest task fa
ing the new user be
auseit is usually tantamount to the theorem proving problem: how 
an this theorembe de
omposed into provable lemmas? Ultimately, that is what this paper isabout.



But suppose we have determined, somehow, that the appropriate responseto the failed 
ommand, 
, is to prove two new lemmas, say � and �. Then wetype them into the s
ript bu�er, one after the other, immediately in front of 
.Then we position the 
ursor in front of � and resume our iterative submissionpro
ess.Note that if � fails, the pro
ess just des
ribed will lead us to begin workingon the subtask of how to prove �, by inserting additional lemmas in front of it.When we ultimately su

eed in proving them and �, the 
ursor will have movedjust past � and be in front of �. Only after � is proved will we 
onfront 
 again,and by then our proof plan for it, namely � and �, will be in pla
e. Had we notwritten � and � down when we analyzed the failure of 
 and used the s
riptbu�er in a dis
iplined way, we might well have forgotten about � and had tore-analyze the failure of 
 to re-dis
over the need for �.There is no guarantee here that our plan for proving 
 will su

eed. If itdoesn't, this method will 
ause us to insert additional lemmas for 
 just after�. A modular top-down proof development methodology, in whi
h we 
he
k andguarantee that � and � permit the proof of 
 before des
ending to prove them,is des
ribed in [4℄.We regularly save our work, by saving the s
ript to a �le, say s
ript.lisp.This allows us to re
reate our state, should we wish to quit for the time beingand resume later. We typi
ally put the 
ommand (i-am-here) into the s
riptbu�er at the 
ursor, just to mark the 
urrent lo
ation of the barrier. When(i-am-here) is exe
uted it 
auses an error.When we are ready to resume our work, we start a new ACL2 in the *shell*bu�er (if the old one has been lost) and type:(ld "s
ript.lisp" :ld-pre-eval-print t)whi
h will exe
ute all of the 
ommands in the �le until the �rst error. Thisre
reates the ACL2 state we had when we saved the �le, re-establishing ourinvariant between s
ript and *shell*. If the proofs take a long time we mightdo(ld "s
ript.lisp" :ld-pre-eval-print t :ld-skip-proofs t)or, more brie
y,(rebuild "s
ript.lisp" t)whi
h just assumes the proof obligations of ea
h 
ommand. Given that we havesu

essfully exe
uted them in a prior session, this is a reasonable way to re-establish the invariant and leaves us in exa
tly the same state.When we �nally exe
ute the last 
ommand in the s
ript, we have su

eededand s
ript.lisp is a re-playable proof s
ript for our main theorem. We usuallytry to 
ertify it as a book so that it 
an be easily referen
ed in future proofs. See
ertify-book.So mu
h for the me
hani
s of using ACL2. We now get on the with task ofexplaining what it all means, by des
ribing the ACL2 fun
tional programminglanguage, the logi
, and the theorem prover.



4 Programming in ACL2ACL2 is Lisp. A typi
al term or expression is (
ons (
ar x) (len a)). Inthis expression, x and a are variable symbols, and 
ons, 
ar, and len are fun
-tion symbols. In more traditional mathemati
al syntax, this expression would bewritten 
ons(
ar(x); len(a)). For the purposes of this paper, it is suÆ
ient tounderstand only the expressions of Figure 4. ACL2 is mu
h ri
her than thesefew primitives would suggest, but throughout this paper we limit ourselves to atiny subset so we 
an dis
uss in detail how to develop proofs.Full ACL2 des
ribes �ve kinds of data obje
ts in detail { numbers, 
hara
ters,strings, symbols, and (ordered) pairs { and ea
h 
an be written as a 
onstant andused in expressions. The most 
ommonly used numeri
 
onstants are integers;rationals and 
omplex 
onstants are allowed, but we will not have o

asion touse them in early exer
ises. We will not use 
hara
ter 
onstants here. Stringsare en
losed in single-
hara
ter double-quotation marks, "Hello world!". Thespe
ial symbol 
onstants nil and t { whi
h have the apparent syntax of variablesymbols { are written as shown, but all other symbol 
onstants are pre
eded by asingle quotation mark, 'ok and 'qui
k-sort. The 
onstant nil is used both asthe \false" truth value and the \empty list" (or, more a

urately, as the standardterminator of a nest of pairs used as a list). Pairs, or \
onses," are written in listnotation, e.g., h1,h2,h3,niliii is written '(1 2 3) and nests not right-terminatedwith nil are written using \dot notation," e.g., h1,h2,3ii is written '(1 2 . 3).Indeed, '(1 2 3) may also be written '(1 2 3 . nil).New
omers are often 
onfused by when to use the single-quote mark. '(1 23) is a term that evaluates to the list 
onstant (1 2 3). Why not write (1 2 3)?Well, 
onsider the two terms (
ar x) and '(
ar x). The �rst is how we writethe appli
ation of the fun
tion symbol 
ar to the variable symbol x. The se
ondis a term that evaluates to the list 
onstant (
ar x), i.e., list whose �rst elementis the symbol 
ar. If � is a parenthesized expression or a symbol, like 
ar or x,and you are writing a term, write '� if you mean the term that evaluates to �,and write � if you mean the term (fun
tion appli
ation or variable symbol) �.Ea
h of the �ve data types 
an be 
reated and de
omposed by various fun
-tions. But in this paper we omit all mention of the stru
tural properties ofnumbers, 
hara
ters, strings and symbols and deal only with pairs. By limitingourselves to pairs, we 
an qui
kly dispense with their basi
 properties and get onwith the task of learning how to de�ne re
ursive fun
tions and prove theorems.(
ons x y) 
onstru
t the ordered pair hx; yi(
ar x) left 
omponent of x, if x is a pair; nil otherwise(
dr x) right 
omponent of x, if x is a pair; nil otherwise(
onsp x) t if x is a pair; nil otherwise(if x y z) z if x is nil; y otherwise(equal x y) t if x is y; nil otherwiseFig. 1. The Primitives for This Paper



To de�ne a fun
tion, we use the form (defun f (v1 : : : vn) �) where f isthe fun
tion symbol being de�ned, the vi are the distin
t formal variables, and� is the body of the fun
tion.Here are the Lisp de�nitions of the standard propositional logi
 
onne
tives:(defun not (p) (if p nil t))(defun and (p q) (if p q nil))(defun or (p q) (if p p q))(defun implies (p q) (if p (if q t nil) t))(defun iff (p q) (and (implies p q) (implies q p)))Note that in Lisp, and and or are not Boolean valued. E.g., (and t 3) and (ornil 3) both return 3. This is unimportant if they are only used propositionally,e.g., (and t 3) $ (and 3 t) $ t, if \$" means iff. By 
onvention, thesetwo fun
tions are allowed to take more than two arguments and when so usedabbreviate right-asso
iated nests, e.g., (and p q r s) is an abbreviation for(and p (and q (and r s))). Te
hni
ally, they are de�ned as \ma
ros."Most often we make de�nitions that are re
ursive, be
ause ACL2 has noiterative 
ontrol stru
tures or higher-order fun
tions, and has only primitivereasoning support for quanti�ers. Here is a fun
tion that \
opies" a list repla
ingea
h element o

urren
e by two adja
ent o

urren
es.(defun dup (x)(if (
onsp x)(
ons (
ar x)(
ons (
ar x)(dup (
dr x))))nil))For example, the term (dup '(1 2 3)) has value (1 1 2 2 3 3) and the term(dup '(hello)) evaluates to (hello hello).Here is a fun
tion that 
on
atenates two lists.(defun app (x y)(if (
onsp x)(
ons (
ar x) (app (
dr x) y))y))For example, (app '(1 2 3) '(4 5 6)) has value (1 2 3 4 5 6) and (app'(A B C . D) '(E F)) has value (A B C E F).Here is a fun
tion that determines whether e is an element of list x.(defun memp (e x)(if (
onsp x)(if (equal e (
ar x))t(memp e (
dr x)))nil))For example, (memp 1 '(0 1 2 3)) is t and (memp 5 '(0 1 2 3)) is nil.Here is a fun
tion that reverses a list, e.g., (rev '(1 2 3)) is (3 2 1).



(defun rev (x)(if (
onsp x)(app (rev (
dr x)) (
ons (
ar x) nil))nil))Note that (rev '(1 2 3 . ABC)) is (3 2 1), i.e., the terminal marker of theinput is not preserved (unless it happened to be nil), given the way we de�nedrev.Here is a \tail-re
ursive" version of rev that uses its se
ond argument as an\a

umulator" to 
onstru
t the answer more eÆ
iently.(defun rev1 (x a)(if (
onsp x)(rev1 (
dr x) (
ons (
ar x) a))a))For example, (rev1 '(1 2 3) nil) is (3 2 1).Exer
isesYou may wish to de�ne auxiliary fun
tions to solve some of the exer
isesbelow. If you are using the ACL2 system to experiment with your answers andyou try to re-de�ne an existing ACL2 fun
tion you will get an error (unlessyour de�nition is synta
ti
ally the same as ours). To see how to inspe
t the pre-existing de�nition, see pe (\print event") and pf (\print formula"). When usingthe ACL2 system, be aware that it insists that all fun
tions terminate. Thus,re
ursion on the list stru
ture x should be 
ontrolled by a (
onsp x) test, not(equal x nil).Problem 4.1 De�ne the fun
tion properp to determine whether a list \endsin nil," i.e., whether the 
dr of the right-most 
ons is nil. (In Lisp, fun
tionsthat are used as predi
ates are 
ommonly given names that 
on
lude with theletter \p". Lists satisfying properp are sometimes 
alled \proper lists" or \truelists.")Problem 4.2 De�ne mapnil to \
opy" a list, repla
ing ea
h element by nil.Problem 4.3 The result of \swapping" the pair hx; yi is the pair hy; xi. De�neswaptree to swap every 
ons in the binary tree x.Problem 4.4 De�ne ziplists to take two lists and return a list as long as the�rst whose su

essive elements are the pairs of 
orresponding elements from thetwo lists. If the se
ond list is too short, extend it with nils.Problem 4.5 A proper list of pairs is 
alled an \asso
iation list" or \alist". Thestandard fun
tion alistp re
ognizes them. Asso
iation lists are frequently usedas tables. The value asso
iated with the key key in alist a is the 
dr of the �rst



pair in a whose 
ar is key. De�ne lookup to take a key and an alist and toreturn the value of the key in the alist or else nil if no pair is found.Problem 4.6 De�ne foundp to determine whether a given key is found in agiven alist.Problem 4.7 De�ne the list analogue of subset, i.e., (subp x y) returns t ornil a

ording to whether every element of x is an element of y.Problem 4.8 De�ne int to take two proper lists and to return the proper listof elements that appear in both.Problem 4.9 Consider the leaves of a binary tree. We say a leaf is \lonesome"if it o

urs only on
e. De�ne lonesomes to take a tree and return its lonesomeleaves.5 Elementary Proofs in the ACL2 Logi
Some axioms 
orresponding to the six primitives in Figure 4 are shown in Figure5. The a
tual axioms used by ACL2 are somewhat di�erent be
ause they in
ludeaxioms for all the data types. For example, Axiom 1 of the �gure 
an be provedfrom ACL2's axioms 
on
erning the stru
ture of symbols. Axiom 8 of the �gure,stating that nil is not a 
ons pair, 
an be inferred from ACL2's axioms statingthat nil is a symbol and that symbols are disjoint from pairs. For our purposes,Axiom 8 is just an example of an in�nite number of axioms stating 
onsp is nilon ea
h symbol, on ea
h number, et
., (
onsp nil) = (
onsp t) = (
onsp'ok) = (
onsp 0) = (
onsp 1) = (
onsp 2) = : : : = nil.1. t 6= nil2. x 6= nil ! (if x y z) = y3. x = nil ! (if x y z) = z4. (equal x y) = nil _ (equal x y) = t5. x = y $ (equal x y) = t6. (
onsp x) = nil _ (
onsp x) = t7. (
onsp (
ons x y)) = t8. (
onsp nil) = nil9. (
ar (
ons x y)) = x10. (
dr (
ons x y)) = y11. (
onsp x) = t ! (
ons (
ar x) (
dr x)) = xFig. 2. The Primitive Axioms for This PaperImpli
it in this axiomatization is the logi
al infrastru
ture to do propositional
al
ulus and equality. That is, we take for granted the axioms and rules ofinferen
e allowing us to prove propositional tautologies, perform substitution ofequals for equals, et
.We also give ourselves the ability to do indu
tion on well-founded orderings.This involves some additional logi
al infrastru
ture, in
luding an Indu
tion Prin-
iple, the introdu
tion of the ordinals up to �0 = !!!::: , a well-founded relation



o< on su
h ordinals, and axioms de�ning the size (measured with the fun
tiona
l2-
ount) of ACL2 obje
ts. The most 
ommon use of o< is on natural num-bers, where it redu
es to the ordinary < relation.The indu
tive arguments required in this paper all use stru
tural indu
tionson lists and binary trees. With the infrastru
ture des
ribed above it 
an beshown that the sizes of (
ar x) and (
dr x) are ea
h smaller than the size ofx when (
onsp x) is true. We 
an then use the Indu
tion Prin
iple to prove anarbitrary formula, ( x y), where x and y are variable symbols, by proving aBase Case:(implies (not (
onsp x)) ( x y))and anIndu
tion Step:(implies (and (
onsp x) ; test( (
ar x) �1) ; indu
tion hypothesis 1( (
dr x) �2)) ; indu
tion hypothesis 2( x y)) ; indu
tion 
on
lusionwhere the �i are arbitrary terms repla
ing the non-indu
tion variable y. Of
ourse, we often need only one of the two indu
tion hypotheses; we 
an provideas many di�erent \
opies" of a hypothesis we wish, using di�erent 
hoi
es of �ifor y; and we 
an use nests of 
ars and 
drs in the x position. Indeed, we mayprovide as an indu
tion hypothesis any ( Æ �) su
h that we 
an prove (implies(
onsp x) (o< (a
l2-
ount Æ) (a
l2-
ount x))).It must be emphasized that ACL2's Indu
tion Prin
iple is mu
h more generalthan the s
heme above suggests. Below we state the Indu
tion Prin
iple 
arefully,for those readers who are 
urious about it. In general in this do
ument we takethe position that you 
an learn to do mu
h with ACL2 by example and byelaboration, and in that spirit we shy away from the pre
ise details. They maybe found, however, in [7℄.The Indu
tion Prin
iple allows one to derive an arbitrary formula,  , from{ Base Case:(implies (and (not q1) : : : (not qk))  ), and{ Indu
tion Step(s): For ea
h 1 � i � k,(implies (and qi  =�i;1 : : :  =�i;hi) ) ,provided that for terms m, q1; :::qk, and variable substitutions �i;j (1 � i �k; 1 � j � hi), the following are theorems:{ Ordinal Condition:(o-p m) , and{ Measure Condition(s): For ea
h 1 � i � k, and 1 � j � hi,(implies qi (o< m=�i;j m)) .



In the above, \�=�" represents the term or formula obtained by applying thevariable substitution � to the term or formula � , uniformly repla
ing all freeo

urren
es of the variables as indi
ated by the substitution.In other words, to prove  by indu
tion, you may assume as many arbitraryinstan
es of  as you want, as long as they make some ordinal-valued measureof the variables in  de
rease. The key to indu
tion is well-foundedness and thekey to well-foundedness in ACL2 is the notion of the ordinals. The ordinals (upto �0 = !!!::: ) in ACL2 are re
ognized by the fun
tion o-p and 
ompared withthe relation o<. To learn more, see ordinals.ACL2 also has a De�nitional Prin
iple, implemented by defun. When a fun
-tion de�nition is submitted, ACL2 must prove \measure 
onje
tures" establish-ing that some measure of the arguments is de
reasing in a well-founded wayunder the tests governing the re
ursion. Operationally, the validity of the mea-sure 
onje
tures ensures that the re
ursion terminates; logi
ally, it ensures thatthere exists a fun
tion satisfying the de�nitional equation. Only after these 
on-je
tures are proved is the de�nitional equation \admitted" as a new axiom. Wedo not deal with termination further in this paper.So let's prove some theorems! Here is a fun
tion that \
opies" a tree. Proveit is the identity fun
tion.(defun tree
opy (x)(if (
onsp x)(
ons (tree
opy (
ar x))(tree
opy (
dr x)))x))Theorem (equal (tree
opy x) x).Proof.Name the formula above *1.We prove *1 by indu
tion. One indu
tion s
heme is suggested by this 
on-je
ture { namely the one that unwinds the re
ursion in tree
opy.If we let ( x) denote *1 above then the indu
tion s
heme we'll use is(and (implies (not (
onsp x)) ( x))(implies (and (
onsp x)( (
ar x))( (
dr x)))( x))).This indu
tion is justi�ed by the same argument used to \admit" tree
opy,namely, the size of x is de
reasing a

ording a 
ertain well-founded relation.When applied to the goal at hand the above indu
tion s
heme produ
es thefollowing two nontautologi
al subgoals.Subgoal *1/2(implies (not (
onsp x))(equal (tree
opy x) x)).



But simpli�
ation redu
es this to t, using the de�nition of tree
opy and theprimitive axioms.Subgoal *1/1(implies (and (
onsp x)(equal (tree
opy (
ar x)) (
ar x))(equal (tree
opy (
dr x)) (
dr x)))(equal (tree
opy x) x)).But simpli�
ation redu
es this to t, using the de�nition of tree
opy and theprimitive axioms.That 
ompletes the proof of *1.Q.E.D.Let us look more 
losely at the redu
tion of Subgoal *1/1. Consider the left-hand side of the 
on
luding equality. Here is how it redu
es to the right-handside under the hypotheses.(tree
opy x)= fdef tree
opyg(if (
onsp x)(
ons (tree
opy (
ar x))(tree
opy (
dr x)))x)= fhypothesis 1 and Axiom 6g(if t(
ons (tree
opy (
ar x))(tree
opy (
dr x)))x)= fAxioms 2 and 1g(
ons (tree
opy (
ar x))(tree
opy (
dr x)))= fhypothesis 2g(
ons (
ar x)(tree
opy (
dr x)))= fhypothesis 3g(
ons (
ar x)(
dr x))= fAxiom 11 and hypothesis 1gx



This proof is of a very routine nature: indu
t so as to unwind some parti
ularfun
tion appearing in the 
onje
ture and then use the axioms and de�nitions tosimplify ea
h 
ase to t.Exer
isesProve ea
h of the formulas below. Don't use the ACL2 system! Work outthe proofs by hand. We want you to learn two things from these exer
ises: theimportan
e of 
hoosing the right variable to indu
t upon and what it means tosimplify a formula using de�nitions and axioms.Problem 5.1 (equal (app (app a b) 
) (app a (app b 
))).Problem 5.2 (equal (dup (app a b)) (app (dup a) (dup b))).Problem 5.3 (equal (dup (mapnil a)) (mapnil (dup a))).Problem 5.4 (properp (app a nil)).Problem 5.5 (equal (swaptree (swaptree x)) x).Problem 5.6 (equal (memp e (app a b)) (or (memp e a) (memp e b))).6 Three Basi
 Proof Te
hniquesThe proofs above are very routine { if the right indu
tion argument is 
hosen.Ea
h proof has the \indu
t and simplify" stru
ture mentioned earlier. The ACL2theorem prover uses an elaboration of that same strategy. In this se
tion webrie
y dis
uss three important te
hniques used by ACL2: indu
tion, rewriting,and inequality 
haining (linear arithmeti
). The last two are the key parts of theACL2 simpli�er. The reader uninterested in the ACL2 system should read thisse
tion anyway! We explain why at the end.6.1 Indu
tionThe indu
tion heuristi
 
hooses an indu
tion s
heme based on the re
ursivelyde�ned fun
tions used in the 
onje
ture. Sometimes the system synthesizes as
heme by 
ombining two or more re
ursive s
hemes used in the formula.Consider Problem 5.6 above,(equal (memp e (app a b))(or (memp e a)(memp e b))).The su

essful proof will be by indu
tion on a, i.e., by unwinding the re
ursionin (memp e a). Why not indu
tion on b? If you did the proof by hand you mighthave dis
overed that indu
tion on b doesn't work.The basi
 idea is that if we indu
t on a, we get our indu
tion hypothesis byrepla
ing ea
h a by (
dr a). So where the indu
tion 
on
lusion has an a, theindu
tion hypothesis will have a (
dr a). In parti
ular, the terms (memp e a)and (memp e (app a b)), in the 
on
lusion, 
orrespond to (memp e (
dr a))



and (memp e (app (
dr a) b)) in the hypothesis. But when we expand thede�nitions of memp and app in the 
on
lusion, those expressions redu
e to their
orrespondents in the hypothesis!Now try the same indu
tion on b. Where the 
on
lusion has (memp e (appa b)) the hypothesis will have (memp e (app a (
dr b))). And there is noway we 
an use the de�nitions of memp and app to redu
e the 
on
lusion term tothe hypothesis term. The key observation is that the se
ond argument of app isheld 
onstant in the re
ursion of app, so indu
ting on it is probably a bad idea.We say the indu
tion on b here is \
awed."ACL2 uses a variety of heuristi
s to sele
t an indu
tion argument. If thesystem's 
hosen s
heme is inappropriate, the user 
an spe
ify a s
heme with ahint; see hints.Choosing the right indu
tion is 
ru
ial to a su

essful proof. But there is anearlier, mu
h more subtle step: 
hoosing the right theorem to try to prove byindu
tion!Exer
iseProblem Try to prove the following spe
ial 
ase of Problem 5.6 dire
tly byindu
tion: (equal (memp e (app a a)) (mem e a)).If your goal is the above Problem, you will at some point have to provesomething mu
h more general, e.g., Problem 5.6 �rst.This is a parti
ularly trivial example of a phenomenon familiar to peopletrying to do indu
tive proofs. In indu
tion, your main tool is the indu
tionhypothesis, whi
h is an instan
e of the 
onje
ture you're trying to prove. If the
onje
ture you're trying to prove is not strong enough, your hypothesis will beuseless.Hint on How To Prove Things: Indu
tion must be applied to strong theorems,not weak ones! Always try to invent the strongest theorems you 
an think of !By understanding the link between re
ursion and indu
tion you 
an learn toanti
ipate many problems. The fa
t that (app x y) is de�ned to take the 
dr ofx while holding y 
onstant in the re
ursion is a sure sign that if y is the indu
tionvariable the proof will either fail or you will need a lemma that \moves a 
drout of the se
ond argument of app", i.e., a lemma that transforms (app x (
dry)) to something involving (app x y) or vi
e versa.6.2 Simpli�
ation via RewritingAs important as indu
tion is, the key to any su

essful proof is simpli�
ation.Simpli�
ation means the redu
tion of the formula to some preferred form bythe use of rules. In ACL2, these rules are derived from axioms, de�nitions andpreviously proved theorems.The previous paragraph is in
redibly important if you are going to learn touse the ACL2 system! You essentially program the ACL2 simpli�er by gettingthe system to prove theorems whi
h are then turned into rules. The preferred



form enfor
ed by the system is largely determined by your rules. All the rulesever produ
ed in a session are available to ACL2's simpli�er, so on
e you haveadded a rule it may parti
ipate in any subsequent proof unless you take a
tivesteps to disable it. To use ACL2, you must understand (a) how theorems areturned into rules, (b) what those rules make the simpli�er do, and (
) how todisable and enable rules.There are about a dozen kinds of rules in ACL2 and when a theorem isposed, the user spe
i�es the kind of rule to be produ
ed from the theorem.See rule-
lasses. In this do
ument we see only three spe
i�
ations: make arewrite rule, make a linear arithmeti
 rule, or make no rule at all. In pra
ti
e,these three spe
i�
ations often suÆ
e. The last is used when we have a theoremthat 
annot generate a useful rule { the only way su
h a theorem 
an parti
ipatein a subsequent proof is by a user-spe
i�ed hint; see hints.By far the most 
ommon form of rule is the rewrite rule. It 
auses the sim-pli�er to repla
e one term by another, if 
ertain hypotheses 
an be establishedby rewriting. Rewrite rules are the most dire
t way to program the simpli�er.The rewrite rule derived from a formula of the form(implies (and hyp1 ... hypn) (equal lhs rhs))makes the simpli�er repla
e instan
es of lhs (the left-hand side) by the 
orre-sponding instan
e of rhs, provided the 
orresponding instan
es of ea
h of thehypi rewrites to true.Equivalent logi
al forms may give rise to radi
ally di�erent rules and hen
eradi
ally di�erent programmed behaviors! Consider the e�e
t of the (rule gener-ated from the) equivalent formula (implies (and hyp1 ...hypn) (equal rhslhs)).Hint on How To Prove Things: Give 
areful thought to the \preferred" formsyou use in your proofs and provide yourself with lemmas that allow you, insofaras possible, to 
anoni
alize terms.Hint on How To Prove Things: When using the ACL2 system, never provea named theorem without understanding its e�e
t as a rule!Some 
onventions make it possible to derive rewrite rules from a wide varietyof formulas. The 
on
lusion 
an be (equal lhs rhs) or (iff lhs rhs). Thelatter kind of rule is used to repla
e lhs by rhs in \propositional" settings.ACL2 allows user-de�ned equivalen
e relations in rewrite rules, but we do notdis
uss them; see equivalen
e and 
ongruen
e. If the 
on
lusion, say, 
on
l, isnot an equivalen
e, it is treated as though it were (iff 
on
l t). If there areno hypotheses, it is as though there were just one: t. See rewrite.



6.3 Simpli�
ation via Inequality ChainingWe have not dis
ussed arithmeti
 { and we will not in this do
ument, ex
ept fora few important observations in this se
tion.Hint on How To Prove Things: Realize that when you are dealing witharithmeti
, your sense of what is \straightforward" has been honed by manyyears of drill-and-pra
ti
e with manipulating algebrai
 properties of numbers. Beprepared to \explain" formally why some arithmeti
 relations hold!Most of that drill-and-pra
ti
e is, te
hni
ally speaking, the appli
ation of alarge set of rewrite rules to put arithmeti
 expressions into a preferred form.ACL2 does not 
ome pre-
on�gured with those rules. But they are available inseveral di�erent 
olle
tions. In ACL2 a 
olle
tion of rules in a �le is 
alled a\book." The ACL2 distribution 
omes with several arithmeti
 books and the
ommunity is 
onstantly working on improving them. That is one of the reasonswe have several su
h books now. Another is that di�erent books are designed fordi�erent kinds of problems: elementary algebrai
 properties of numbers, moduloarithmeti
, 
oating point arithmeti
. See the README.html �le in the bookssubdire
tory of your ACL2 sour
e dire
tory, or else visit the Mathemati
al Toolslink on the ACL2 home page.Hint on How To Prove Things: If you are doing arithmeti
 proofs withACL2, start by in
luding one of the arithmeti
 books into your s
ript. Themost 
ommonly used book is in
luded by adding the 
ommand (in
lude-book"arithmeti
/top-with-meta" :dir :system).Finally, you should be aware that often in arithmeti
 reasoning you do a kinda inequality 
haining that \feels" like rewriting but is not.Consider a theorem that 
on
ludes with an arithmeti
 inequality, su
h as (<=0 (* x x)). This says \x squared is nonnegative." 2 If it is used to generate arewrite rule, the rule will repla
e 
ertain instan
es of (<= 0 (* x x)) by t. Thisdoes not help us mu
h if we are trying to prove that (+ a (* b b)) is positivewhen a is positive. But ACL2 maintains a graph of terms involved in the 
urrent
onje
ture and relates the terms in this graph with inequalities. It 
ontains a de-
ision pro
edure for answering questions about linear arithmeti
 { the fragmentof arithmeti
 
onsisting of inequalities, addition, and multipli
ation by 
onstants{ based on the property that inequalities 
an be added. People sometimes 
allthis \inequality 
haining." Su
h 
haining 
an be used to derive (<= 0 (+ a (*b b))) from (<= 0 a) and (<= 0 (* b b)). But if we are trying to prove(implies (and (<= 0 a) (rationalp b)) (<= 0 (+ a (* b b))))the graph 
ontains no node for (* b b) { be
ause that term is not 
omparedto any other term { and no 
haining is possible. However, if the rule aboveabout (<= 0 (* x x)) is available as a linear arithmeti
 rule instead of as a2 This is not always true: x may be 
omplex. But we're imagining this inequality asthe 
on
lusion of a suitable impli
ation.



rewrite rule it 
auses the following behavior: whenever an instan
e of (* x x)enters the problem, the inequality graph is extended with a node for the 
orre-sponding instan
e and it is linked to other nodes as des
ribed by the 
on
lusionof the linear rule. This extends range of the 
haining de
ision pro
edure. Seelinear-arithmeti
.Hint on How To Prove Things: Realize that when you are dealing witharithmeti
 you may be doing inequality 
haining, not repla
ement of equals byequals, and make that form of reasoning expli
it in your notation.This dis
ussion of rewrite versus linear rules is of general interest be
ausemost mathemati
al fa
ts have impli
it operational import. This dis
ussion illus-trates that. When you dis
over a new fa
t, what do you do with it? Do youstore it, unanalyzed, in a long list of things you know and revisit them all everytime you are asked to prove something? Or do you see ways you 
an use andremember the new fa
t? This is a diÆ
ult introspe
tive question to answer {and the answer is probably \some of ea
h" { but it is important to rememberthat many years of se
ondary s
hool and 
ollege mathemati
s have taught youhow to use 
ertain forms of fa
ts, e.g., asso
iativity, 
ommutativity, identities,idempoten
e, inequality 
haining, 
an
ellation, et
.Hint on How To Prove Things: Every time you en
ounter a new theoremyou should give thought to how it is to be used in subsequent proofs.6.4 Some ACL2-Spe
i�
 DetailsThe rest of this se
tion is mainly of interest to potential ACL2 users, but 
ontainsa few useful hints of more general interest.To prove a named theorem with ACL2, use (defthm name term) if youwant term used as a rewrite rule. Use (defthm name term :rule-
lasses:linear) if you want term used to extend the linear arithmeti
 inequalitygraph. This is possible only if term is an arithmeti
 inequality, i.e., (< lhsrhs), (<= lhs rhs), (>= lhs rhs), (> lhs rhs), (equal lhs rhs), or (not(equal lhs rhs)), where, for the last two, lhs and rhs are numeri
ally val-ued expressions. If you want no rule generated from term, use (defthm nameterm :rule-
lasses nil).Note 
arefully: if you just use the simple form of defthm to prove a namedtheorem, you are telling ACL2 to use it as a rewrite rule!If you need to supply hints to the theorem prover, use the optional :hints\keyword argument," e.g., write(defthm name term :hints hints)or(defthm name term:hints hints:rule-
lasses 
lasses).



. See hints.Finally, if you have proved a rule named name and want to disable it so thatACL2 no longer 
onsiders applying it, use (in-theory (disable name)). Toundo that, use (in-theory (enable name)). It is possible to 
olle
t groups ofnames together so as to enable and disable them in 
on
ert. Ea
h su
h grouprepresents a strategy. See theories.The 
ommand(defthm app-right-identity(implies (properp x) (equal (app x nil) x)))
ommands ACL2 to prove the formula named app-right-identity and store itas a rewrite rule if the proof is su

essful. The rule generated rewrites instan
esof (app x nil). After app-right-identity has been proved, if the simpli�eren
ounters a target term like (app (rev (app a b)) nil) it will try the rule,be
ause the target mat
hes (is an instan
e of) (app x nil). The substitutionprodu
ed by the mat
hing pro
ess binds the variable symbol x, from the rule, to(rev (app a b)), from the target. To apply the rule, the simpli�er 
onsidersthe \
orresponding instan
e" of (properp x), namely (properp (rev (app ab))). It tries to rewrite this to true. If it 
an, it will repla
e the target bythe \
orresponding instan
e" of the right-hand side from the rule. Thus, it willrepla
e the target by (rev (app a b)).Consider what would happen if you proved a rule that rewrites lhs to rhs andanother rule that rewrites rhs to lhs. More 
ompli
ated 
y
les are more likely,of 
ourse. ACL2 has spe
ial heuristi
s for handling 
ommutativity and similarlysimple permutative rules. But in general ACL2's simpli�er 
an be made to loopforever by programming it with 
ir
ular rules. Su
h behavior will generally bereported by the simpli�er together with instru
tions for how to debug the failure.Hint on How To Prove Things: Ensure that your rules do not loop! One wayto do this is to keep in mind some ordering on your preferred terms and be surethat the right-hand side of ea
h rule is lower in this ordering than the left-handside.You may sometimes wish to interrupt the theorem prover, e.g., be
ause ofa \runaway proof." To interrupt the ACL2 prover while using it under Ema
s,type 
trl-
 
trl-
. This will leave you in a Common Lisp (not ACL2!) read-eval-print break. To this break you should type the 
ommand that aborts aninterrupted Common Lisp 
omputation. That 
ommand varies a

ording to yourhost Lisp. If you are running GCL, type :q followed by enter; if you are runningAllegro, type :reset followed by enter; if you are running CMU CL, type q,followed by enter; if you are running MCL, type :pop.Hint on How To Prove Things: De�nitions are (generally) used as expansionrules, i.e., fun
tion 
alls are repla
ed by their instantiated bodies. This imposesa restri
tion on your 
hoi
e of preferred forms: fun
tion bodies are preferable



to fun
tion 
alls. If you want to override that built-in preferen
e in ACL2, youshould disable the fun
tions after proving the rules you need about them.You might wonder how ACL2 
an repla
e fun
tion 
alls by their bodies andnot loop inde�nitely on re
ursive de�nitions. The answer is that ACL2 
ontainsheuristi
s for 
ontrolling the expansion of re
ursive de�nitions. These heuristi
sgenerally do a good job and most users �nd it better to arrange their rewriterules to be 
ompatible with these heuristi
s than to �ght the heuristi
s.To simplify a formula, the ACL2 simpli�er rewrites the formula from left-to-right and inside-out. Thus, a rule with the left-hand side (foo (
ar (
ons xy))) will never be applied! Why? The only possible target term for this prob-lemati
 rule is of the form (foo (
ar (
ons � �))). But the ACL2 simpli�ersweeps inside-out, so the problemati
 rule is not tried until the interior termsof the target have been rewritten. Given the rule that redu
es (
ar (
ons xy)) to x (whi
h is derived from primitive Axiom 9 of Figure 5), the target willhave been transformed to (foo �) before the problemati
 rule is tried. It willtherefore fail to mat
h.Hint on How To Prove Things: When designing your rewrite rules, be surethe left-hand sides are in your preferred form!7 ACL2's Proof StrategyRather than \indu
t and simplify," ACL2's strategy is \simplify (and some otherthings), indu
t and repeat." The reason ACL2's strategy looks like \indu
t andsimplify" is that, often, the initial simpli�
ation does not 
hange the goal formulaso it looks like ACL2 immediately went to indu
tion. Some theorems are provedby the initial simpli�
ation and no indu
tion is used. It is possible to programACL2's simpli�er so that almost every proof that ACL2 
an do 
an be put intothe \simplify, indu
t and simplify" form, by proving appropriate lemmas �rst.We re
ommend that new users 
on
entrate on produ
ing proofs in that form.Hint on How To Prove Things: Keep your proofs in the \simplify, indu
t,simplify" form. That is, identify ea
h indu
tively proved lemma you need in aproof, write it down, and give it a name. Do not get into the habit of letting theACL2 prover invent and indu
tively prove lemmas \on the 
y" in the middle ofother proofs. It is better that you understand and 
ontrol the lemma de
omposi-tion of your theorems.Exer
iseProblem 7.1 Run the ACL2 theorem prover on ea
h of Problems 5.1 { 5.6.You will �nd that ACL2's strategy �nds proofs for ea
h of these automati
ally{ at least if you de�ned the various fun
tions the way we did. See Appendix A.Here is the output produ
ed by ACL2 Version 2.8 on Problem 4.6. The �rstform is our input, typed as a defthm 
ommand at the ACL2 prompt. Note that



ACL2's initial simpli�
ation splits the 
onje
ture into two parts, Subgoal 2 andSubgoal 1, a

ording to whether (memp e a). Upon exploring the proof spa
ea little further, ACL2 learns it will have to ta
kle both by indu
tion. It thendis
ards the simpli�
ation work, ba
ks up to the original theorem, and sets upan indu
tion argument on that instead.3It uses :p to represent the theorem s
hemati
ally, where we used  above. Itsindu
tion argument has two base 
ases; Subgoal *1/3 handles the 
ase when ais not a 
onsp; Subgoal *1/1 handles the 
ase when a is a 
onsp but its �rstelement is e. This is the indu
tion s
heme ne
essary to unwind (mem e a).ACL2 prints terms in upper
ase. We have lowered the 
ase below to keepthe typography 
onsistent with this paper. In the subset of ACL2 used in thispaper, Lisp is 
ase insensitive ex
ept for string 
onstants.ACL2 !>(defthm memp-app(equal (memp e (app a b))(or (memp e a) (memp e b))))This simplifies, using the :type-pres
ription rule memp,to the following two 
onje
tures.Subgoal 2(implies (memp e a)(equal (memp e (app a b)) t)).This simplifies, using primitive type reasoning and the:type-pres
ription rule memp, toSubgoal 2'(implies (memp e a) (memp e (app a b))).Name the formula above *1.Subgoal 1(implies (not (memp e a))(equal (memp e (app a b)) (memp e b))).Normally we would attempt to prove this formula by indu
tion.However, we prefer in this instan
e to fo
us on the originalinput 
onje
ture rather than this simplified spe
ial 
ase.We therefore abandon our previous work on this 
onje
tureand reassign the name *1 to the original 
onje
ture.(See :DOC otf-flg.)Perhaps we 
an prove *1 by indu
tion. Four indu
tions
hemes are suggested by this 
onje
ture. Subsumption3 In general, the original theorem is stronger than any single spe
ial 
ase of it and isoften the better theorem to try by indu
tion. In this parti
ular 
ase, the two subgoalsare ea
h strong enough to be indu
tively provable.



redu
es that number to three. These merge into two derivedindu
tion s
hemes. However, one of these is flawed andso we are left with one viable 
andidate.We will indu
t a

ording to a s
heme suggested by (memp e a),but modified to a

ommodate (app a b). These suggestionswere produ
ed using the :indu
tion rules app and memp.If we let (:p a b e) denote *1 above then the indu
tions
heme we'll use is(and (implies (not (
onsp a)) (:p a b e))(implies (and (
onsp a)(not (equal e (
ar a)))(:p (
dr a) b e))(:p a b e))(implies (and (
onsp a) (equal e (
ar a)))(:p a b e))).This indu
tion is justified by the same argument usedto admit memp, namely, the measure (a
l2-
ount a) is de
reasinga

ording to the relation o< (whi
h is known to be well-founded on the domain re
ognized by o-p). When appliedto the goal at hand the above indu
tion s
heme produ
esthe following three nontautologi
al subgoals.Subgoal *1/3(implies (not (
onsp a))(equal (memp e (app a b))(or (memp e a) (memp e b)))).But simplifi
ation redu
es this to t, using the :definitionsapp and memp and primitive type reasoning.Subgoal *1/2(implies (and (
onsp a)(not (equal e (
ar a)))(equal (memp e (app (
dr a) b))(or (memp e (
dr a)) (memp e b))))(equal (memp e (app a b))(or (memp e a) (memp e b)))).But simplifi
ation redu
es this to t, using the :definitionsapp and memp, the :exe
utable-
ounterpart of equal, primitivetype reasoning, the :rewrite rules 
ar-
ons and 
dr-
onsand the :type-pres
ription rule memp.Subgoal *1/1(implies (and (
onsp a) (equal e (
ar a)))(equal (memp e (app a b))(or (memp e a) (memp e b)))).But simplifi
ation redu
es this to t, using the :definitions



app and memp, the :exe
utable-
ounterpart of equal, primitivetype reasoning and the :rewrite rule 
ar-
ons.That 
ompletes the proof of *1.Q.E.D.SummaryForm: ( defthm memp-app ...)Rules: ((:definition app)(:definition memp)(:exe
utable-
ounterpart equal)(:fake-rune-for-type-set nil)(:indu
tion app)(:indu
tion memp)(:rewrite 
ar-
ons)(:rewrite 
dr-
ons)(:type-pres
ription memp))Warnings: NoneTime: 0.01 se
onds (prove: 0.00, print: 0.01, other: 0.00)memp-appACL2 !>8 De
omposition into Lemmas { The MethodHint on How To Prove Things:When 
onsidering a new 
onje
ture to prove,look for general theorems that 
an be used to prove it by simpli�
ation { rewritingand 
haining { before you 
onsider proving it by indu
tion.This is probably the most important, and most vague, advi
e we have. Weillustrate it below by proving a little theorem. In our illustration, we use theACL2 theorem prover to do a lot of the work for us, but the general prin
iplesapply whenever you are doing an \indu
t and simplify" proof. The spe
i�
 outputwe display was produ
ed by ACL2 Version 2.8 after de�ning the fun
tions andproving the theorems in the exer
ises above.Let us prove (equal (rev (rev (rev x))) (rev x)). We 
all this theorem\triple rev." What more general fa
t does it suggest?Hint on How To Prove Things: Look for pairs of adja
ent fun
tion symbolsand try to think of rules that simplify those expressions.You have probably thought of the 
onje
ture (equal (rev (rev z)) z).But is (equal (rev (rev z)) z) a theorem? Is it always true? Consider thepossibility that z is 7. The left-hand side 
omputes to nil but the right-handside is 7. So this is not a theorem. We might then restri
t z to satisfy 
onsp. But



would that be a theorem? Consider the 
ase when z is '(1 . 7). The left-handside is (1) and the right-hand side is (1 . 7).Hint on How To Prove Things: When forming new 
onje
tures, test themon 
onstants.Sin
e ACL2 is a programming language, you 
an usually run your 
onje
-tures on a few examples. One 
ould type (let ((x '(1 . 7))) (equal (rev(rev x)) x)) to run the se
ond test above; the result is nil. We often do:set-guard-
he
king nil when we are running tests, so that ACL2 does notreje
t the test simply be
ause it violates the impli
it type 
onstraints on Lispprimitives. See set-guard-
he
king.Consider for a moment the expe
ted input to rev. Rev 
drs down its argu-ment until it is no longer a 
onsp and then 
laims its reverse is nil. Impli
itlythen, rev \expe
ts" its argument to be a proper list. Thus, the �rst part of ouratta
k on the triple rev problem is to prove:(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))In a fully-typed language, we might not need the expli
it hypothesis that z is aproper list. But we are in an untyped language and must make these restri
tionsexpli
it.Hint on How To Prove Things: Often you will have to invent new 
on
epts{ 
on
epts not involved in your main theorem { to state the lemmas you need.It is surprising how often people resist adding a new de�nition, even of a
on
ept they 
learly have in mind. If you restri
t your predi
ates to things like
onsp, there is no way you 
an state an indu
tively provable version of (equal(rev (rev x)) x). You have to introdu
e the new 
on
ept of \proper list" tostate the theorem.Suppose we had proved rev-rev. Could we prove the triple rev theorem?Answer: Not unless we knew the following.(defthm properp-rev(properp (rev x)))Hint on How To Prove Things: If you have introdu
ed hypotheses in yourlemmas, be sure you prove that the appropriate terms satisfy those hypotheses.Is the properp-rev 
onje
ture true? Does rev always return a proper list,even when its input is improper? Yes! Be
ause it either returns nil or a listit produ
es by appending a proper list (a singleton list) to the right of there
ursively produ
ed answer. So here is a theorem, properp-rev, that is strongerthan we might have produ
ed in a strongly typed language, i.e., there is norestri
tion that x be proper.Thus, we have designed the following proof s
ript:



; --- S
ript for proving triple-rev ---(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm properp-rev(properp (rev x)))(defthm triple-rev(equal (rev (rev (rev a))) (rev a))); --- The End ---This plan illustrates an important adage:Hint on How To Prove Things: Separate your 
on
erns!In the triple rev problem, the 
on
ept of properp neatly divides the problem.We �rst prove that the 
omposition of two revs is the identity on proper lists.We then prove that (rev a) is a proper list. To separate the two parts of theproblem we had to think of the idea of a proper list. Noti
e that this is not onlya ni
e plan for proving the triple rev theorem but it leaves us in ex
ellent shapeto prove other theorems, like (equal (rev (rev (dup a))) (dup a)), whereall we have to do is prove that dup returns a proper list.No further de
omposition of our plan 
omes to mind, so now let us prove the�rst one indu
tively. What we are doing is following our method of using thes
ript bu�er, with the \
ursor" positioned just before the rev-rev theorem.When we submit the rev-rev event, a su

essful proof des
ription 
ashes by.We 
annot read it as it 
ashes by, but the �nal two lines are:Time: 0.03 se
onds (prove: 0.02, print: 0.01, other: 0.00)REV-REVwhereas the �nal line in a failed proof is always*** FAILED *** See :DOC failure *** FAILED ***This su

ess may appear to be good news, but a few lines above the su

essful
on
lusion are the linesThat 
ompletes the proofs of *1.1 and *1.Q.E.D.whi
h tell the informed reader that ACL2 did (at least) a se
ond indu
tion (toprove *1.1) and so the proof is at least of the form \indu
t, simplify, indu
t,simplify."We don't know what intermediate lemmaACL2 dis
overed and proved,but we know it used indu
tion twi
e in this proof! Sin
e we re
ommend thatnovi
es sti
k to the \simplify, indu
t, simplify" strategy, you should undo thenewly proved theorem { remember, it has just added a rule to ACL2 database!



{ with :u (see u, ubt, pbt) and then read the generated proof s
ript from thetop down.Hint on How To Prove Things: We re
ommend that the novi
e ACL2 usernot rely on ACL2's 
reative 
ontributions in the beginning. As the problems be-
ome harder, ACL2's 
reative 
ontributions 
ount for less and less { and itsability to 
arry out massive automati
 simpli�
ations using user-spe
i�ed rules
ounts for more and more. So the novi
e is en
ouraged to learn to spot the needfor rules and to program ACL2 to use them.Here is the �rst part of ACL2's proof attempt on rev-rev. Read it, just asyou would a human-generated proof sket
h.ACL2 !>(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))Name the formula above *1.Perhaps we 
an prove *1 by indu
tion. Two indu
tion s
hemesare suggested by this 
onje
ture. Subsumption redu
esthat number to one.We will indu
t a

ording to a s
heme suggested by (rev z).This suggestion was produ
ed using the :indu
tion rulesproperp and rev. If we let (:p z) denote *1 above thenthe indu
tion s
heme we'll use is(and (implies (not (
onsp z)) (:p z))(implies (and (
onsp z) (:p (
dr z)))(:p z))).This indu
tion is justified by the same argument usedto admit rev, namely, the measure (a
l2-
ount z) is de
reasinga

ording to the relation o< (whi
h is known to be well-founded on the domain re
ognized by o-p). When appliedto the goal at hand the above indu
tion s
heme produ
esthe following three nontautologi
al subgoals.Subgoal *1/3(implies (and (not (
onsp z)) (properp z))(equal (rev (rev z)) z)).But simplifi
ation redu
es this to t, using the :definitionproperp, the :exe
utable-
ounterparts of 
onsp, equaland rev and primitive type reasoning.Subgoal *1/2(implies (and (
onsp z)(equal (rev (rev (
dr z))) (
dr z))(properp z))(equal (rev (rev z)) z)).



This simplifies, using the :definitions properp and rev,toSubgoal *1/2'(implies (and (
onsp z)(equal (rev (rev (
dr z))) (
dr z))(properp (
dr z)))(equal (rev (app (rev (
dr z)) (list (
ar z))))z)).The destru
tor terms (
ar z) and (
dr z) 
an be eliminatedby using 
ar-
dr-elim to repla
e z by (
ons z1 z2), (
ar z)by z1 and (
dr z) by z2. This produ
es the followinggoal.The step after Subgoal *1/2' is not a simpli�
ation, so the proof does nothave the \simplify, indu
t, simplify" form we re
ommend for novi
es. In parti
-ular, Subgoal *1/2' is the �rst formula after the indu
tion that was not provedby simpli�
ation. We 
all this formula a 
he
kpoint. Learn to re
ognize them!There are two main kinds of 
he
kpoint formulas. The �rst is any formulaproved by indu
tion. In reading ACL2 output, we avoid reading past an indu
tionwithout asking ourselves whether the formula being proved \needs" to be provedby indu
tion and whether the sele
ted indu
tion is appropriate for it.The other kind of 
he
kpoint formula is the �rst formula after an indu
tionthat is not proved by repeated simpli�
ation. That is the 
ase for Subgoal *1/2'above.There is an Ema
s utility that will automati
ally take you to the 
he
kpointsof a proof attempt; see proof-tree.Hint on How To Prove Things:Whenever a proof fails (or you want to redu
ea proof to the re
ommended form), read the formula at the �rst 
he
kpoint andlook for a lemma de
omposition. Sometimes, it helps to read a few formulas pastthe �rst 
he
kpoint { often ACL2's heuristi
s 
ome fairly 
lose to generating theneeded lemma, or at least 
reating a term that will suggest the lemma to you. Soif the 
he
kpoint does not suggest anything, read on.What lemma is suggested by the 
he
kpoint formula?Subgoal *1/2'(implies (and (
onsp z)(equal (rev (rev (
dr z))) (
dr z))(properp (
dr z)))(equal (rev (app (rev (
dr z)) (list (
ar z))))z)).Re
all an earlier Hint on How To Prove Things: Look for pairs of adja
entfun
tion symbols and try to think of rules that simplify those expressions. We



see a subterm of the above 
he
kpoint formula that has the form (rev (app...)). Note that in the 
he
kpoint formula, if we 
ould move that outer revpast the app so that it nestles around the inner rev, we will have reprodu
ed theindu
tion hypothesis term, (rev (rev (
dr z))) and 
ould use our indu
tionhypothesis!So what is a lemma that simpli�es (rev (app a b))? And, if you 
are to usethe \Note" just above, you 
ould ask yourself: What is a lemma that relates (rev(app a b)) to (rev a)? Some thought, and perhaps some testing, produ
es thebeautiful lemma:(defthm rev-app(equal (rev (app a b)) (app (rev b) (rev a))))Add this form to the s
ript bu�er, just in front of rev-rev, and repeat.This proof fails, and the 
he
kpoint formula isSubgoal *1/2'(implies (not (
onsp a))(equal (rev b) (app (rev b) nil))).What does this suggest? Remember the hints on how to prove things!The lemma suggested is that nil is a right identity for app. But of 
ourse itis not quite! It is a right identity for proper lists.(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))But to use this theorem we must also know that (rev b), from Subgoal *1/2',is proper. We've already posed that theorem in our s
ript { we needed it forour proof sket
h of triple-rev { and so we move it forward in our s
ript.4So now our s
ript looks like this and we are still at the top!; --- S
ript for proving triple-rev ---(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))(defthm properp-rev(properp (rev x)))(defthm rev-app(equal (rev (app a b))(app (rev b) (rev a))))(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm triple-rev(equal (rev (rev (rev a))) (rev a)))4 This fa
t, that lemmas invented for one proof may a
tually be useful in earlier proofs,is one of the reasons it is hard to build a rigid interfa
e that enfor
es some kind ofsta
k of proof plans: evolving plans 
an 
ause non-lo
al rearrangements.



; --- The End ---When we submit properp-rev it su

eeds but we see the line that meansmultiple indu
tions were used:That 
ompletes the proofs of *1.1 and *1.so we undo with :u and read the 
he
kpoint.Subgoal *1/1'(implies (and (
onsp x) (properp (rev (
dr x))))(properp (app (rev (
dr x)) (list (
ar x)))))The pair of fun
tion symbols that leap out now are properp and app. Notethat this is an instan
e of our advi
e about proving rules to simplify terms in-volving pairs of adja
ent fun
tion symbols. Under what 
onditions is (properp(app a b)) true? It depends on whether (properp b) is true. This suggests(implies (properp b) (properp (app a b))). But that is a fairly weak the-orem and as a rewrite rule it means: whenever you see (properp (app a b))ba
k
hain to (properp b) and if you 
an establish it, rewrite the target to t.Can we do better?Yes! Consider the theorem(defthm properp-app(equal (properp (app a b))(properp b)))This is stronger than the mere impli
ation. Furthermore, it is indeed a theorem!The rule generated from it allows the un
onditional elimination of (properp(app a b)) in favor of the simpler (properp b).So we 
hange our s
ript again to what is shown below. This time, everysu

essive form in it is pro
essed su

essfully in the \simplify, indu
t, simplify"strategy.; --- S
ript for proving triple-rev ---(defthm properp-app(equal (properp (app a b))(properp b)))(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))(defthm properp-rev(properp (rev x)))(defthm rev-app(equal (rev (app a b))(app (rev b) (rev a))))(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm triple-rev



(equal (rev (rev (rev a))) (rev a))); --- The End ---The last proof above 
onsists of a single simpli�
ation, just as we planned.ACL2 !>(defthm triple-rev(equal (rev (rev (rev a))) (rev a)))But simplifi
ation redu
es this to t, using primitivetype reasoning and the :rewrite rules properp-rev andrev-rev.Q.E.D.SummaryForm: ( defthm triple-rev ...)Rules: ((:fake-rune-for-type-set nil)(:rewrite properp-rev)(:rewrite rev-rev))Warnings: NoneTime: 0.00 se
onds (prove: 0.00, print: 0.00, other: 0.00)triple-revHowever, if we look one more time at the proof output, we again see the linethat means multiple indu
tions were usedThat 
ompletes the proofs of *1.1 and *1.| this time in the proof of rev-app. So we undo with :u and read the 
he
kpoint.Subgoal *1/1'(implies (and (
onsp a)(equal (rev (app (
dr a) b))(app (rev b) (rev (
dr a)))))(equal (app (rev (app (
dr a) b))(list (
ar a)))(app (rev b)(app (rev (
dr a)) (list (
ar a)))))).The destru
tor terms (CAR A) and (CDR A) 
an be eliminated byusing CAR-CDR-ELIM to repla
e A by (CONS A1 A2), (CAR A) by A1and (CDR A) by A2. This produ
es the following goal.This time, no rules o

ur to us that would further the simpli�
ation pro
ess, sowe allow the theorem prover to use destru
tor elimination, and read further tosee if any subgoals suggest a rule that 
an avoid multiple indu
tions.Subgoal *1/1'5'(equal (app (app rv0 rv) (list a1))(app rv0 (app rv (list a1)))).



Name the formula above *1.1.We 
an now will dis
over a lemma stating that app is an asso
iative opera-tion, shown as lemma app-asso
 below. With this addition, the proof su

eedswithout multiple indu
tions.; --- S
ript for proving triple-rev ---(defthm properp-app(equal (properp (app a b))(properp b)))(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))(defthm properp-rev(properp (rev x)))(defthm app-asso
(equal (app (app a b) 
)(app a (app b 
))))(defthm rev-app(equal (rev (app a b))(app (rev b) (rev a))))(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm triple-rev(equal (rev (rev (rev a))) (rev a))); --- The End ---Note that one side-e�e
t of our re
ommended relian
e on \simplify, indu
t,simplify" is that it 
auses us to think about the general rules for manipulatingthe fun
tion symbols of the problem and to state them as lemmas. Had we reliedon ACL2's 
reative 
ontributions, we would not have identi�ed so many goodrules about rev, app, and properp.Note also that sin
e the �nal theorem is proved by rewriting with two existingrules, there is no need to enshrine triple-rev as a rule itself. Our subsequentrule library is a little smaller if we 
hange the last form in the s
ript to(defthm triple-rev(equal (rev (rev (rev a))) (rev a)):rule-
lasses nil)The general pro
edure we have just des
ribed is 
alled \The Method" in [6℄and des
ribed in the do
umentation for The-Method.Exer
isesUse The Method to �nd proofs for ea
h of the theorems below using ACL2.Problem 8.1



(implies (memp e 
)(memp e (rev (dup (dup 
))))Problem 8.2(equal (leaves (swaptree x))(rev (leaves x)))where leaves is de�ned as(defun leaves (x)(if (
onsp x)(app (leaves (
ar x)) (leaves (
dr x)))(
ons x nil)))Problem 8.3(subp x x)Problem 8.4(implies (properp x)(equal (int x x) x))Problem 8.5(implies (and (subp x y)(subp y z))(subp x z))Problem 8.6(subp (app a a) a)Problem 8.7(seteqp (rev a) a)where seteqp (\set equality") is de�ned as(defun seteqp (x y)(and (subp x y)(subp y x)))Note: Note that after proving that (rev a) is set-equivalent to a there is anatural expe
tation that ACL2 will repla
e (rev a) by a where ever it sees itused as a set. But seteqp is not equal! But ACL2 supports the introdu
tion of



user-de�ned equivalen
e rules and the kind of generalized rewriting just hintedat. See equivalen
e and 
ongruen
e.Problem 8.8(seteqp (app a b) (app b a))Problem 8.9(equal (leaves (leaves x)) (app (leaves x) '(nil)))Problem 8.10(iff (memp e (lonesomes x))(and (memp e (leaves x))(lonesomep e (leaves x))))Problem 8.11(equal (raise b (add i j))(mult (raise b i) (raise b j)))where add, mult, and raise are de�ned to be list-based analogues of addition,multipli
ation, and exponentiation. In this analogi
al setting, numbers (re
og-nized by nump) are represented by lists of nils of the appropriate length. Of
ourse, ACL2 supports arithmeti
 but by simulating it in these exer
ises wefor
e you to invent a lot of lemmas!(defun nump (x)(if (
onsp x)(and (equal (
ar x) nil)(nump (
dr x)))(equal x nil)))(defun add (x y)(if (
onsp x)(
ons nil (add (
dr x) y))(mapnil y)))(defun mult (x y)(if (
onsp x)(add y (mult (
dr x) y))nil))(defun raise (x y)(if (
onsp y)(mult x (raise x (
dr y)))'(nil)))Problem 8.12



(defthm add-
ommutativity(equal (add i j) (add j i)))Hint on How To Prove Things: When you know a fun
tion is 
ommutative,use that fa
t to arrange the arguments in some 
anoni
al order. Thus, if add isknown to be 
ommutative, then whenever you see (add b a), rewrite it to (adda b). But do not use the rule the other way { to move things out of order { oryou will loop forever! ACL2 uses this heuristi
 and uses a lexi
ographi
 orderingon terms.Problem 8.13(defthm add-
ommutativity2(equal (add i (add j k)) (add j (add i k))))Hint on How To Prove Things: The heuristi
 advi
e about 
ommutative fun
-tions does not help you if you are rewriting (add b (add a 
)) be
ause the or-dering (probably) will not prefer (add a 
) over b. But the theorem above, whi
hwe 
all a \
ommutativity2" theorem, allows an appropriate swap and ACL2 usessu
h theorems to arrange the ordering of terms. Given asso
iativity, 
ommu-tativity, 
ommutativity2, and these heuristi
s, you 
an arrange nests of su
hfun
tions into right-asso
iated form with the arguments as
ending in the order.That is what ACL2 does.Problem 8.14(defthm mult-
ommutativity(equal (mult i j) (mult j i)))Problem 8.15(defthm mult-
ommutativity2(equal (mult i (mult j k)) (mult j (mult i k))))9 A

umulatorsA 
ommon form of re
ursion is to de
rement some argument while buildingthe �nal answer in another. This allows the fun
tion to inspe
t the partially
omputed answer. In addition, su
h fun
tions are often the fun
tional expressionof an iterative pro
ess and are preferred over other forms of re
ursion be
ausethey are tail-re
ursive, thus allowing 
ompilers to make optimizations that (forexample) avoid sta
k over
ows. The arguments that are being built up are 
alled\a

umulators." Proving theorems about a

umulator-using fun
tions frequentlyrequires 
are in stating suÆ
iently general theorems.



Consider, for example, the 
hallenge of reversing a list. One de�nition is(defun rev (x)(if (
onsp x)(app (rev (
dr x)) (
ons (
ar x) nil))nil))This de�nition su�ers two ineÆ
ien
ies in terms of the resour
es required toexe
ute it. The �rst is that it requires sta
k spa
e proportional to the length ofthe list, be
ause for every 
ons in the 
dr-
hain of the input, exe
ution mustpush a new sta
k frame so that it 
an \remember" to do the app. The se
ondis that the app 
opies the list returned by the re
ursive 
all and returns the
opy; the memory allo
ated to 
reating the re
ursive 
all's answer is unrea
hable\garbage" as soon as the app has �nished with it.The following tail-re
ursive version eliminates both of these drawba
ks.(defun rev1 (x a)(if (
onsp x)(rev1 (
dr x) (
ons (
ar x) a))a))This is the fun
tional expression of the 
ode fragment:while 
onsp(x) f a = 
ons(
ar(x),a); x = 
dr(x);g;return a;It is the same as rev if a is initialized to nil. For example, (rev1 '(1 2 3)nil) is '(3 2 1).Suppose we wanted to prove (equal (rev1 x nil) (rev x)). Think aboutproving this by indu
tion. It is 
lear we should indu
t on x by 
dr. The indu
tionhypothesis is about (rev1 (
dr x) nil). The indu
tion 
on
lusion is about(rev1 x nil). When we expand that term in the 
on
lusion it be
omes (rev1(
dr x) (
ons (
ar x) nil)). Note that the rev1 term in the hypothesis doesnot mat
h the rev1 term in the 
on
lusion. In the hypothesis, the a

umulatoris nil but in the expanded 
on
lusion it is (
ons (
ar x) nil). We wouldlike to \instantiate" nil to be (
ons (
ar x) nil), but of 
ourse we 
annotinstantiate anything but a variable.This theorem is not strong enough to be indu
tively provable. If we think ofrev1 as an expression of an iteration, then the main theorem we are proving isabout the �rst entry to the loop (when a is nil) and we must think about anarbitrary entry to the loop. Put another way, instead of thinking about (rev1 xnil) we must think about (rev1 x a). This is just the generalization problem.So what is the relation between (rev1 x a) and (rev x)? One way to helpdis
over the general form of the theorem we are seeking is to try a few examples.For example, (rev1 '(1 2 3) '(4 5 6)) is (3 2 1 4 5 6).The obvious general form of the theorem is (equal (rev1 x a) (app (revx) a)).Hint on How To Prove Things: When dealing with a fun
tion that has ana

umulator argument, never try to prove a theorem about the fun
tion by indu
-



tion unless the a

umulator argument is a variable symbol. That is, think aboutthe most general legal 
all of the fun
tion, not the initial 
all.As soon as you repla
e the nil in (rev1 x nil) by a new variable symbola you are 
onfronted with the problem: what happens to a on the other side ofthe theorem? In this 
ase, we use app to \
onne
t" the expe
ted answer, (revx), to the initial value of a. It is ni
e that app is already known to us. Often,however, you will have to invent a new fun
tion to relate the �nal answer to theinitial value of the a

umulator. This suggests the advi
e given earlier: do notbe afraid to introdu
e new 
on
epts to explain what is happening.Now 
onsider proving (equal (rev1 x a) (app (rev x) a)) by indu
tion.The Indu
tion Prin
iple allows us to repla
e a in the hypothesis by any term wewish, if we are indu
ting on x (repla
ing x by the smaller (
dr x)). So whi
ha do we 
hoose? The answer is obvious: the a that we will need if we expand(rev1 x a) in the 
on
lusion. In parti
ular, the 
hoi
e of a in the hypothesis is(
ons (
ar x) a).Here is ACL2's proof of the theorem. Note how trivial it is.(defthm rev1-is-app-rev(equal (rev1 x a) (app (rev x) a)))Name the formula above *1.Perhaps we 
an prove *1 by indu
tion. Two indu
tion s
hemesare suggested by this 
onje
ture. Subsumption redu
esthat number to one.We will indu
t a

ording to a s
heme suggested by (rev1 x a).This suggestion was produ
ed using the :indu
tion rulesrev and rev1. If we let (:p a x) denote *1 above thenthe indu
tion s
heme we'll use is(and (implies (not (
onsp x)) (:p a x))(implies (and (
onsp x)(:p (
ons (
ar x) a) (
dr x)))(:p a x))).This indu
tion is justified by the same argument usedto admit rev1, namely, the measure (a
l2-
ount x) is de
reasinga

ording to the relation o< (whi
h is known to be well-founded on the domain re
ognized by o-p). Note, however,that the unmeasured variable a is being instantiated.When applied to the goal at hand the above indu
tion s
hemeprodu
es the following two nontautologi
al subgoals.Subgoal *1/2(implies (not (
onsp x))(equal (rev1 x a) (app (rev x) a))).But simplifi
ation redu
es this to t, using the :definitionsapp, rev and rev1, the :exe
utable-
ounterpart of 
onsp



and primitive type reasoning.Subgoal *1/1(implies (and (
onsp x)(equal (rev1 (
dr x) (
ons (
ar x) a))(app (rev (
dr x)) (
ons (
ar x) a))))(equal (rev1 x a) (app (rev x) a))).But simplifi
ation redu
es this to t, using the :definitionsapp, rev and rev1, the :exe
utable-
ounterpart of 
onsp,primitive type reasoning and the :rewrite rules asso
iativity-of-app, 
ar-
ons and 
dr-
ons.That 
ompletes the proof of *1.Q.E.D.SummaryForm: ( defthm rev1-is-app-rev ...)Rules: ((:definition app)(:definition rev)(:definition rev1)(:exe
utable-
ounterpart 
onsp)(:fake-rune-for-type-set nil)(:indu
tion rev)(:indu
tion rev1)(:rewrite asso
iativity-of-app)(:rewrite 
ar-
ons)(:rewrite 
dr-
ons))Warnings: NoneTime: 0.01 se
onds (prove: 0.01, print: 0.00, other: 0.00)rev1-is-app-revACL2 !>Note how we oriented the rewrite rule generated from rev1-is-app-rev: weeliminate rev1 in favor of the ni
er fun
tions app and rev. While rev1 is 
ompu-tationally eÆ
ient, it is often hard to state indu
tively provable theorems aboutit be
ause the a

umulator argument must always be o

upied by a variablesymbol.Hint on How To Prove Things: When you dis
over a general theorem aboutan a

umulator-using fun
tion relating it to primitive re
ursive fun
tions, use thenew theorem to eliminate the a

umulator-using fun
tion from future problems.Exer
isesUse The Method to �nd proofs for ea
h of the theorems below.Problem 9.1 The following two fun
tions are nump analogues of fa
torial. Provethey are equivalent:



(equal (fa
t1 n '(nil)) (fa
t n)) ; '(nil) is ``one''where(defun fa
t (n)(if (
onsp n)(mult n (fa
t (
dr n)))'(nil)))(defun fa
t1 (n a)(if (
onsp n)(fa
t1 (
dr n) (mult n a))a))Problem 9.2(equal (m
-flatten x nil) (leaves x))where(defun m
-flatten (x a)(if (
onsp x)(m
-flatten (
ar x)(m
-flatten (
dr x) a))(
ons x a)))The fun
tion m
-flatten is an \almost tail-re
ursive" version of leaves �rstwritten by John M
Carthy. It has the interesting property that it produ
es nogarbage: every 
ons it 
reates is in the �nal answer, unlike leaves.10 Con
lusionWe have illustrated how to �nd simple rigorous proofs. We �rst repeat all thehints given so far, and then we add a few more.Hint on How To Prove Things: Indu
tion must be applied to strong theorems,not weak ones! Always try to invent the strongest theorems you 
an think of !Hint on How To Prove Things: Give 
areful thought to the \preferred" formsyou use in your proofs and provide yourself with lemmas that allow you, insofaras possible, to 
anoni
alize terms.Hint on How To Prove Things: When using the ACL2 system, never provea named theorem without understanding its e�e
t as a rule!Hint on How To Prove Things: Realize that when you are dealing witharithmeti
, your sense of what is \straightforward" has been honed by many



years of drill-and-pra
ti
e with manipulating algebrai
 properties of numbers. Beprepared to \explain" formally why some arithmeti
 relations hold!Hint on How To Prove Things: If you are doing arithmeti
 proofs withACL2, start by in
luding one of the arithmeti
 books into your s
ript. Themost 
ommonly used book is in
luded by adding the 
ommand (in
lude-book"arithmeti
/top-with-meta" :dir :system).Hint on How To Prove Things: Realize that when you are dealing witharithmeti
 you may be doing inequality 
haining, not repla
ement of equals byequals, and make that form of reasoning expli
it in your notation.Hint on How To Prove Things: Every time you en
ounter a new theoremyou should give thought to how it is to be used in subsequent proofs.Hint on How To Prove Things: Ensure that your rules do not loop! One wayto do this is to keep in mind some ordering on your preferred terms and be surethat the right-hand side of ea
h rule is lower in this ordering than the left-handside.Hint on How To Prove Things: De�nitions are (generally) used as expansionrules, i.e., fun
tion 
alls are repla
ed by their instantiated bodies. This imposesa restri
tion on your 
hoi
e of preferred forms: fun
tion bodies are preferableto fun
tion 
alls. If you want to override that built-in preferen
e in ACL2, youshould disable the fun
tions after proving the rules you need about them.Hint on How To Prove Things: When designing your rewrite rules, be surethe left-hand sides are in your preferred form!Hint on How To Prove Things: Keep your proofs in the \simplify, indu
t,simplify" form. That is, identify ea
h indu
tively proved lemma you need in aproof, write it down, and give it a name. Do not get into the habit of invent-ing and indu
tively proving lemmas \on the 
y" in the middle of other proofs.



It is better that you understand and 
ontrol the lemma de
omposition of yourtheorems.Hint on How To Prove Things:When 
onsidering a new 
onje
ture to prove,look for general theorems 
an will prove it by simpli�
ation { rewriting and 
hain-ing { before you 
onsider proving it by indu
tion.Hint on How To Prove Things: Look for pairs of adja
ent fun
tion symbolsand try to think of rules that simplify those expressions.Hint on How To Prove Things: When forming new 
onje
tures, test themon 
onstants.Hint on How To Prove Things: Often you will have to invent new 
on
epts{ 
on
epts not involved in your main theorem { to state the lemmas you need.Hint on How To Prove Things: If you have introdu
ed hypotheses in yourlemmas, be sure you prove that the appropriate terms satisfy those hypotheses.Hint on How To Prove Things: Separate your 
on
erns!Hint on How To Prove Things: We re
ommend that the novi
e ACL2 usernot rely on ACL2's 
reative 
ontributions in the beginning. As the problems be-
ome harder, ACL2's 
reative 
ontributions 
ount for less and less { and itsability to 
arry out massive automati
 simpli�
ations using user-spe
i�ed rules
ounts for more and more. So the novi
e is en
ouraged to learn to spot the needfor rules and to program ACL2 to use them.Hint on How To Prove Things:Whenever a proof fails (or you want to redu
ea proof to the re
ommended form), read the formula at the �rst 
he
kpoint andlook for a lemma de
omposition. Sometimes, it helps to read a few formulas pastthe �rst 
he
kpoint { often ACL2's heuristi
s 
ome fairly 
lose to generating theneeded lemma, or at least 
reating a term that will suggest the lemma to you. Soif the 
he
kpoint does not suggest anything, read on.Hint on How To Prove Things: When you know a fun
tion is 
ommutative,use that fa
t to arrange the arguments in some 
anoni
al order. Thus, if add isknown to be 
ommutative, then whenever you see (add b a), rewrite it to (adda b). But do not use the rule the other way { to move things out of order { oryou will loop forever! ACL2 uses this heuristi
 and uses a lexi
ographi
 orderingon terms.Hint on How To Prove Things: The heuristi
 advi
e about 
ommutativefun
tions does not help you if you are rewriting (add b (add a 
)) be
ause theordering (probably) will not prefer (add a 
) over b. But the theorem above,whi
h we 
all a \
ommutativity2" theorem, allows that swap and ACL2 uses su
htheorems to arrange the ordering of terms. Given asso
iativity, 
ommutativity,
ommutativity2, and these heuristi
s, you 
an arrange nests of su
h fun
tions



into right-asso
iated form with the arguments as
ending in the order. That iswhat ACL2 does.Hint on How To Prove Things: When dealing with a fun
tion that has ana

umulator argument, never try to prove a theorem about the fun
tion by indu
-tion unless the a

umulator argument is a variable symbol. That is, think aboutthe most general legal 
all of the fun
tion, not the initial 
all.Hint on How To Prove Things: When you dis
over a general theorem aboutan a

umulator-using fun
tion relating it to primitive re
ursive fun
tions, use thenew theorem to eliminate the a

umulator-using fun
tion from future problems.See a
l2-tutorial for further introdu
tion, with subtopi
s 
ontaining manyother helpful tips for using the ACL2 logi
 and theorem prover, and with manymore examples.One important tip there is that there are many books of rules developed byACL2 users. We did not stress the use of books here simply be
ause we are tryingto train you to use The Method and to program the simpli�er yourself. Thoseare skills you will need. But as you master those skills and move on to biggerproje
ts, it is very helpful when you 
an build on the work of others. That is howmathemati
s has built su
h a magni�
ent body of results. So now we enshrinethis advi
e as a hint.Hint on How To Prove Things: Build on the work of others instead ofinventing everything yourself. In the ACL2 setting, learn about the books available(by visiting the Mathemati
al Tools link on the ACL2 home page), learn aboutand use in
lude-book (see in
lude-book) to load books into your s
ripts, andlearn to use 
ertify-book (see 
ertify-book) to 
reate books others 
an use.If you want to learn more about ACL2, we re
ommend you buy the bookComputer-Aided Reasoning: An Approa
h by Kaufmann, Manolios, and Moore[6℄. While Kluwer A
ademi
 Press owns the ele
troni
 and hardba
k 
opyrights,the authors own the paperba
k rights and sell a spiral-bound version for 
loseto their 
ost, about $15 plus shipping. (You 
an �nd the book in hardba
kelsewhere, for well over its original pri
e of about $120.) See the Books andPapers link on the ACL2 home page for ordering details. The book 
ontainsabout 150 exer
ises and the solutions are on the web.The 
ompanion book, Computer-Aided Reasoning: ACL2 Case Studies, editedby the same authors [5℄, is also a very valuable resour
e be
ause it presents de-tailed notes on many large-s
ale proof proje
ts and the a
tual sour
e s
ripts areavailable on the web. The 
ompanion book is available under the same 
opy-righting terms and approximately the same pri
es as the �rst.A detailed a

ount of proof development for a non-trivial example may befound in [9℄. The proof des
ribed there was 
arried out with ACL2's prede
essor,Nqthm, but lessons therein pertain to ACL2 usage as well.



TheWorkshops link on the home page is also a good sour
e of material. ACL2workshop papers are usually a

ompanied by 
omplete proof s
ripts, whi
h areposted on the ACL2 home page.One more hint is in order.Hint on How To Prove Things: Pra
ti
e makes perfe
t. There is no substitutefor experien
e. Think of theorems to prove and work out the proofs!A De�nitionsIn this appendix we in
lude de�nitions of all the fun
tions mentioned in our ex-er
ises. This appendix thus answers the exer
ises that just require de�nitions! Sodon't look here until you do those exer
ises. But to do the proof-based exer
ises,it might be best to use our de�nitions.We have presented the de�nitions in alphabeti
al order so you 
an �nd them.ACL2 requires de�nitions to be presented bottom-up: de�ne 
on
epts beforeusing them.(defun add (x y)(if (
onsp x)(
ons nil (add (
dr x) y))(mapnil y)))(defun app (x y)(if (
onsp x)(
ons (
ar x) (app (
dr x) y))y))(defun 
olle
t-lonesomep (a b); 
olle
t elements of a that are lonesome in b(if (
onsp a)(if (lonesomep (
ar a) b)(
ons (
ar a)(
olle
t-lonesomep (
dr a) b))(
olle
t-lonesomep (
dr a) b))nil))(defun dup (x)(if (
onsp x)(
ons (
ar x)(
ons (
ar x)(dup (
dr x))))nil))(defun fa
t (n)(if (
onsp n)(mult n (fa
t (
dr n)))'(nil)))



(defun fa
t1 (n a)(if (
onsp n)(fa
t1 (
dr n) (mult n a))a))(defun foundp (x a)(if (
onsp a)(if (equal x (
ar (
ar a)))t(foundp x (
dr a)))nil))(defun int (x y)(if (
onsp x)(if (memp (
ar x) y)(
ons (
ar x) (int (
dr x) y))(int (
dr x) y))nil))(defun leaves (x) ; the leaves of x(if (
onsp x)(app (leaves (
ar x))(leaves (
dr x)))(
ons x nil)))(defun lonesomep (e lst)(if (mem e lst)(not (mem e (
dr (mem e lst))))nil))(defun lonesomes (x)(
olle
t-lonesomep (leaves x) (leaves x)))(defun lookup (x a)(if (
onsp a)(if (equal x (
ar (
ar a)))(
dr (
ar a))(lookup x (
dr a)))nil))(defun mapnil (x)(if (
onsp x)(
ons nil (mapnil (
dr x)))nil))(defun m
-flatten (x a)(if (
onsp x)(m
-flatten (
ar x)(m
-flatten (
dr x) a))



(
ons x a)))(defun mem (e x) ; where does e o

ur in x?(if (
onsp x)(if (equal e (
ar x))x(mem e (
dr x)))nil))(defun memp (e x)(if (
onsp x)(if (equal e (
ar x))t(memp e (
dr x)))nil))(defun mult (x y)(if (
onsp x)(add y (mult (
dr x) y))nil))(defun nump (x)(if (
onsp x)(and (equal (
ar x) nil)(nump (
dr x)))(equal x nil)))(defun properp (x)(if (
onsp x)(properp (
dr x))(equal x nil)))(defun raise (x y)(if (
onsp y)(mult x (raise x (
dr y)))'(nil)))(defun rev (x)(if (
onsp x)(app (rev (
dr x)) (
ons (
ar x) nil))nil))(defun rev1 (x a)(if (
onsp x)(rev1 (
dr x) (
ons (
ar x) a))a))(defun seteqp (x y)(and (subp x y)(subp y x)))



(defun swaptree (x)(if (
onsp x)(
ons (swaptree (
dr x))(swaptree (
ar x)))x))(defun subp (x y)(if (
onsp x)(if (memp (
ar x) y)(subp (
dr x) y)nil)t))(defun tree
opy (x)(if (
onsp x)(
ons (tree
opy (
ar x))(tree
opy (
dr x)))x))(defun ziplists (x y)(if (
onsp x)(
ons (
ons (
ar x) (
ar y))(ziplists (
dr x) (
dr y)))nil))B Ema
sEma
s has an intera
tive tutorial. Type meta-x help-with-tutorial enter.Here are some 
ommonly used 
ommands.To Insert Textjust type itTo Move Around
trl-f move forward one 
hara
ter
trl-b move ba
kward one 
hara
ter
trl-n move down to next line
trl-p move up to previous line
trl-meta-f moves forward over balan
ed expression
trl-meta-b moves ba
kward over balan
ed expression
trl-meta-u moves up one level of parens.meta-< move to the beginning of the bu�ermeta-> move to the end of the bu�erTo Cut and Paste
trl-d delete one 
hara
ter
trl-k kill one line { and put it in the \kill ring"
trl-meta-k kill one balan
ed expression - and put it in the \kill ring"
trl-y to yank (paste) text from the killring ba
k into the bu�er



Other
trl-x b sele
t another bu�er (type bu�er name)
trl-x 
trl-f read a �le into a bu�er of that name
trl-x 
trl-s write a bu�er to the �le it 
ame from
trl-x 
trl-w write a bu�er to the �le you name
trl-meta-q indent the list expression immediately afterthe 
ursor in a way 
onsistent with the parenthesesThe ACL2 sour
e 
ode distribution 
omes with a pre-de�ned Ema
s librarythat 
ontains many useful 
ommands for intera
ting with ACL2. Just put thefollowing in the .ema
s �le in your home dire
tory, repla
ing <dir> by theabsolute pathname of your lo
al ACL2 sour
e 
ode dire
tory.(load "<dir>/ema
s/ema
s-a
l2.el")This library also enables navigation of proofs and 
he
kpoints with an ema
s-based tool; see proof-tree-ema
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