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Abstract

The ACL2 logic is a first-order, essentially quantifier-free logic of total re-
cursive functions providing mathematical induction and several extension prin-
ciples, including symbol package definition and recursive function definition. In
this document we describe the logic more precisely.

1 Background

Naively speaking, a mathematical logic is given by a formal language, some
axioms in that language, and some rules of inference that permit one to derive
new formulas, called “theorems,” from those axioms. To “prove” a theorem one
shows how to derive it from the axioms using the rules of inference. This game
is very challenging. Even for very simple sets of axioms and rules, the resulting
theorems are often non-obvious.

What prevents logic from being merely an academic game is that, like most
of mathematics, it can be related to our ordinary experience. In particular,
it is often possible to give meaning to the formulas in such a way that the
axioms are all accepted as truths and the rules of inference are truth preserving.
Consequently, the theorems are also truths. More precisely, the theorems are
truths about what is modeled by the axioms and rules of inference.

*EDS, 98 San Jacinto Blvd., Suite 500, Austin, TX 78701, kaufmann@aus.edsr.eds.com

fThe theorem prover used in this work was supported in part at Computational Logic,
Inc., by the Defense Advanced Research Projects Agency, ARPA Order 7406, and the Office
of Naval Research, Contract N00014-94-C-0193. The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as representing the official
policies, either expressed or implied, of Computational Logic, Inc., the Defense Advanced
Research Projects Agency, the Office of Naval Research, or the U.S. Government.



It is difficult — perhaps impossible — to use formal logic to model the physi-
cal world with adequate precision and completeness. Unobtrusive imperfections
in the correspondence between the formal system and the objects modeled can
be magnified into gross distortions of reality by the utterly precise lens of formal
logic. Thus, logic is better suited to study the perfect objects of mathematics —
i.e., numbers, sets, algorithms, etc. — than the imperfect objects of our physi-
cal world. Put another way, logic is best at modeling formal systems. Very few
modern scientists have tried to use formal logic to study physical systems and
thus, in contrast to many other branches of mathematics, the study and use of
logic has been largely confined to formal logicians.

However, the widespread use of computing machines is changing this. Com-
puting machines are imperfect physical artifacts. But they implement formal
systems. That is to say, when such a machine is working as physically intended
by its designer, it is supposed to carry out some algorithm following a fixed set of
precisely specified rules. The “utterly precise lens” of formal logic is an excellent
tool with which to investigate the behavior of such an abstract machine. There
is often no other way to assure, for example, that a divider actually divides,
that a protocol reliably enables communication, or that a calculation involving
millions of steps produces the “right” answer.

So we are interested here in a “working logic.” We wish to use a formal
mathematical logic to model other formal systems — processor architectures,
microcode programs and programming languages — and then to study the prop-
erties of those models. But this presupposes some formal logic suitable for our
purposes. Turning to the logic textbooks for a description of a suitable logic is a
frustrating experience. Logicians, the people who might have been thought most
experienced in designing and using formal logics, have spent most of their time
studying logics rather than using them. Compared to the logic we seek, most
classical logics are like Turing machines compared to modern processors: while
they are, in some technical sense, sufficiently powerful, they are impractical to
use. Classical logics were designed to be simple enough to study thoroughly,
not convenient to use.

Therefore, in this document we “roll our own” working logic. It is called
ACL2, which stands for “A Computational Logic for Applicative Common Lisp”
and might have been abbreviated ACL?. ACL2 is designed to be used to model
computing systems and to prove properties of those models. It is likely to be
much more elaborate than the classical formal logics you have encountered.

1.1 Connection with Common Lisp

One force pushing ACL2 toward complexity is the fact that we want it to be
efficiently executable on a wide range of host processors. That is, the logic can
be used to calculate: most variable-free terms can be reduced to constants by
the routine application of the axioms. To achieve this we decided to make ACL2
an extension of a useful subset of the widely used and efficiently implemented



applicative programming language Common Lisp [6] and [7].

Executability comes at a cost: ACL2 does not support unbounded quantifi-
cation, the real numbers, or infinite sets. ACL2 is essentially just an applicative
programming language — and a fairly simple one at that.

Common Lisp functions are partial: they are not defined on all possible
inputs. But ACL2 functions are total: they are defined on all possible inputs.
In what sense, then, is ACL2 Common Lisp?

In [4] we define the notions of gold functions and theorems. To establish that
a function or theorem is gold, certain additional conjectures must be proved.
These “guard conjectures” are derived syntactically from the candidate func-
tion definitions and theorems. If the guard conjectures are theorems, then the
evaluation of the ACL2 formulas never tries to apply Common Lisp functions
to inputs outside their “intended domains.” We make the following promise: a
gold theorem in ACL2 evaluates to non-NIL in all compliant implementations
of Common Lisp, unless the implementation encounters a “resource error” such
as memory exhaustion. In this document we do not discuss further the notion
of gold theorems or Common Lisp compliance. We focus simply on ACL2 as a
logic, thereby defining what the theorems are.

Although we do not assume familiarity with Common Lisp, readers familiar
with it will notice that we have adopted much of its syntax and many of its
built-in constants and functions.

1.2 Connection with the Nqthm Logic

The logic described here is closely connected to the Nqthm (“Boyer-Moore”)
logic [1]. The Nqthm logic models a “home-grown” Pure Lisp, while ACL2
models Common Lisp. Some of the differences between the two are summarized
below.

e Ngthm’s arithmetic was essentially just that for the natural numbers, ax-
iomatized in a Peano-like fashion. Common Lisp and ACL2 provide the
rationals and the complex rationals, with the naturals being an inductively
identified subset of the rationals.

e Ngthm’s symbols, the LITATOMs, are very simple compared to Common
Lisp’s. In particular, Nqthm does not support multiple “packages.”

e Ngthm provides a “false object,” (FALSE), abbreviated F, which is not NIL
or any other Nqthm symbol, while Common Lisp and ACL2 “overload”
NIL as both the false object and the end-of-list marker.

e Nqthm’s functions CAR and CDR return O on non-CONS arguments, but
ACL2’s return NIL.



e Ngthm provided the “Shell Principle” for adding new data types; ACL2
provides no such facility. But in addition to the richer set of numbers,
ACL2 provides character objects and strings among its primitives.

The enumeration above should not obscure the fact that the two logics in
fact only differ in “minor” details. The two logics “feel” the same. Both are
first-order, essentially quantifier-free logics based on total, recursively defined
functions over inductively constructed data objects. Both use untyped, Lisp-
like syntax and encourage the use of “terms” where other logics would use
“formulas.” Both allow (most) variable-free terms to be evaluated to constants
via a “call-by-value” interpreter.

The similarities to Nqthm were the result of deliberate design decisions based
on the success of using Nqthm to model computing machines and systems. ACL2
— the logic and its implementation in a theorem-proving system — is best
thought of as a successor to Nqthm intended to make the logic more efficiently
executable and able to support the construction and analysis of larger system
models. The paper [3] discusses the original design of ACL2.

Bob Boyer was an active participant in the formative years of the design of
ACL2. Without his help the project would never have gotten off the ground.

2 Theories and Logical Events

The view that a logic is given by a language, some axioms, and some rules
fails to accommodate our intention to use it to model other systems. Except in
the unusual case that the given logic already describes what we care about, we
must be able to fashion it somehow. That generally means we must be able to
extend the language to include new syntactic concepts and to add new axioms
about those concepts. Sometimes new rules of inference are added. Thus, in
addition to a language, some axioms, and some rules of inference, we provide
some extension principles and we view the logic as “evolving” under the control
of the user who invokes these principles.

We say a formula t can be proved directly from a set of axioms A if and only
if ¢ may be derived from the axioms in A by applying the rules of inference
of propositional calculus with equality and instantiation (see page 20) and the
principle of induction (see page 47).

There are five extension principles and thus five kinds of events:

e an application of the constant definition principle (page 29),

e an application of the package definition principle (page 48),

e the designation of the current package (page 49),

e an application of the function definition principle (page 49), and

e the addition of an arbitrary formula as an axiom.



Each such event extends the syntax and/or the set of axioms of the logic as
noted below.

Note. A derived extension principle, called “encapsulation,” permits the intro-
duction of undefined but constrained function symbols. We describe encapsu-
lation and its uses in [8]. ACL2 provides for “Skolem axioms” but these have
not yet been documented. The implemented definitional principle allows for
mutually recursive definitions but the one described here does not. The imple-
mentation also allows for the definition of “macros” that extend the syntax of
the language, but we do not discuss macros here.

A history h is a finite sequence of events such that either (a) h is empty
or (b) h is obtained by concatenating to the end of a history A’ an event that
is “admissible” under h’. An arbitrary axiom is admissible under any h'. The
specifications of the other kinds of events define “admissibility” for each such
event. We refer to the order of events in a history as though they were added
chronologically, i.e., the first event is the “oldest” and the last event is the “most
recent.”

Associated with every history are the following:

e an “arity table,” specifying how many arguments certain function symbols
take;

)

a “package system,” affecting how symbols are written;
e a “current package,” affecting how symbols are written;

e the “formal constants” of the language;

a set of “abbreviations,” whereby symbolic expressions are transformed
into “formal terms” and “formulas;” and

e a set of “axioms.”

All but the last item, the axioms, are concerned with the syntax. Each of these
concepts is defined below, with respect to a given history h. However, in general
in this document the operative history is left implicit.

The arity table of a history is the initial arity table (Table 3, page 18)
extended by an entry specifying the arity (number of arguments) of each function
symbol introduced by each event in the history. Our discussion of each event
makes clear the function symbols and arities introduced.

The package system of a history is a sequence of pairs, each pairing a “pack-
age name” with an “imports list.” We discuss packages on page 12. The package
system of a history is the initial package system, as described in Appendix A,
extended successively by an entry for each DEFPKG event in the history, in
chronological order. We describe the appropriate entry when we discuss DEFPKG

(page 48).



The current package of a history is the package name selected by the most
recent IN-PACKAGE event (see page 49), if any. If there is no IN-PACKAGE event
in the history, the current package is named "ACL2". In this document, unless
otherwise stated, the current package is "ACL2".

The formal constants of a history are the primitive formal constants (page 17)
together with the formal constants introduced by each event. The addition of
an arbitrary axiom adds no new constants. When we discuss each other kind of
event we specify the constants, if any, introduced.

The abbreviations of a history are the abbreviation rules introduced in this
document together with the abbreviations introduced by each event. The addi-
tion of an arbitrary axiom adds no abbreviations. When we discuss each other
kind of event we specify the abbreviations, if any, introduced.

Finally, the azioms of a history h are the axioms introduced in this docu-
ment (including the appropriate instances of the Propositional and Reflexivity
axiom schemas for the formulas of A and the appropriate instances of the Equal-
ity Axiom for Functions for every function symbol in the arity table of h, see
Section 5) together with the axioms introduced by each event. The addition of
an arbitrary axiom introduces the given formula as an axiom. When we discuss
each other kind of event we specify the axioms, if any, introduced.

The syntaz of a history is the set of “well-formed formulas” for that history.
A large part of this document is devoted to a careful description of this notion.
In our development, a formula is a tree structure composed of formulas and
other tree structures called “terms.” We start by describing how we write down
a certain class of tree structures, called “s-expressions.” Then we identify a
subset of these s-expressions as the “formal terms” in a given history. The main
idea is that such a term is a variable symbol, one of a very few constants, or
the application of a function symbol of the history to an appropriate number
of argument terms. A “well-formed formula” of a history is then a class of s-
expressions built from formal terms of the history by certain constructions we
describe.

Finally, we introduce a large number of abbreviations. These abbreviations
are rules for transforming s-expressions that are not formal terms or formulas
into s-expressions that are formal terms or formulas. Of special importance are
a collection of abbreviations that let us write a large class of constants in terms
of the primitive constants and function symbols.

The well-formed formulas of a history h are the s-expressions that are either
formulas of h as we define them here or that can be transformed into formulas
of h using the abbreviations of h.

We say a formula ¢ in the syntax of history A is a theorem of history h iff ¢
can be proved directly from the axioms of hA.



3 A Preamble on Notation

The utterances of a formal language are traditionally regarded as strings of
characters. Such character strings are often described with a formal grammar.
We do not take that approach.

The utterances of our formal language are finite tree structures composed of
familiar mathematical objects. In this section we talk about those objects and
how we write them down. It is not our intention here to define these notions,
since we think formal definitions would be less clear than what the reader is
likely already to understand. So we offer the following observations as a way of
settling on some terminology and notation.

A binary tree is either an atom or an ordered pair of two binary trees. The
atoms we most commonly use are numbers, characters, strings of characters,
and symbols. We will very occasionally include other atoms in our trees, namely
“pseudo-symbols.”

We consider the numbers, characters, strings, symbols and ordered pairs
to be five different types of objects, i.e., disjoint sets of objects.! The integer
one is different from the character that prints as “1” and is also different from
the character string containing that one character. We hope that is obvious.
Many readers may never have thought about the symbol whose name consists
of the single character “1”. But it exists (in the universe we are imagining) and
is distinct from the number, character, and string just mentioned. Finally, the
ordered pair whose first component is the integer 1 and whose second component
is, say, the number 0 is different from the other four objects.

We obviously need a way to write down these five objects. Here they are in
the notation we use:

e the integer one: 1

e the character “17: #\1

the string containing one “17: "1"

the symbol whose name is the above string: |1/
e the ordered pair containing 1 and 0: (1 . 0)

The above display probably raises more questions than it answers! But it
should bring home three points. First, five distinct mathematical objects are
shown. Second, they are all examples of binary trees (the first four are atomic,
the last is not). Third, we need to agree on a notation for binary trees.

Here is a display of more typical examples of these five different kinds of
objects:

1And we consider the pseudo-symbols to be a sixth type, not actually available in the
ACL2 implementation.



e numbers:

— integers: 123, -17
— rationals: 22/7, -127/128
— complex rationals: #c(3 1/2) (i.e., 3+ £4)

e characters: #\A, #\a, #\Space, #\,

e strings: "I am.", "She said \"Hi!\" once." (the character after the
word “said” is #\Space and the character after that is “string quote mark,”
#\n)

e symbols: X, NIL, A1, |al]| (the first character in this symbol’s name is a
lower-case “a”, not a vertical bar), LISP: :A1 (the first character in this
symbol’s name is an upper-case “A”; the “package name” of the symbol
is "LISP")

e lists and pairs: (1 2 3), ((ABC 1) (DEF 2)), (0 . 1)

We now discuss the notation for each of these types.

3.1 Numbers

Integers are written as sequences of digits. Base 10 is the most common one
used here. So 123 is the integer one hundred twenty three.

But we might also write numbers in binary (#b1111011), octal (#0173) or
hexadecimal (#x7B). In numeric notation, case is unimportant. So #B1111011
and #X7b are also integers. In fact, the same integer is shown in each of the
examples so far, namely 123.

The (optional) sign of a number is written immediately before the digit
sequence. Thus, -6 is #b-110 and also #o0-6.

We use typewriter font when we write integers and the other formal math-
ematical objects. In such expressions we are always referring to the object
denoted, not the particular string of glyphs chosen. For example, we might say
“#b1111100 is one larger than 123.” More likely we would say “124 is one larger
than 123” or “#b1111100 is one larger than #b1111011” but the point is that
we are not talking about the notation used but the integers denoted. We might
say “when we write 123 in binary as ‘41111011’ nine characters are written.”
When we talk about notation we generally enclose the notation in quotation
marks, as done above. But generally, except in this preamble, we do not talk
about notation, just the things denoted.

Rationals are written as optionally signed, possibly improper, fractions, with
a slash separating the “top” of the fraction from the “bottom.” Thus, -1/2
and 7/2 are rationals. We do not use “mixed notation” to write non-integer
rationals; that is, we will not again write 3% to mean 7/2.



We used the terms “top” and “bottom” above in reference to the parts of the
fractional notation. We use the terms “numerator” and “denominator” exclu-
sively in reference to rationals. The numerator and denominator of a rational r
are, respectively, the relatively prime integers ¢ and j (j > 0) such that r =i/j.

“5/10” is just another way to write 1/2. More bluntly, 5/10 is 1/2. The
numerator of 5/10 is 1 and the denominator is 2.

The integers are a subset of the rationals. “12/4” is another way to write 3.
More bluntly, 12/4 is 3. The denominator of 12/4 is 1.

Rationals can be written in binary, octal, or hexadecimal notation. -123/20
is #b-1111011/10100 and #0-173/24 and also #x-7B/14.

We also need a notation for certain complex numbers, namely the ones whose
real and imaginary parts are rationals. “#c(z y)”, where  and y are rationals,
is the way we write the complex number more commonly written « + yi. Of
course, if y is 0, the number denoted is the rational z. Thus, #c(123 0) is 123.

Following traditional mathematical usage, a “complex number” is any num-
ber of the form z + yi, for real  and y. Thus, the complex numbers include
the rationals and integers. But when we say a complex number is a “complex
rational” we mean its imaginary part is non-0. Thus, the rationals and the com-
plex rationals are disjoint. Together they constitute what we call the “ACL2
numbers” or simply the “numbers,” when the simpler term is not confusing.
The ACL2 numbers are a subset of the complex numbers.

Different bases may be used to write the two parts of an ACL2 complex
number. For example, #c(6 -17/10) is #c(#b110 #x-11/4).

3.2 Characters

Each character object has a “name” and a unique integer “character code.”
Character objects are written by writing a number sign, a backslash and then
the name of the character. The character names and their codes are shown in
Table 1. As indicated by our examples, some characters, like #\Space, have
names that are different from the glyph. In addition to the code for each char-
acter, Table 1 gives several other characteristics which are explained when we
discuss symbols.

Thus, for example, #\A is the character object whose code is 65, #\a is the
character with code 97, and #\Newline is the character with code 10. #\A is
a different object than #\a. Other than the fact that distinct characters have
distinct codes and the fact that characters are distinct from the other kinds of
objects, characters have no interesting properties.

The correspondence between characters and their codes is an extension of
the ASCII convention. Each character corresponds to a single (but perhaps
chorded) keystroke on a standard keyboard. While this document does not in
general try to deal with the practical issues of using ACL2 at your terminal,
note that the “control characters,” that is, those where 0 < code < 31 and name
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Table 1: The ACL2 Character Set
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is a caret followed by a letter, are generally typed by chording the “Control”
key and the key of the indicated letter.

We have informal names for some of the characters because the notation is
sometimes jarring.

o #\" (code 34): “string quote mark” or “double gritch,”

o #\# (code 35): “hash mark” or “number sign”

“quote mark” or “single gritch,”

code 92): “backslash”

):
):
):
o #\\ ):

(
(

e #\’ (code 39
(

e #\| (code 124): “vertical bar”

So we might say “a string quote should be preceded by a backslash” instead
of saying “#\" should be preceded by #\\.”

3.3 Strings

Character strings are delimited with string quote marks (#\") at each end. To
indicate that the string contains a string quote mark, you must precede each
such occurrence of string quote mark by a backslash. Similarly, to indicate
that the string contains a backslash you must precede each such occurrence of
backslash by a backslash. The number of characters in the string is called its
length.

Thus, "ABC" is a string of length three; the successive characters in it are
#\A, #\B, and #\C.

"A\"B" is also a string of length three; the successive characters in it are
#\A, #\", and #\B.

"A\\B" is also a string of length three; the successive characters in it are
#\A, #\\, and #\B.

3.4 Symbols

Symbols are the most complicated of our atoms, notationally. Technically, every
symbol is composed of two strings, the first called the package name and the
second called simply the name of the symbol. These two are generally separated
by two colons when we write symbols. For example, LISP: : ABC is a symbol. Its
package name is the string "LISP" and its name is the string "ABC".

The notation for symbols is complicated by three factors.

e The package name and colons can sometimes be omitted.

e The names of symbols (and indeed of packages) can consist of arbitrary
characters and thus can look like numbers, strings, etc.; a new “escape”
convention is required.
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e Some symbols are abbreviations for others, depending on the “package
system.”

Before discussing symbols further it is convenient to be precise about pack-
ages. A package is a pair consisting of a string, called the package name of the
package, and a finite sequence of symbols, called the imports list of the package.
No two symbols in the imports list may have the same name.

A package system is a finite sequence of packages, each of which has a unique
package name. Furthermore, the imports list of each package in the system may
only contain symbols whose package names are those of packages occurring
earlier in the package system sequence. Thus, the first package in the sequence
must have an empty imports list, the second package may only import symbols
from the first package, the third may import symbols from both of the first two,
etc.

The package system of a history, recall, is the initial package system in
Appendix A as extended chronologically by each of the DEFPKG events in the
history. The admissibility requirements on DEFPKG insure the invariants above
on the package names and imports lists. Among the packages in the initial
package system are three especially important ones, named "KEYWORD", "LISP",
and "ACL2".

The witness symbol for the package named p in a package system is a dis-
tinguished symbol whose package name is p. We explain how to construct the
witness symbol in Appendix A.

Recall that every history also has a designated “current package.” Here,
that package is the one named "ACL2".

When we write symbols, the package name and the colons may be omitted
as follows.

o If the package name of a symbol is "KEYWORD", it suffices to write just one
colon preceding the symbol’s name, e.g., :ABC is KEYWORD: : ABC, or less
bluntly, “:ABC” and “KEYWORD: :ABC” are two different notations for the
same symbol. The symbol in question has package name "KEYWORD" and
name "ABC".

o If the package name of a symbol is that of the current package, the package
name and both colons can be omitted, e.g., if the current package name is
"ACL2", then ABC is ACL2: : ABC. That is, (given the current package name)
the package name of ABC is "ACL2" and the name is "ABC".

In a way, the current package is to the notation for symbols what the “current
base” would be in the notation for numbers. One can imagine a math book
saying, “the numbers in this section are written in octal.” Such a remark would
affect one’s reading of all the numbers in the section. The designation of the
current package analogously affects how symbols are read and written.

Symbol names can be arbitrary strings of characters. The name of the
symbol ABC is "ABC". Since symbol names are arbitrary strings, there is a
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symbol with name "123". Clearly, that symbol is not 123, since 123 is an
integer, and it is not "123" because that is a string. The symbol whose name is
"123" is |123|. The symbol whose name is " |123|" is |\[123\||. That is, to
indicate a symbol whose name string contains a vertical bar, you must precede
the occurrence of the vertical bar by a backslash.

Every symbol name and package name could be delimited by vertical bars
(with the explicit vertical bars in the names being “escaped” with backslash
as above). That is, ABC is |ABC|, which is also |ACL2|::|ABC|. However,
by convention, we only write the vertical bars when, without them, the symbol
would be mistaken for a number or some other binary tree, or when the symbol’s
name has lower-case characters in it. More precisely, if the first character in the
symbol’s name string is one of those marked with n (for “numeric”) in Table 1
or the name string contains any of the characters marked with s (for “signs and
lower-case”), then the vertical bar notation is mandatory. Otherwise it may
be dropped; when the vertical bar notation is not used for a symbol, all the
alphabetic characters in its name are understood to be in upper-case.

The convention concerning case allows us to write a symbol in lower-case even
though all the alphabetic characters in its name are upper-case. For example,
abc is ABC. The symbol with name "abc" is |abc]|.

Technically, every symbol can be written down in the form Ipl::|namel,
where "p" is the name of a package and "name" is the name of the symbol.
(This statement must be understood in the context of the “backslash escape”
notation. For example, if "p" is " || |" then by “|p|” we mean “I\[\I\]]”.)

Finally, some symbols are abbreviations for others. This is akin to the
convention that “56/10” is just another way to write 1/2, or as we have said
before, 5/10 is 1/2. Similarly, ACL2: :NIL is LISP: :NIL. Why? What are the
rules for determining when two different notations denote the same symbol?

The fundamental idea involved in resolving the denotation of “z/y” is the
notion of relatively prime integers. The fundamental idea involved in resolving
the denotation of “|Ipl|::|namel” is the notion of importation, as specified by
the current package system.

ACL2: :NIL is LISP::NIL because the latter symbol is imported into the
"ACL2" package in the current package system. The list of symbols imported
into an ACL2 package is finite and fixed forever at the time the package is
admitted. The imports list is recorded with the package name in the package
system in the history. No two symbols with the same name may be imported
into a package and the package name of every symbol imported must have been
admitted earlier in the history. These invariants give us a simple algorithm for
resolving symbol notation.

To read fractional notation one must be able to answer the question “what
is the numerator and denominator of the denoted rational?” To read symbol
notation one must be able to answer the question “what is the package name
and name of the denoted symbol?”

The name of the symbol denoted by “Ipl::|namel” is the string "name".
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Here is how you determine the package name of the denoted symbol. Look
at the list of symbols declared imported when package "p" was admitted. If
none of them have the name "name", the package name of |pl::[namel is
the string "p". If, on the other hand, one of them, z, has the name "name",
then recursively determine the package name of z. This algorithm is finite and
deterministic because of the ACL2 importation rules.

What symbol is meant when we write “QUOTE” in this document? Obvi-
ously, some symbol with name "QUOTE", but which one? What is the package
name of QUOTE? The current package is understood here to be "ACL2", so here
QUOTE is ACL2: : QUOTE. Inspection of Appendix A and Appendix B reveals that
LISP: :QUOTE is imported into the "ACL2" package. So the package name of
ACL2: :QUOTE is the package name of LISP: :QUOTE. Inspection of Appendix A
again reveals that no symbols are imported into the "LISP" package. Thus,
the package name of LISP: : QUOTE, and hence of ACL2: :QUOTE and of QUOTE, is
"LISP".

Similarly, the package name of T is "LISP". The package name of NIL is
"LISP". But the package name of ABC, i.e., of ACL2::ABC, is "ACL2", because
no symbol with name "ABC" is imported into the "ACL2" package.

For typographic reasons, sometimes when we are speaking informally we
may break long symbols on hyphens or colons, e.g.,

The symbol *COMMON-LISP-SYMBOLS-FROM-MAIN--
LISP-PACKAGE* is defined in an Appendix.

provided the context permits an unambiguous interpretation. An extra hyphen
is added at the break.

3.5 Ordered Pairs

So far we have just talked about the “atoms” in our binary trees. How do we
write pairs? We seldom use the traditional notation for pairs, (z,y). Instead,
we use a more elaborate notation that is ultimately more succinct.

Consider an arbitrary ordered pair p containing z and y. One way to write it
is (z . y). But if y can be written in such parenthetical notation, e.g., (...),
then a more succinct way to write p is (z ...). Finally, one way to write NIL is
(), i.e., as an empty pair of parentheses.

For example, let p; be the pair whose first component is the symbol X and
whose second component is NIL. Then we could write p; as (X . NIL) or (X .
()) but we prefer the more succinct (X).

Now let ps be the pair whose first component is the integer 123 and whose
second component is p;. We can write py as (123 . (X)) but usually prefer
the more succinct (123 X).

Finally, let ps be the pair whose first component is ps and whose second
component is also ps. Then p3 can be written ((123 X) 123 X). It could also
be written ((123 X) . (123 X)), which might sometimes be preferred.
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A binary tree whose rightmost branch is n long and concludes with the atom

atm could be written (z; . (z2 . (... . (z, . atm)...))) but, us-
ing the more succinct notation above is most commonly written as (z; x2 ...
x, . atm). Such a tree is often called a “sequence” or “list” of “length” n.

Its “elements” are enumerated in the order shown, i.e., the first element is z;
and the last is z,,. In the special case that atm is NIL, we call the list a true list
and, of course, it can be written (z; z2 ... x,).

When we write ordered pairs we allow an arbitrary (non-empty) amount of
“whitespace” where we show spaces above. By whitespace we mean spaces, new
lines, and comments. A comment is text delimited on the left by a semi-colon
and on the right by the end of line.

Below we show the true list of length four containing, successively, the symbol
ABC, the list p3 above, the string "I am." and the symbol | (I am) |.

(ABC ; The first element of the sequence is a symbol.
; This is a comment.
((123 X) ; The second element is a list.
123
X)
"I am." ; The third is a string.
|(I am)| ; The fourth is a symbol.
; And now we close.

)

Finally, a binary tree of the form (QUOTE z), that is, a true list of length
two whose first element is the symbol QUOTE and whose second is some tree x,
may be abbreviated ’z.

Thus, for example, (H ABC (G X Y)) is (H (QUOTE ABC) (G X Y)) and
(H ’’ABC) is (H (QUOTE (QUOTE ABC))).

What ordered pair is > ?27 The answer is (QUOTE (QUOTE 2)), i.e., the true
list of length two whose first element is the symbol QUOTE and whose second
element is the true list of length two whose first element is the symbol QUOTE
and whose second element is the integer 2.

One might try to parse “?’2” as two binary trees, the first being and
the second being “2”. To proceed along these lines, “’’” would have to be
parsed as “(QUOTE ’)”. But “’” denotes no binary tree in our notation; in
particular, it is not how we write any number, character object, string, symbol
or list. If one is tempted to write “?” as a binary tree one is probably thinking of
the character #\’, the string "’ ", the symbol |’ | or perhaps the symbol QUOTE.
But “?” doesn’t denote a binary tree so “’?” cannot be seen as one either.

Wy,

3.6 S-Expressions

The notation we have just described for binary trees is that supported by Com-
mon Lisp. In Lisp parlance, a binary tree is called an s-expression (or symbolic
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expression). Henceforth, we use the term “s-expression” rather than “binary
tree.” But the reader should keep in mind that by s-expression we just mean a
very familiar and simple mathematical object: a binary tree of several kinds of
atoms.

We assume the reader is able to parse the notation so that when we exhibit an
s-expression the appropriate binary tree comes to mind. We assume no special
properties of the components, e.g., the characters or symbols, other than those
sketched above, namely how to read and write the different objects.

To talk about s-expressions it is convenient to use so-called metavariables
that are understood by the reader to stand for other s-expressions or their
components. We use typewriter font when we exhibit particular s-expressions
or components and italics when we exhibit metavariables.

For example, if f is understood to stand for the symbol CONS, and ¢ to stand
for the s-expression (CAR X), then by (f ¢ X) we mean the s-expression (CONS
(CAR X) X).

If nn is the integer 123 and we use Xn as a symbol, we mean the symbol X123.
This meta-convention arbitrarily adopts decimal notation. (A careful reader
once asked “If n is the integer #b1111011, doesn’t Xn mean |X#b1111011[7”)

This concludes our review of notation. We will now identify certain s-
expressions as “terms” in our formal logic and proceed to give the axioms and
rules of inference.

4 Formal Syntax

Note. In this section we describe the set of s-expressions that represent the
“terms” of our formal language. For those readers unfamiliar with the taxonomy
of traditional formal logical syntax: formulas are built out of terms, axioms are
formulas, and rules of inference allow us to manipulate formulas (sometimes by
manipulating the terms in them, as by replacing the variables by other terms).
The rules of inference are most clearly stated if the structure of formulas is very
simple. Thus we follow logical tradition when we describe a very simple term
language and then, in Section 6, extend it with a host of abbreviations so that
it is convenient to use.

Terminology. A symbol v is a variable symbol of our language unless prohibited
as below:

e Symbols marked with (*) in Appendix B are not variable symbols. This
prohibition means that T and NIL (among many others) are not variable

symbols.

e Symbols with package name "KEYWORD" are not variable symbols.
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constant comment

0 Zero

1 one

NIL false; empty list

STRING symbolic token

ACL2: :WITNESS ACL2 package witness symbol
LISP: :WITNESS LISP package witness symbol
KEYWORD: : WITNESS KEYWORD package witness symbol

ACL2-0UTPUT-CHANNEL: : WITNESS  ACL2-0UTPUT-CHANNEL package witness symbol
ACL2-INPUT-CHANNEL: : WITNESS ACL2-INPUT-CHANNEL package witness symbol
ACL2-PC: :WITNESS ACL2-PC package witness symbol

ACL2-USER: :WITNESS ACL2-USER package witness symbol

Table 2: The ACL2 Primitive Constants

e Symbols whose names start and end with the character #\* are not vari-
able symbols.

e Symbols whose names start with #\& are not variable symbols.

e Symbols with package name "LISP" that are not listed in Appendix B are
not variable symbols.

Terminology. A primitive formal constant is an s-expression of length two
whose first element is the symbol QUOTE and whose second element is one of the
integers or symbols listed in Table 2.

Examples. ’0 and >ACL2: :WITNESS are primitive formal constants. Perhaps
surprisingly, ’3 and ’ABC are not formal constants in our language. We have
chosen to keep the term structure exceedingly simple; in any given history,
the set of formal constants is finite. We introduce abbreviation conventions
allowing us to use other s-expressions, such as ’3 and ’ABC, as though they
were constants; in fact these abbreviations are “expanded” into formal terms
involving the formal constants above.

Terminology. A symbol f is a function symbol of our language unless prohib-
ited as below:

e Symbols with package name "KEYWORD" are not function symbols.

e Symbols with package name "LISP" are not function symbols unless they
are so defined in this document.

Terminology. Associated with every function symbol in a history A is a non-
negative integer called the arity of the symbol. The arity indicates how many
argument terms must follow each application of the function symbol. The arity
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function symbol
BINARY-*

BINARY-+

UNARY--

UNARY-/

<

BOOLEANP

CAR

CDR

CHAR-CODE
CHARACTERP
CODE-CHAR
COMPLEX
COMPLEX-RATIONALP
COERCE

CONS

CONSP
DENOMINATOR
EQUAL

IF

IMAGPART

INTEGERP
INTERN-IN-PACKAGE-OF-SYMBOL
NUMERATOR
RATIONALP
REALPART

STRINGP
SYMBOL-NAME
SYMBOL-PACKAGE-NAME
SYMBOLP

2
3
.
S

<

P HEHHRRRPRRERRNFEFREOENFRRONNERNRRFRRRRNDSFNDND

comment

multiplies two numbers

adds two numbers

negates a number

inverts a number

less than on the rationals
recognizes ’T and ‘NIL

first element of a list

all but first element of a list
maps characters to integers
recognizes characters

maps integers to characters
builds a complex from two rationals
recognizes a complex number
maps between character lists and strings
builds a list

recognizes a non-empty list
denominator of a rational
equality predicate

if-then-else

imaginary part of a complex
recognizes integers

maps a string to a symbol
numerator of a rational
recognizes rationals

real part of a complex
recognizes strings of characters
name of a symbol

package name of a symbol
recognizes symbols

Table 3: The ACL2 Primitive Function Symbols

e t is variable symbol;

of each primitive function symbol is given in Table 3, along with a brief descrip-
tive comment. Certain of our axioms, namely those labeled “(Def),” introduce
additional function symbols with equations that relate the new symbols to old
ones. Table 3 should be understood to be extended by appropriate entries for
these “defined” symbols.

Terminology. An s-expression t is a formal term of a history A if and only if

e ¢ is a primitive formal constant of h ; or

e ¢t is of the form (f t;...t,), where f is a function symbol with arity n in

the arity table of A and the ¢; are formal terms of h.

Examples. The following are formal terms (in every history h):
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(CONS X (CONS Y °NIL))
(BINARY-+ ’1 (BINARY-* U V))

(IF B
(BINARY-+ ’1
(BINARY-+ 1 1))
(CAR (CDR X)))

Terminology. A term ¢ is a call of f with arguments a4, ..., a, iff ¢ has the
form (f a; ... a,).

Terminology. If a term ¢ is a call of f we say f is the top function symbol of
t. A function symbol f is called in a term ¢t iff either ¢ is a call of f or ¢ is a
nonvariable, non-constant term and f is called in an argument of ¢. The set of
subterms of a term ¢ is {t} if ¢ is a variable symbol or constant and otherwise is
the union of {¢} together with the union of the subterms of the arguments of ¢.
The variables of a term ¢ is the set of variable subterms of ¢.

Examples. The term (CONS X Y) is a call of CONS with arguments X and Y.
CONS is called in (IF A (CONS X Y) B). The set of subterms of (CONS X Y) is
{(CONS X Y), X, Y}. The set of variables of (CONS X Y) is {X, Y}.

Terminology. A function symbol f is new in a history h iff f is called in no
axiom of h (except for the Propositional, Reflexivity, and Equality Axioms of
Section 5).

Terminology. A finite set o of ordered pairs is said to be a substitution pro-
vided that for each ordered pair (v,t) in o, v is a variable, ¢ is a term, and no
other member of ¢ has v as its first component. The result of substituting a
substitution o into a term or formula z, denoted z/o, is the term or formula
obtained by simultaneously replacing, for each (v,t) in o, each occurrence of v
as a variable in  with ¢. We sometimes say z/o is the result of instantiating x
with 0. We say that z’ is an instance of z if there is a substitution ¢ such that
z'isz/o.

Example. If 0 is {( X, (CAR L) ), (Y, Z ), ( G, FOO )} then o is a substitution.
If G is a function symbol of two arguments, then

(cons X Gy X))
is a term, which we shall here call p. Then p/o is the term
(cons (CAR L) (G z (CAR L))).

Note that even though the substitution contains the pair ( G, FO0 ) the occur-
rence of G in p was not replaced by F00 since the occurrence of G is not as a
variable.
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5 Propositional Calculus with Equality

Note. Our logic is built on top of traditional propositional calculus with equal-
ity. Any classical formalization of propositional calculus and equality will suit
our purposes. So that this document is self-contained we have included one such
formalization, namely that of Shoenfield [5]. Shoenfield formalizes propositional
calculus with one axiom schema and four rules of inference. He introduces equal-
ity with three axiom schemas. We then add the rule of instantiation in place of
the parts of [5] that refer to quantification, since our logic is quantifier-free.

Terminology. The pseudo-symbols are =, #, =, V, A, = and .

Note. The pseudo-symbols are not symbols as we have defined symbols. (The
careful reader will notice the difference between the pseudo-symbol = and
the symbol =.) We will use pseudo-symbols as atoms in a certain class of s-
expressions described below, called formulas.

Terminology. An atomic formula is any s-expression of the form (¢; = t3),
where ¢; and ¢y are terms. A formula is either an atomic formula, or else of the
form (—¢), where ¢ is a formula, or else of the form (¢1 V ¢2), where ¢; and ¢
are both formulas. Parentheses are omitted from formulas (but not from terms)
when no ambiguity arises.

Terminology. Generally, we use Greek letters as metavariables standing for
formulas. Greek letters, in particular “o”, are also used to stand for substitu-
tions.

Terminology. We extend the notion of “instance” in the natural way so that an
instance ¢/o of a formula ¢ under a substitution o is obtained by instantiating
every term in ¢ with o.

Abbreviation. When (¢; # t2) is used as a formula it is an abbreviation for the
formula (—(t; = t2)). When (¢; — ¢2) is used as a formula, it is an abbreviation
for (g1 V ¢2). When (¢1 A ¢2) is used as a formula, it is an abbreviation for
the formula —(=¢; V —¢2). When (¢; < ¢2) is used as a formula, it is an
abbreviation for the formula abbreviated by (¢1 — ¢2) A (d2 — ¢1).

Axiom Schema (the Propositional Aziom).

(¢ vV ¢)

Note. By this we mean to add such an axiom for every formula ¢.

Rules of Inference.
e Ezxpansion: derive (¢1 V ¢2) from ¢o;

e Contraction: derive ¢ from (¢ V ¢);
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o Associativity: derive ((¢1 V ¢2) V ¢3) from (¢p1 V (¢2 V ¢3)); and
e Cut: derive (g2 V ¢3) from (¢1 V ¢p2) and (—¢1 V ¢3).

Axiom Schema (Reflezivity).
(z = x)

Axiom Schema (Equality Azioms for Functions).
For every function symbol f of arity n we add:

(K1 = Y1) —
(%0 = Yn) —
(f X1 ... Xn) = (f Y1 ... Yn))..)

Axiom. (Equality Aziom for =)
(R1=Y1) — ((x2=Y2) — ((X1=X2) — (Yi=Y2)))).

Rule of Inference. Instantiation:
Derive ¢/o from ¢.

6 Primitive Macros

Terminology. When we write “pat =term” or say that “pat is an abbrevia-
tion for term” we mean that when an s-expression  matching pat is used where
a formal term is expected and the corresponding interpretation of term is (or
abbreviates) a formal term, ¢, then x should be read as t.

The formally inclined reader may prefer to think of this section as defining
a map, =, from a certain set of s-expressions (containing all terms and all
abbreviations of terms) to a subset of it (the set of terms). More precisely, =is
the transitive closure of the relation given below. Although =is a function, it
is not one-to-one; for example, we’ll see that both 2 and ’2 abbreviate the same
term, namely (BINARY-+ ’1 ’1).

Note. ACL2 provides a “macro” facility (derived from the one in Common Lisp
[7]) whereby the user can add abbreviations. In our implementation of ACL2
we add most of the abbreviations below as macros that expand as shown here.

Abbreviation. We use (AND p;...p,) to abbreviate certain formal terms as
indicated by the sequence of examples below.

e (AND) =—’T.

o (AND p;) =p1.
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(AND p; ps) = (IF p; p» ’NIL).

(AND p; p2 p3) = (IF p; (IF py p3 ’NIL) ’°NIL).

(AND P1 D2 P3 p4) :>(IF P1 (IF P2 (IF P3 P4 ’NIL) ’NIL) ’NIL).

e ctc.

Abbreviation. We use (OR p;...p,) to abbreviate certain formal terms as
indicated by the sequence of examples below.

e (OR) =—’NIL.

(O0R p1) =p1.

(OR p1 p2) = (IF p1 p1 p2).

(OR p1 p2 p3) = (IF p1 p1 (IF p2 p2 p3)).

(OR p1 p2 p3 pa) = (IF p1 p1 (IF p2 p> (IF p3 p3 pa))).

e ctc.
Abbreviation. We use (+ z;...z,) to abbreviate certain formal terms as in-
dicated by the sequence of examples below.

o (+) =’0.

e (+ 1) = (BINARY-+ ’0 z7).

e (+ 1 3) = (BINARY-+ 1 z5).

e (+ 1 T2 73) = (BINARY-+ z; (BINARY-+ 5 z3)).

o (+ 1 Ty T3 T4) =
(BINARY-+ z; (BINARY-+ z2 (BINARY-+ z3 24))).

e ctc.
Abbreviation. We use (* z...z,) to abbreviate certain formal terms as in-
dicated by the sequence of examples below.

o (¥) =1.

e (x 1) = (BINARY-* ’1 z7).

o (¥ z; xy) = (BINARY-* 1 ).

o (x z1 Ty x3) = (BINARY-* z; (BINARY-* z5 x3)).
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o (x x1 T2 T3 T4) =
(BINARY-* z; (BINARY-* z2 (BINARY-* 3 z4))).

e ctc.

Abbreviation.
e (- 1) — (UNARY-- z7).

o (- z; z3) = (BINARY-+ z; (UNARY-- 25)).

Abbreviation.
e (/ 1) — (UNARY-/ z1).
o (/ z1 T>) = (BINARY-* z; (UNARY-/ z,)).

Abbreviation. (LET ((v; a1) ... (v, an)) term) =
LETN{ 4y a1),...(vn,an)}> Where the v; are distinct variable symbols.

Abbreviation. ((LAMBDA (v; ... v,) term) aj ... a,) —
(LET ((v1 a1) ... (v, ayp)) term).

Abbreviation.
o (LET* () term) =term.
e (LET* ((vy a1) ...) term) —
(LET ((v; a1)) (LET* (...) term)).
Abbreviation.
e (COND) =’NIL.
e (COND (T z)) =z.

e (COND (p z) ...) = (IF p x (COND ...)), when pis not the s-expression
T.

Abbreviation.
e (LIST) —’NIL.

e (LIST z; ...) = (CONS z; (LIST ...)).

Abbreviation.
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e (LIST* z;) —x;.

e (LIST* x; z2 ...) —>(CONS z; (LIST* x5 ...)).

Examples. Thus, (LIST X Y Z) —(CONS X (CONS Y (CONS Z ’NIL))) while
(LIST* X Y Z) —(CONS X (CONS Y Z)).

Abbreviation.
o (<= z y) = (NOT (< y z)).
e Czy =Ky ).

e =1z y) =0T (K z y)).

Abbreviation.

e (CAAR z) —>(CAR (CAR x)).

e (CADR z) = (CAR (CDR z)).

e (CDAR z) —>(CDR (CAR =z)).

e (CDDR z) = (CDR (CDR z)).

e (CAAAR z) = (CAR (CAAR z)).

e (CAADR z) =—>(CAR (CADR z)).

o (CADAR z) =—>(CAR (CDAR z)).

e (CADDR z) = (CAR (CDDR z)).

o (CDAAR z) =—>(CDR (CAAR z)).

e (CDADR z) = (CDR (CADR z)).

o (CDDAR z) =—>(CDR (CDAR z)).

e (CDDDR z) = (CDR (CDDR z)).

o (CAAAAR z) = (CAR (CAAAR x)).
e (CAAADR z) = (CAR (CAADR x)).
e (CAADAR z) = (CAR (CADAR x)).
e (CAADDR z) — (CAR (CADDR z)).

o (CADAAR ) — (CAR (CDAAR z)).



o (CADADR z) = (CAR (CDADR z)).
e (CADDAR z) = (CAR (CDDAR z)).
o (CADDDR z) = (CAR (CDDDR z)).
e (CDAAAR z) = (CDR (CAAAR z)).
o (CDAADR z) = (CDR (CAADR z)).
o (CDADAR z) = (CDR (CADAR z)).
e (CDADDR z) = (CDR (CADDR z)).
o (CDDAAR z) = (CDR (CDAAR z)).
o (CDDADR z) = (CDR (CDADR z)).
o (CDDDAR z) = (CDR (CDDAR z)).

o (CDDDDR z) =—>(CDR (CDDDR z)).

7 Abbreviations for Quoted Constants

Note. It would be nice to be able to say that “((+ 2 2) = 4) is a theorem.”
But 2 and 4 are not formal terms. It is convenient to have a notation for repre-
senting “constants,” that is, variable-free terms constructed from the primitive
constants and function symbols. We now introduce abbreviation conventions
that codify the construction of all of the s-expressions built from numbers, char-
acters, strings and/or symbols. That is, if z is such an s-expression then the
rules below are sufficient to make ’z an abbreviation for a formal term.

Terminology.
o 2 —>(+ ’1 ’1).
e ’3 —=(+ "1 ’2).
e 74 —>(+ ’1 ’3).

e More generally, ’n, where n is an integer greater than 1, and n =m + 1,
abbreviates (+ 1 ’m).

o -1 —=>(- ’1).
o -2 —(- ’2).

o -3 —(- ’3).
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e More generally, ’-n, where n is a positive integer, abbreviates (- ’n).

e ’r where r is a non-integer rational with numerator ¢ and denominator
j (ie., r = i/j where i and j are relatively-prime integers and j > 1),
abbreviates (* i (/ ’j)).

e ’c, where c is a complex rational with real part  and imaginary part y,
abbreviates (COMPLEX ’z ’y).

Together with ’0 and ’1, the above terms are the numeric constants.

Example. ’4 abbreviates the formal term
(BINARY-+ ’1 (BINARY-+ ’1 (BINARY-+ ’1 ’1))).

The s-expression ’4/3 abbreviates (the same term as abbreviated by) (* ’4 (/
’3)). The s-expression ’#c(4 3) abbreviates (the same term as abbreviated
by) (COMPLEX ’4 ’3).

Abbreviation. ’char => (CODE-CHAR ’code), when char is a character object
with character code code. (See Table 1.) Such terms are the character constants.

Examples. *#\A is an abbreviation for (CODE-CHAR ’65). ’#\Newline is an
abbreviation for (CODE-CHAR ’10).

Abbreviation. ’string —-
(COERCE (LIST ’chari ... ’charyp) ’STRING)

when string is a string of length n containing, successively, the character objects
chary, ..., char,. Such terms are the string constants.

Example. "I am" is an abbreviation for
(COERCE (LIST ’#\I ’#\Space ’#\a ’#\m) ’STRING).
The term ’"Say \"Hi!\" Jo" is an abbreviation for

(COERCE (LIST ’#\S ’#\a ’#\y ’#\Space
PH#\" C#\H ’#\1i ’#\! ’#\" ’#\Space
*#\J ’#\o)
’STRING)

Abbreviation. ’symbol =

(INTERN-IN-PACKAGE-OF-SYMBOL ’name ’witness), when symbol is a symbol
not listed in Table 2, name is the name of symbol and 'witness is the witness
symbol (see below) for the package name of symbol. (Note that ’witness is
thus a primitive constant.) Together with the primitive constants other than
’0 and ’1, such terms are the symbol constants.

Example. The symbol constant ’ABC is an abbreviation for
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(INTERN-IN-PACKAGE-OF-SYMBOL °’"ABC" ’ACL2::WITNESS).
That is, in turn, an abbreviation for

(INTERN-IN-PACKAGE-OF-SYMBOL
(COERCE (LIST ’#\A ’#\B ’#\C)
?STRING)
»ACL2: :WITNESS)

which is an abbreviation for

(INTERN-IN-PACKAGE-OF-SYMBOL
(COERCE (LIST (CODE-CHAR ’65)
(CODE-CHAR ’66)
(CODE-CHAR ’67))
?STRING)
»ACL2: :WITNESS) .

We could, of course, further expand the integers above into the form (BINARY-+
’1 (BINARY-+ ’1 ...)). Furthermore, since the current package is ACL2 we
could write ?ACL2::WITNESS as simply *WITNESS but we chose to make the
package explicit since that is the role of the second argument of INTERN-IN--
PACKAGE-OF-SYMBOL.

Example. Since the ACL2 package is the current package, *T is ACL2::T. But
the symbol ACL2: : T is LISP:: T, since the symbol LISP: :T is imported into the
ACL2 package. Hence, the formal term abbreviated by °T is

(INTERN-IN-PACKAGE-OF-SYMBOL ’"T" °LISP::WITNESS).

Abbreviation. ’(s; sy ... s,) = (LIST ’s; ’S$3 ... ’S,).
Abbreviation. *(s; sy ... . 8,) = (LIST* ’s; ’S2 ... *S,_1 ’Sn).

Note. We appear to have given two conflicting abbreviation rules above. For
example the first can be applied directly to > (1 2) to produce (LIST ’1 ’2).
But the second can be applied to > (1 2) also if we first write that s-expression
equivalently as >(1 2 . NIL). This produces the term (LIST* ’1 ’2 ’NIL).
Which is meant? The answer is that it doesn’t matter: the two “terms” are
abbreviations for the same term.

Note. The foregoing abbreviations, together with the primitive constants of
Table 2, suffice to allow us to write >z as a term, for all s-expressions x composed
of the numeric, character, string or symbol atoms. It is convenient to allow the
single quote mark to be dropped in certain cases where ambiguity does not arise.

Abbreviation.

o T —>'T.
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e NIL —’NIL.

keyword =’ keyword, when keyword is a symbol whose package name
is "KEYWORD".

e n —>’n, when n is a number.
e char = ’char, when char is a character.

e string —>’string, when string is a string.

Note. If we were to drop the single quote mark on an arbitrary symbol, allowing
ABC to be an abbreviation for ’ABC, then ambiguity results because ABC is a
formal term, namely a variable symbol. Similarly, if we were to drop the single
quote mark on lists, allowing (CAR X) to be an abbreviation for > (CAR X), then
ambiguity might result since some lists are formal terms.

Example. It is clarifying of our conventions to consider what is meant when
?22 is used as a term. To use ’’2 as a term is to imply it is an s-expression.
Recall that the s-expression ’’2 is (QUOTE (QUOTE 2)).

So what term is abbreviated by ’’27 The answer is (CONS ’QUOTE (CONS
2 ’NIL)):?

’?2 s the same as

> (QUOTE 2) which abbreviates

(LIST ’QUOTE ’2) which abbreviates
(CONS ’QUOTE (CONS ’2 °NIL))

where ?QUOTE and ’2 could be further expanded, though we stop here.

These abbreviation conventions are compatible with those of Common Lisp
[7]. Some newcomers to Lisp mistake ’’2 as just another way to write 2, arguing
“you can drop the quote marks before numbers.” This reasoning is incorrect.
An accurate reading of “n =>’n, when n is a number” is that you can drop
the quote marks before a number when the number is used as a term. But in
222 the 2 is not being used as a term, it is just a component of the s-expression
722, Tt is the s-expression ’’2 that is being used as a term.

Another mistake is to read ’’2 as > (BINARY-+ ’1 ’1). The specious rea-
soning here is to first expand ’2 into “the term it abbreviates.” But again, ’2
abbreviates (BINARY-+ ’1 ’1) only when ’2 is used as a term and ’2 is not
used as a term in ’°’2.

2Technically, since neither of these s-expressions is a formal term, we should say that they
both abbreviate the same formal term.
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8 Abbreviations for Constant Symbols

Note. The conventions above allow us to write terms such as (CONS X ’(A
B)) in which quoted constants appear. Because quoted constants can be quite
large it is convenient to be able to give them names. For example, if the symbol
*LST* were understood to be ’ (A B) then the above term could be written as
(CONS X #LST#). This could be accomplished by adding the new abbreviation
convention *LST* —’ (A B). This would make the symbol *LST* look like a
“global” variable symbol with a fixed value. Such a convention is unambiguous
because the symbol *LST* is not a variable symbol (its name begins and ends
with #\*) and so that symbol does not already have a meaning as a formal term.
We now make a convention by which the user can add such abbreviations. In
particular, the event (DEFCONST *LST* ’ (A B)) would add the abbreviation
“*LST* —>’ (A B).”

Terminology. A symbol v is a constant symbol of our language if the first and
last character in its name is #\* and the package name of the symbol is neither
"KEYWORD" nor "LISP".

Terminology. A term ¢ is evaluable (in an implicit history h) iff there is an
s-expression v such that (¢t = ’v) is a theorem (in h). We call any such v a
value of t. Unless the history is inconsistent, there is at most one value for any
term.

Note. We can define a subset of the evaluable terms syntactically, namely
those terms containing no variables such that every function symbol called is
syntactically evaluable in h. A function is syntactically evaluable in a history
if it is one of the symbols axiomatized here or was introduced into the history
with the definitional principle (cf. Section 14) and every function symbol called
in its body is evaluable.

A call-by-value interpreter will compute the value of any syntactically evalu-
able term (given sufficient stack and memory resources). A defined function
fails to be evaluable when it is defined in terms of a constrained (i.e., unde-
fined) function. The implementation of ACL2 can, in addition, determine the
value of certain other evaluable terms, namely those for which the call-by-value
interpreter never encounters an undefined function.

To prove that there is at least one value for the syntactically evaluable terms,
one shows how the axioms of the logic can be used to “compute,” i.e., to reduce
every evaluable term into a formal term that can be abbreviated by ’v, for some
s-expression v. To prove that there is at most one such constant one must prove
that if two quoted s-expressions can be proved equal then the two s-expressions
are identical. We do not give the proofs here. However, we illustrate the idea.

When we use an s-expression as an evaluable term we are of course using it
as a term, and hence the abbreviation rules for terms apply. So for example,
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if we say “(LIST 1 2) is an evaluable term” we mean that the formal term it
abbreviates is an evaluable term.

Examples. (+ 2 2) is an evaluable term. Note that it abbreviates the formal
term (BINARY-+ (BINARY-+ ’1 ’1) (BINARY-+ ’1 ’1)). Using the axiom of
the associativity of BINARY-+ we can prove this term equal to (BINARY-+ 1
(BINARY-+ ’1 (BINARY-+ ’1 ’1))), which may be written as ’4. Thus, the
value of the evaluable term (+ 2 2) is 4. Here is another example. (CONS (+
2 2) 3) is an evaluable term. Its valueis (4 . 3).

Event.

(DEFCONST name
term)

Admissibility Requirements.

For this event to be admissible in a history kA, name must be a constant symbol
that has not already been assigned a value as an abbreviation in h and term
must be evaluable in A.

Syntactic Extension.
If admissible, then add to the abbreviations of A the abbreviation name ="v,
where v is the value of term in h.

Axziomatic Extension.
No new axioms are added by this event.

In Appendices B and C we give the definitions of three new constant symbols,
e *COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*,

e *COMMON-LISP-SPECIALS-AND-CONSTANTS*, and

o *xACL2-EXPORTS*.

Each is a true list of symbols.

9 Axioms

Note. In this draft of the document, there are four changes to the axioms
presented in the draft dated “January, 1997.” Axiom 10 has been modified so
that it additionally declares that < is a Boolean function. Second, Axiom 60
has been modified so that it additionally declares that SYMBOL-NAME returns a
STRINGP. Axioms 79.1 and 79.2 have been added, defining the function symbols
ATOM and MAKE-CHARACTER-LIST. The latter function symbol is used in Axiom
80 but was left undefined in the previous draft. Finally, Axiom 95 has been
modified to say that ACL2-COUNT returns a nonnegative INTEGERP.
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Note. We now present the axioms of ACL2. The axioms essentially specify
the value of every evaluable term. These axioms are alleged to be consistent
with Common Lisp, with two major caveats. First, certain “predicates” in
ACL2 are assumed to be Boolean valued while Common Lisp does not require
that. We discuss this briefly in Subsection 9.2. Second, Common Lisp functions
are only partially defined, i.e., defined on a subset of the possible arguments.
ACL2 “completes” the definitions by providing “default” values for arguments
of “unexpected type.” See Subsection 9.8.

9.1 Basics

Axiom 1.
T # NIL

Axiom 2.
X =Y — (EQUAL X Y)

Il
3

Axiom 3.

X #Y — (EQUAL X Y) NIL

Axiom 4.
X =NIL —» (IF XY 2)

I
N

Axiom 5.
X#NIL—) (IFXYZ) =Y.

Axiom 6.
(NOT P) = (IF P NIL T)

Axiom 7.
(IMPLIES P Q) = (IF P (IFQ T NIL) T)

Axiom 8.
(IFF P Q) = (AND (IMPLIES P Q) (IMPLIES Q P))

Abbreviation. When we refer to a term ¢ as a formula, one should read in
place of ¢ the formula ¢ # NIL.
Example. If P, Q, F and G are function symbols of the indicated arity, then

(IMPLIES (AND (P X) (Q Y))
(EQUAL (F X Y) (G X Y))),

is a term. If that term is used where a formula is expected (e.g., in the allegation
that it is an axiom or a theorem), then it is to be read as the formula
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(IMPLIES (AND (P X) (Q Y))
(EQUAL (F X Y) (G X Y)))
+

NIL.

Given the foregoing axioms and the rules of inference of propositional calculus
and equality, the above formula can be shown equivalent to

((P X)#’NIL A (Q Y)#’NIL) =(F X )=(G X Y)
which, following the same abbreviation convention, we can write as

(PX>A@Q@Y) - FXY)=(GIXY).

9.2 Boolean Valued Functions

Axiom 9.

(BOOLEANP X)

(IF (EQUAL X T)
T
(EQUAL X NIL))

Axiom 10.

(AND (BOOLEANP (COMPLEX-RATIONALP X))
(BOOLEANP (RATIONALP X))
(BOOLEANP (INTEGERP X))
(BOOLEANP (EQUAL X Y))

(BOOLEANP (CONSP X))
(BOOLEANP (SYMBOLP X))
(BOOLEANP (STRINGP X))
(BOOLEANP (CHARACTERP X))
(BOOLEANP (< X Y)))

Note. The Common Lisp definition [7] does not specify that these functions
are Boolean. Instead, it says that they are “predicates.” Then we learn (cf. [7],
page 95), “One may think of a predicate as producing a Boolean value, where
nil stands for false and anything else stands for true.” And finally, “If no better
non-nil value is available for the purpose of indicating success, by convention
the symbol t is used as the ‘standard’ true value.” We are unaware of any
Common Lisp implementation that does not in fact obey the axiom above. But
as the implementation of ACL2 now stands, it does not accurately model those
(hypothetical) Common Lisp implementations that use non-standard indicators
of success for these predicates.
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9.3 Disjointness

Axiom 11 (Def).

(ACL2-NUMBERP X)

(OR (COMPLEX-RATIONALP X)
(RATIONALP X))

Axiom 12.
(AND (IMPLIES (COMPLEX-RATIONALP X) (NOT (RATIONALP X)))

(IMPLIES (RATIONALP X) (NOT (COMPLEX-RATIONALP X))))
Axiom 13.

(IMPLIES (INTEGERP X) (RATIONALP X))

Axiom 14.

(AND (IMPLIES (ACL2-NUMBERP X) (NOT (CHARACTERP X)))
(IMPLIES (ACL2-NUMBERP X) (NOT (CONSP X)))
(IMPLIES (ACL2-NUMBERP X) (NOT (STRINGP X)))
(IMPLIES (ACL2-NUMBERP X) (NOT (SYMBOLP X)))
(IMPLIES (CHARACTERP X) (NOT (ACL2-NUMBERP X)))
(IMPLIES (CHARACTERP X) (NOT (CONSP X)))
(IMPLIES (CHARACTERP X) (NOT (STRINGP X)))
(IMPLIES (CHARACTERP X) (NOT (SYMBOLP X)))

(IMPLIES (CONSP X) (NOT (ACL2-NUMBERP X)))
(IMPLIES (CONSP X) (NOT (CHARACTERP X)))
(IMPLIES (CONSP X) (NOT (STRINGP X)))
(IMPLIES (CONSP X) (NOT (SYMBOLP X)))
(IMPLIES (STRINGP X) (NOT (ACL2-NUMBERP X)))
(IMPLIES (STRINGP X) (NOT (CHARACTERP X)))
(IMPLIES (STRINGP X) (NOT (CONSP X)))
(IMPLIES (STRINGP X) (NOT (SYMBOLP X)))
(IMPLIES (SYMBOLP X) (NOT (ACL2-NUMBERP X)))
(IMPLIES (SYMBOLP X) (NOT (CHARACTERP X)))
(IMPLIES (SYMBOLP X) (NOT (CONSP X)))
(IMPLIES (SYMBOLP X) (NOT (STRINGP X))))

9.4 Arithmetic

Axiom 15.

(AND (ACL2-NUMBERP (+ X Y))
(ACL2-NUMBERP (* X Y))
(ACL2-NUMBERP (- X))
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(ACL2-NUMBERP (/ X)))

Axiom 16.
(EQUAL (+ (+ X Y) Z) (+ X (+Y 2)))

Axiom 17.
(EQUAL (+ X Y) (+ Y X))

Axiom 18 (Def).
(FIX X)

(IF (ACL2-NUMBERP X) X 0)

Axiom 19.
(EQUAL (+ 0 X) (FIX X))

Axiom 20.
(EQUAL (+ X (- X)) 0)

Axiom 21.
(EQUAL (* (* X Y) Z) (xX (xY 2)))

Axiom 22.
(EQUAL (* X Y) (¢ Y X))

Axiom 23.
(EQUAL (* 1 X) (FIX X))

Axiom 24.

(IMPLIES (AND (ACL2-NUMBERP X)
(NOT (EQUAL X 0)))
(EQUAL (x X (/ X)) 1))

Axiom 25.
(EQUAL (* X (+ Y 2))
(+ (xXY) (x X 2)))

Axiom 26.
(EQUAL (< X Y)
&+ X1 0)

Axiom 27.
(NOT (< 0 0))

Axiom 28.
(AND
(IMPLIES (ACL2-NUMBERP X)
(OR (< 0 X)
(EQUAL X 0)
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<0 -3NN
(OR (NOT (< 0 X))
(NOT (< 0 (- )N

Axiom 29.

(AND (IMPLIES (AND (< 0 X) (< 0 Y))
o H+XxXVMN
(IMPLIES (AND (RATIONALP X)
(RATIONALP Y)
(< 0X)
01
(0o (xxX1VN)

Axiom 30.

(IMPLIES (RATIONALP X)
(AND (INTEGERP (DENOMINATOR X))
(INTEGERP (NUMERATOR X))
(< 0 (DENOMINATOR X))))

Axiom 31.

(IMPLIES (RATIONALP X)
(EQUAL (* (NUMERATOR X) (/ (DENOMINATOR X))) X))

Axiom 32.

(AND (RATIONALP (REALPART X))
(RATIONALP (IMAGPART X)))

Axiom 33.

(IMPLIES (AND (RATIONALP X)
(RATIONALP Y))
(EQUAL (COMPLEX X Y)
(+ X (x #C(0 1) Y))))

Axiom 34.
(EQUAL (* #C(0 1) #C(0 1)) -1)

Axiom 35.

(IMPLIES (COMPLEX-RATIONALP X)
(NOT (EQUAL O (IMAGPART X))))

Axiom 36.

(IMPLIES (ACL2-NUMBERP X)
(EQUAL (COMPLEX (REALPART X) (IMAGPART X)) X))

Axiom 37.

(IMPLIES (AND (RATIONALP X)
(RATIONALP Y))
(EQUAL (REALPART (COMPLEX X Y))
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1 9))

Axiom 38.
(IMPLIES (AND (RATIONALP X)
(RATIONALP Y))

(EQUAL (IMAGPART (COMPLEX X Y))

¥))

Axiom 39.
(IMPLIES (RATIONALP X)
(<=0 (*x X X)))

Axiom 40.
(INTEGERP 0)

Axiom 41.
(INTEGERP 1)

Axiom 42.
(< 01)

Axiom 43.
(IMPLIES (INTEGERP X)
(AND (INTEGERP (+ X 1))
(INTEGERP (+ X -1))))

Axiom 44.

(IMPLIES (AND (INTEGERP N)
(RATIONALP X)
(INTEGERP R)
(INTEGERP Q)
(< 0N

(EQUAL (NUMERATOR X) (* N R))
(EQUAL (DENOMINATOR X) (* N Q)))

(EQUAL N 1))

9.5 Lists

Axiom 45.
(CONSP (CONS X Y))

Axiom 46.
(IMPLIES (CONSP X)

(EQUAL (CONS (CAR X) (CDR X)) X))

Axiom 47.
(EQUAL (CAR (CONS X Y)) X)

Axiom 48.
(EQUAL (CDR (CONS X Y)) Y)



9.6 Characters and Strings

Axiom 49.

(AND (INTEGERP (CHAR-CODE X))
(<= 0 (CHAR-CODE X))
(< (CHAR-CODE X) 258))

Axiom 50.

(CHARACTERP (CODE-CHAR N))

Axiom 51.

(IMPLIES (CHARACTERP C)
(EQUAL (CODE-CHAR (CHAR-CODE C)) C))

Axiom 52.

(IMPLIES (AND (INTEGERP N)
(<= 0 N)
(< N 256))

(EQUAL (CHAR-CODE (CODE-CHAR N)) N))

Axiom 53 (Def).

(CHARACTER-LISTP 1)

(IF (CONSP L)
(AND (CHARACTERP (CAR L))
(CHARACTER-LISTP (CDR L)))
(EQUAL L NIL))

Axiom 54.

(IMPLIES (CHARACTER-LISTP X)
(EQUAL (COERCE (COERCE X ’STRING) ’LIST) X))

Axiom 55.

(IMPLIES (STRINGP X)
(EQUAL (COERCE (COERCE X ’LIST) ’STRING) X))

Axiom 56.

(STRINGP (COERCE X ’STRING))

Axiom 57.

(CHARACTER-LISTP (COERCE X °’LIST))
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9.7 Symbols
Axiom 58.

(AND
(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

*KEYWORD: : WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
*KEYWORD: : WITNESS))
(SYMBOL-PACKAGE-NAME ’KEYWORD: :WITNESS)
"KEYWORD")
*LISP: :WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
’LISP::WITNESS))
(SYMBOL-PACKAGE-NAME ’LISP::WITNESS)
"LISP")
»ACL2: :WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
?ACL2: :WITNESS))
(SYMBOL-PACKAGE-NAME ’ACL2::WITNESS)
"ACL2")
’ ACL2-0UTPUT-CHANNEL: : WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
’ ACL2-0UTPUT-CHANNEL: : WITNESS) )
(SYMBOL-PACKAGE-NAME ’ACL2-0UTPUT-CHANNEL: : WITNESS)
"ACL2-0UTPUT-CHANNEL")
’ ACL2-INPUT-CHANNEL: : WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
» ACL2-INPUT-CHANNEL: : WITNESS) )
(SYMBOL-PACKAGE-NAME ’ACL2-INPUT-CHANNEL: :WITNESS)
"ACL2-INPUT-CHANNEL")
’ ACL2-PC: :WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
?ACL2-PC: :WITNESS))
(SYMBOL-PACKAGE-NAME ’ACL2-PC: :WITNESS)
"ACL2-PC")
’ ACL2-USER: : WITNESS
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"
» ACL2-USER: : WITNESS))
(SYMBOL-PACKAGE-NAME °’ACL2-USER: :WITNESS)
"ACL2-USER"))

Axiom 59.

(AND
(EQUAL

(EQUAL

*LISP: :NIL

(INTERN-IN-PACKAGE-OF-SYMBOL "NIL"
’LISP::WITNESS))

*LISP: :STRING

(INTERN-IN-PACKAGE-OF-SYMBOL "STRING"
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’LISP::WITNESS)))

Axiom 60.

(AND (STRINGP (SYMBOL-NAME X))
(STRINGP (SYMBOL-PACKAGE-NAME X)))

Axiom 61.
(SYMBOLP (INTERN-IN-PACKAGE-OF-SYMBOL X Y))

Axiom 62.

(IMPLIES (AND (SYMBOLP X)
(EQUAL (SYMBOL-PACKAGE-NAME X) (SYMBOL-PACKAGE-NAME Y)))
(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL (SYMBOL-NAME X) Y) X))

Axiom 63.

(IMPLIES (AND (STRINGP X)
(SYMBOLP Y))
(EQUAL (SYMBOL-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y)) X))

Axiom 64.

(IMPLIES (AND (STRINGP X)
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y)
"ACL2-INPUT-CHANNEL"))
(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
"ACL2-INPUT-CHANNEL"))

Axiom 65.

(IMPLIES (AND (STRINGP X)
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y)
"ACL2-0UTPUT-CHANNEL"))
(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
"ACL2-0UTPUT-CHANNEL"))

Axiom 66 (Def).
(MEMBER-SYMBOL-NAME STR L)

(COND ((NOT (CONSP L)) NIL)
((EQUAL STR (SYMBOL-NAME (CAR L))) L)
(T (MEMBER-SYMBOL-NAME STR (CDR L))))

Axiom 67.
(IMPLIES (AND (STRINGP X)
(NOT (MEMBER-SYMBOL-NAME
X

*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*))
(SYMBOLP Y)
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(EQUAL (SYMBOL-PACKAGE-NAME Y) "ACL2"))
(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
"ACL2") )

See Appendix B for the definition of the constant symbol *COMMON-LISP--
SYMBOLS-FROM-MAIN-LISP-PACKAGE*,
Axiom 68.
(IMPLIES (AND (MEMBER-SYMBOL-NAME
X
*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*)
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y) "ACL2"))
(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL X Y)
(CAR (MEMBER-SYMBOL-NAME
X
*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*))))

Axiom 69.
(IMPLIES (AND (STRINGP X)
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y)
"KEYWORD"))
(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
"KEYWORD"))

Axiom 70.
(IMPLIES (AND (STRINGP X)
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y) "LISP"))
(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
"LISP"))

9.8 Completions

Note. What is the value of (+ T 5)7 This is (an abbreviation of) a well-formed
term involving only the primitive functions and no variables. Common Lisp does
not specify a value for this term, but ACL2 provides one. The first axiom below
makes this term proveably equal to (+ 0 5) and can be viewed as “coercing”
the arguments of + to ACL2 numbers by defaulting non-numbers to 0.
Axiom 71.
(EQUAL (+ X Y)
(IF (ACL2-NUMBERP X)
(IF (ACL2-NUMBERP Y)
+X1
X)
(IF (ACL2-NUMBERP Y)
Y

40



0)))

Axiom 72.
(EQUAL (* X Y)
(IF (ACL2-NUMBERP X)
(IF (ACL2-NUMBERP Y)
(* XY)
0)
0))

Axiom 73.
(EQUAL (- X)
(IF (ACL2-NUMBERP X)
- X)
0))

Axiom 74.
(EQUAL (/ X)
(IF (AND (ACL2-NUMBERP X)
(NOT (EQUAL X 0)))
/ X)
0))

Axiom 75.
(EQUAL (< X Y)
(IF (AND (RATIONALP X)
(RATIONALP Y))
KXy
(LET ((X1 (IF (ACL2-NUMBERP X) X 0))
(Y1 (IF (ACL2-NUMBERP Y) Y 0)))
(OR (< (REALPART X1) (REALPART Y1))
(AND (EQUAL (REALPART X1) (REALPART Y1))
(< (IMAGPART X1) (IMAGPART Y1)))))))

Axiom 76.
(EQUAL (CAR X)
(IF (CONSP X) (CAR X) NIL))

Axiom 77.
(EQUAL (CDR X)
(IF (CONSP X) (CDR X) NIL))

Axiom 78.
(EQUAL (CHAR-CODE X)
(IF (CHARACTERP X)
(CHAR-CODE X)
0))

Axiom 79.
(EQUAL (CODE-CHAR X)
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(IF (AND (INTEGERP X)
(>= X 0)
(< X 256))
(CODE-CHAR X)
(CODE-CHAR 0)))

Axiom 80.

(EQUAL (COMPLEX X Y)
(COMPLEX (IF (RATIONALP X) X 0)
(IF (RATIONALP Y) Y 0)))

Axiom 80.1 (Def).
(ATOM X)

(NOT (CONSP X))

Axiom 80.2 (Def).
(MAKE-CHARACTER-LIST X)

(COND ((ATOM X) NIL)
((CHARACTERP (CAR X))
(CONS (CAR X)
(MAKE-CHARACTER-LIST (CDR X))))
(T (CONS (CODE-CHAR 0)
(MAKE-CHARACTER-LIST (CDR X)))))

Axiom 81.

(EQUAL (COERCE X Y)
(IF (EQUAL Y °LIST)
(IF (STRINGP X)
(COERCE X °’LIST)
NIL)
(COERCE (MAKE-CHARACTER-LIST X) ’STRING)))

Axiom 82.

(EQUAL (DENOMINATOR X)
(IF (RATIONALP X)
(DENOMINATOR X)
1))

Axiom 83.

(EQUAL (IMAGPART X)
(IF (ACL2-NUMBERP X)
(IMAGPART X)
0))

Axiom 84.
(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL X Y)
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(IF (AND (STRINGP X)
(SYMBOLP Y))
(INTERN-IN-PACKAGE-OF-SYMBOL X Y)
NIL))

Axiom 85.
(EQUAL (NUMERATOR X)
(IF (RATIONALP X)
(NUMERATOR X)
0))

Axiom 86.
(EQUAL (REALPART X)
(IF (ACL2-NUMBERP X)
(REALPART X)
0))

Axiom 87.
(EQUAL (SYMBOL-NAME X)
(IF (SYMBOLP X)
(SYMBOL-NAME X)
" II) )

Axiom 88.
(EQUAL (SYMBOL-PACKAGE-NAME X)
(IF (SYMBOLP X)
(SYMBOL-PACKAGE-NAME X)
uu))

10 The Ordinals

Note. Using the nonnegative integers and lists we can represent the ordinals up
to eg. (For readers familiar with ordinals: €p is the first infinite ordinal that is
closed under ordinal exponentiation.) The ACL2 notion of ordinal is the same as
that found in [1] and both are very similar to the development given in [2]. The
following notes are only intended to provide some intuition about ordinals. We
ultimately axiomatize two functions below, EO-ORDINALP and EO-ORD-<, which
formalize the concepts.

Very intuitively, think of each non-zero natural number as by being denoted
by a series of the appropriate number of strokes, i.e.,

ordinal

0

1 |
2 [
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w

11
L1
Then w is the ordinal that might be written as | | ..., i.e., an infinite number of
strokes.

Addition here is just concatenation. Observe that adding one to the front of
w produces || ]... or w again, which gives rise to a standard definition of w: the
least ordinal such that adding another stroke at the beginning does not change
the ordinal.

We denote by w + w or w x 2 the “doubly infinite” sequence that we might
write as

wx?2 [ P

One way to think of w x 2 is that it is obtained by replacing each stroke in the
representation of 2 (i.e., ||) by w. Thus, one can imagine w X 3, w X 4, etc.,
which leads ultimately to the idea of w X w, the ordinal obtained by replacing

each stroke in w by w. This is also written as w?, or:

w? VLo 1 e T e 1T e T L

or

w2 www ...

We can analogously construct w?® by replacing each stroke in w by w? (which,
it turns out, is the same as replacing each stroke in w? by w). That is, we can
construct w® as w copies of w?,

w3 w? w? Ww? ..

4 5

Then we can construct w* as w copies of w3, w® as w copies of w*, etc.,
ultimately suggesting w®. We can then stack ws, i.e., w“’w,__etc. Consider the
“limit” of all of those stacks, which we might display as w*” . That ordinal is
called ¢g.

It is possible to construct a sequence of s-expressions in 1:1 correspondence
with the ordinals up to €y. In Table 4 we list some of the ordinals up to €g;
the reader can fill in the gaps at his or her leisure. (!) We show in the left
column the conventional notation and in the right column the corresponding
s-expression.

Each of the s-expressions in the right-hand column of Table 4, when quoted,
represents a constant in ACL2 and in that sense the logic contains a repre-
sentation of each ordinal up to ¢g. The function EO-ORDINALP, defined below,
recognizes these ordinals. Readers familiar with ordinals will find it useful to
realize that what we are really doing is mapping s-expressions to ordinals by the
map f defined as the identity on atoms and extended to pairs as follows, using
“4” to denote ordinal addition: f((A.B)) = w/® + f(B).
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ordinal s-expression

0 0

1 1

2 2

3 3

w (1. 0)

w+1 (1. 1)

w+ 2 1. 2)
wX2=w++w (11. 0)
(wx2)+1 (11. 1)
WwX3=w+wx2 (111. 0)
(wx3)+1 111. 1)
w? (2. 0)
w+wx4+3 (21111. 3)
w3 (3. 0

w¥ (1. 0. 0

W+ w¥+wx44+3 (1. 0)991111. 3)
w¥ (2. 0 . 0

wY (. o). 0. 0

Table 4: Some Ordinals in ACL2

45



Observe that the sequence of s-expressions starts with the nonnegative inte-
gers. That is, the natural numbers are ordinals. Thus, if we require that a given
term be proved to produce an ordinal (as we do in the induction principle) then
it suffices to prove that the term produces a natural number.

Axiom 89 (Def).
(EO-ORD-< X Y)

(IF (CONSP X)
(IF (CDNSP Y)
(IF (EO-ORD-< (CAR X) (CAR Y))
T
(IF (EQUAL (CAR X) (CAR Y))
(EO-ORD-< (CDR X) (CDR Y))

NIL))
NIL)
(IF (CONSP Y)
T

(< (IF (RATIONALP X) X 0)
(IF (RATIONALP Y) Y 0))))

The ordinals in Table 4 are listed in ascending order. This ordering is rec-
ognized by the function EO-ORD-<, defined above. Fundamental to ACL2 is
the fact that EO-ORD-< is well-founded on EO-ORDINALPs. That is, there is no
“infinitely descending chain” of such ordinals.

Axiom 90 (Def).
(EO-ORDINALP X)

(IF (CONSP X)
(AND (EO-ORDINALP (CAR X))
(NOT (EQUAL (CAR X) 0))
(EO-ORDINALP (CDR X))
(OR (NOT (CONSP (CDR X)))
(NOT (EO-ORD-< (CAR X) (CADR X)))))
(AND (INTEGERP X) (>= X 0)))

10.1 Measures

Axiom 91 (Def).
(LEN X)

(IF (CONSP X)
(+ 1 (LEN (CDR X)))
0)

Axiom 92 (Def).
(LENGTH X)
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(IF (STRINGP X)
(LEN (COERCE X ’LIST))
(LEN X))

Axiom 93 (Def).
(INTEGER-ABS X)
(IF (INTEGERP X)
(IF <k X0) (-X) X)
0)

Axiom 94 (Def).
(ACL2-COUNT X)
(IF (CONSP X)
(+ 1 (ACL2-COUNT (CAR X))
(ACL2-COUNT (CDR X)))
(IF (RATIONALP X)
(IF (INTEGERP X)
(INTEGER-ABS X)
(+ (INTEGER-ABS (NUMERATOR X))
(DENOMINATOR X)))
(IF (COMPLEX-RATIONALP X)
(+ 1 (ACL2-COUNT (REALPART X))
(ACL2-COUNT (IMAGPART X)))
(IF (STRINGP X) (LENGTH X) 0)))))

Axiom 95.

(AND (INTEGERP (ACL2-COUNT X))
(<= 0 (ACL2-COUNT X)))

11 Induction

Rule of Inference. Induction:
Derive p from

e Base Case:
(IMPLIES (AND (NOT q1) ... (NOT gx)) p), and
o Induction Step(s): For each 1 <i <k,

(IMPLIES (AND g¢;
p/oia

P/0in;)
P,
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provided that for terms m, g1, ...qx, and substitutions ¢;; (1 <<k, 1 <j <
h;), the following are theorems:

e Ordinal Condition:
(EO-ORDINALP m) , and
e Measure Condition(s): For each 1 <i <k, and 1 <j < hy,

(IMPLIES ¢; (EO-ORD-< m/o;; m)) .

12 Package Definition

Event.
(DEFPKG name term)

Admissibility Requirements.

For this event to be admissible in a history h, name must be a string that is not
the name of any package in the package system of h and term is an evaluable
term whose value in h, imports, is a true list of symbols such that no two
elements of imports have the same name.

Syntactic Extension.
If admissible, this event extends the package system of h by adding a package
with name name and imports list imports.

In addition, an admissible DEFPKG event introduces the witness symbol for
the package as a new formal constant symbol. The witness symbol, witness, is
specified below.

Let z be the shortest sequence of zero or more exclamation marks (#\!)
such that the evaluable term (MEMBER-SYMBOL-NAME "WITNESSx" ’imports)
has value NIL in h. Let witness be the symbol |namel: :WITNESSz.

Add ’witness to the formal constants of the language.

Axziomatic Extension.
If admissible, add the following three axioms to the axioms of h.

e Axiom

(AND (EQUAL ’witness
(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESSz"
’witness))
(EQUAL (SYMBOL-PACKAGE-NAME ’witness)
name))
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e Axiom

(IMPLIES (AND (STRINGP X)
(NOT (MEMBER-SYMBOL-NAME X ’imports))
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y) name))
(EQUAL (SYMBOL-PACKAGE-NAME
(INTERN-IN-PACKAGE-OF-SYMBOL X Y))
name))

e Axiom

(IMPLIES (AND (MEMBER-SYMBOL-NAME X ’imports)
(SYMBOLP Y)
(EQUAL (SYMBOL-PACKAGE-NAME Y) name))
(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL X Y)
(CAR (MEMBER-SYMBOL-NAME X name))))

13 Current Package Selection

Event.
(IN-PACKAGE name)

Admissibility Requirements.
For this event to be admissible in a history h, name must be a string that is
currently one of the package names in the package system of h.

Syntactic Extension.

By virtue of this event being in the new history, the current package of that
history will (by our definition of “current package”) be name (until another
IN-PACKAGE event is admitted).

Axziomatic Extension.
No new axioms are added by this event.

14 Function Definition

Terminology. We say that a term ¢ governs an occurrence of a term s in a term
b iff either (a) b contains a subterm of the form (IF ¢ p ¢) and the occurrence
of s isin p or (b) b contains a subterm of the form (IF ' p ¢), where ¢ is (NOT
t') and the occurrence of s is in gq.

Examples. The terms P and (NOT Q) govern the first occurrence of S in
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(IF P
(IF (IF Q A S)
S
B)
C)

The terms P and (IF Q A S) govern the second occurrence of S.

Note. The mechanization of the logic is slightly more restrictive because it only
inspects the “top-level” IFsin b. Thus, the mechanization recognizes that P gov-
erns Sin (IF P (FN (IF Q S A)) B) but it does not recognize that Q governs
S also. The implementation does this because the mechanical theorem prover’s
induction heuristic derives “induction schemas” from recursive definitions and
then manipulates these schemas. By keeping the schemas simple (sometimes at
the expense of forcing the user to rearrange definitions) we find the heuristics
are more often successful at choosing an appropriate induction.

Event.

(DEFUN f (z1 ... Tn)
body)

Admissibility Requirements.
For this event to be admissible,

e f must be a new function symbol in A,
e the z; must be distinct variable symbols,

e body must be a term in the history, A, obtained from h by adding an entry
to the arity table of h declaring f to have arity n, and body must mention
no symbol as a variable other than the z;; and

e there is a term m of h such that

— (EO-ORDINALP m) can be proved directly in h, and

— for each occurence of a subterm of the form (f y1 ... y,) in body,
the following formula can be proved directly in hA' (the extension of
h described above):

(IMPLIES (AND ¢y ... tx)
(E0-ORD-< m/o m))

where the terms ¢, ..., t; govern the occurrence in question and o is
the substitution {(z1,y1).--(Tn, yn)}

Syntactic Extension.
If admissible, add a new entry to the arity table of the history. The new entry
gives f arity n.
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Aziomatic Extension.
If admissible, this event adds the following axiom to the axioms of the history.
Axiom

(f z1 ... Tp) = body.

15 Problems

1 S-expression syntax is complicated. Most s-expressions can be written in
more than one way in our notation. Identify those items below that denote
s-expressions. For those that do, write the denoted s-expression again, in
a different way, if you can.

. 0.33

#b-1101

+123
1

3
#b+001/011

1101,
12E-7
#\A
#\Umlatt

& o o op

R ow 0

—-

#\Space
#\o

"Error 33"

—_

m. "No such name: "Smithville""

n. ab
0. :question
p. X3y
q. nil
r. ACL2::SETQ
s. ACL2::F00

t. ((A . 1)B . 2) . 27)

u (AB . CDE)

v. (A . (B . (C. 27)))

w. (a |aB| #xF1 |nill . nil)
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2 Let s be a true list of length 3. Let the elements be, successively,

e the current month, represented by a symbol;
e the current day, represented by an integer;

e the current year, represented by an integer;
Write s.
3 Which of the following s-expressions are formal terms in all histories?

X

[xY|

:K

SBIT

&REST

SIGMA

PI

1-1

"LISP: :WITNESS
(CAADR X)

T o

& 0

S I R

- . e

(car (cons x pi))

—

(car (cdr (symbol-name u)))
m. (binary-+ 1 x)
n. (if x y (if a b c))
4 Which of the following s-expressions abbreviate formal terms? For those
that do, write another s-expression that abbreviates the same term.
(+ epsilon (* a b) (/ 3 x))
(cond ((equal x y) 1) ((equal x z) 2)(t 3))
(LET ((x 2))(cons x x))
(let ((x 1)(X 2)) (coms x X))
(LIST a b ¢ d)
(LIST* a b c d)
(LIST*)
4
#\h
j. "Why?'

v o

& o

B Ros 0

-
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k. *WHY?

1. ’ACL2: :NEXT-METHOD-P
m. *LISP::WITNESS

n. (12 3)

o. "((A . 1) (#\B . "1"))
p. (IF 33 x y)

5 Suppose three packages have been added. The first, named "A", imports
no symbols. The second, named "B", imports A::X. The third, named
"c" imports A::Y and B: :X.

a. What is the package name of B: : X7
b. What is the package name of B: : Y
c. Write a symbol with package name "c".

d. Suppose "c" is the current package. What is the package name of X7
of Y? Of Z7

e. What is the name of the symbol A::xyz?
6 Theorem?
(+32) =5
7 Theorem?
(-74) =3
8 Theorem?

(ACL2-NUMBERP 23)

9 Theorem?

23 # ’ABC

10 Theorem?

o7

11 Theorem?

0# 1

12 Theorem?

0 # 2

53



13

14

15

16

17

18

19

20

21

22

23

24

Theorem?

247

Theorem?

(< -2 0)

Theorem?

(ACL2-NUMBERP X) — (- (- X)) =X

Theorem?

KXY & - 3

Theorem?

(KXY AKYZ) = (KKX2D

Theorem?

(ACL2-NUMBERP X) — (< (+ X -1) X)

Theorem?

((ACL2-NUMBERP X) A (ACL2-NUMBERP Y))
_>
(k=xY) & KXYV I=Y)

Theorem?

(RATIONALP 2)

Theorem?

(CADDR (LIST ABCD)) =C

Theorem?

(CONS X Y) = (CONS U V) « (X=U A Y=V)

Theorem?

(SYMBOLP ’ABC)

Theorem?

’ABC # ’DEF
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16 The CS389R Package

One awkward aspect of the ACL2 logic is that it is hard to know what symbols
can be used as the names of functions, because the list of Common Lisp symbols
in Appendix B is so long. For example, can the symbol POP be defined? Can
METRIC? Can REMOVE? It is relatively easy to recognize the names one has seen
axiomatized and defined. None of the names above have been so introduced.
But to know whether they can be introduced one must search Appendix B.

We can make eliminate this awkwardness by creating a new package. We
will call the package "CS389R". We will import into it all of the symbols we
have axiomatized or defined so far. We will import no other symbols into it.
Then, we will declare "CS389R" the current package in our subsequent work.
Thus, we will then be able to define, for example, the three symbols mentioned
above, without worrying whether they are in Appendix B.

Before we carry out this program, we extend the logic with a few more useful
definitions. All are easily admitted.
Axiom 96 (Def).
(TRUE-LISTP X)
(IF (CONSP X)

(TRUE-LISTP (CDR X))

(EQUAL X NIL))

Axiom 97 (Def).
(zP 1)

(IF (INTEGERP I) (<=1 0) T)

Axiom 98 (Def).
(NFIX I)

(IF (AND (INTEGERP X) (>= X 0))
X
0)

Axiom 99 (Def).
(ASSOC-EQUAL X ALIST)

(COND ((ENDP ALIST) NIL)
((EQUAL X (CAR (CAR ALIST)))
(CAR ALIST))
(T (ASSOC-EQUAL X (CDR ALIST))))

Axiom 100 (Def).
(ENDP X) = (ATOM X)

Axiom 101 (Def).
(NTH N LST)
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(COND ((ENDP LST) NIL)
((ZP N) (CAR LST))
(T (NTH (1- N) (CDR LST))))

Axiom 102 (Def).
(BINARY-APPEND X Y)

(COND ((ENDP X) Y)
(T (CONS (CAR X)
(BINARY-APPEND (CDR X) Y))))

Abbreviation
e (APPEND x1 x2) —> (BINARY-APPEND x1 x2).
e (APPEND x1 ...) —> (BINARY-APPEND x1 (APPEND ...)).

We now define a new constant, *CS389R*, which has as its value a list of all
the symbols used in our axioms and abbreviations.

(DEFCONST #*CS389R*
7(
; Selected Primitive Formal Constants from Table 2
T
NIL
STRING
WITNESS

; Primitive Function Symbols from Table 3
BINARY-*
BINARY-+
UNARY--
UNARY-/
<
BOOLEANP
CAR
CDR
CHAR-CODE
CHARACTERP
CODE-CHAR
COMPLEX
COMPLEX-RATIONALP
COERCE
CONS
CONSP
DENOMINATOR
EQUAL
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>

IF

IMAGPART

INTEGERP
INTERN-IN-PACKAGE-OF-SYMBOL
NUMERATOR

RATIONALP

REALPART

STRINGP

SYMBOL-NAME
SYMBOL-PACKAGE-NAME
SYMBOLP

; Primitive Macros

AND
OR

LET
LAMBDA
LET=*
COND
LIST
LIST*
<=

>

>=
CAAR
CADR
CDAR
CDDR
CAAAR
CAADR
CADAR
CADDR
CDAAR
CDADR
CDDAR
CDDDR
CAAAAR
CAAADR
CAADAR
CAADDR
CADAAR
CADADR
CADDAR
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CADDDR
CDAAAR
CDAADR
CDADAR
CDADDR
CDDAAR
CDDADR
CDDDAR
CDDDDR
APPEND

; Defined Constant Symbols
*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*
*COMMON-LISP-SPECIALS-AND-CONSTANTS*
*ACL2-EXPORTS*

*CS389R*

; Defined Function Symbols in Axioms
NOT
IMPLIES
IFF
ACL2-NUMBERP
FIX
CHARACTER-LISTP
MEMBER-SYMBOL-NAME
ATOM
MAKE-CHARACTER-LIST
EO-ORD-<
EO-ORDINALP
LEN
LENGTH
INTEGER-ABS
ACL2-COUNT
TRUE-LISTP
yAY
NFIX
ASSOC-EQUAL
ENDP
NTH
BINARY-APPEND

; Events
DEFCONST
DEFPKG
IN-PACKAGE
DEFUN
DEFTHM
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)

We declare a new package that imports just the *CS389R* symbols.
(DEFPKG "CS389R" *CS389R*)

Henceforth we will be in the package "CS389R".

(IN-PACKAGE "CS389R")

A The Initial Package System

Below, for each initial package, we specify the symbols imported.
e "KEYWORD": No symbols are imported into this package.
e "LISP": No symbols are imported into this package.

e "ACL2": The symbols listed in Appendix B are imported into this package.
All of those symbols have package name "LISP".

e "ACL2-0UTPUT-CHANNEL": No symbols are imported into this package.
e "ACL2-INPUT-CHANNEL": No symbols are imported into this package.
e "ACL2-PC": No symbols are imported into this package.

e "ACL2-USER": The symbols listed in Appendix B together with the sym-
bols listed in Appendix C are imported into this package.

The witness symbol of a package p in a package system is the symbol whose
package name is p and whose name is shortest string s of the form WITNESSxz
where z is a sequence of zero or more exclamation points such that no symbol
with name s is imported into p in the given package system.

For each initial package p shown above, the witness symbol for pis p: : WITNESS.
If a package, say "PKG" imported both, say, LISP: : WITNESS and ACL2: : WITNESS!
(and no others), then the witness symbol "PKG" would be PKG: :WITNESS!!. In
fact, we do not care what the name of the witness symbol is, as long as for every
package we can write at least one symbol whose package name is that package.
Since only a finite number of symbols are imported into every package, there is
always such a symbol.
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B Common Lisp Symbols

In this appendix we list some symbols. All of the symbols listed are to be
understood to have package name "LISP". These symbols are all imported into
the "ACL2" package. That is, to determine whether a symbol we might print as
ACL2: :name actually stands for LISP: : name, determine whether name occurs
as one of the symbols below.

To make it easier to find a given name we list the symbols in alphabetical
order and group them according to their first letter.

*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE* abbreviates a quoted
list containing just these symbols.

Finally, some of the symbols have a parenthesized asterisk (*) after them.
*COMMON-LISP-SPECIALS-AND-CONSTANTS* abbreviates a quoted list containing
just the so marked symbols.

60



Symbols starting with signs

&ALLOW-OTHER-KEYS

&AUX

&BODY

&ENVIRONMENT

&KEY

&O0PTIONAL

&REST

&WHOLE

* ()

w5 (%)

*xx (¥)

*BREAK-ON-SIGNALS* (*)
*COMPILE-FILE-PATHNAME* (*)
*COMPILE-FILE-TRUENAME* (*)
*COMPILE-PRINT* (*)
*COMPILE-VERBOSE* (*)
*DEBUG-ID* (*)

*DEBUGGER-HOOK* (*)
*DEFAULT-PATHNAME-DEFAULTS* (*)
*ERROR-OUTPUT* (*)

*FEATURES* (*)

*GENSYM-COUNTER* (*)
*LOAD-PATHNAME* (*)
*LOAD-PRINT* (*)
*LOAD-TRUENAME* (*)
*LOAD-VERBOSE* (*)
*MACROEXPAND-HOOK* (*)
*MODULES* (*)

*PACKAGE* (*)

*PRINT-ARRAY* (*)

*PRINT-BASE* (¥*)

*PRINT-CASE* (¥*)
*PRINT-CIRCLE* (*)
*PRINT-ESCAPE* (*)
*PRINT-GENSYM* (*)
*PRINT-LENGTH* (*)
*PRINT-LEVEL* (*)
*PRINT-LINES* (¥*)
*PRINT-MISER-WIDTH* (*)
*PRINT-PPRINT-DISPATCH* (*)
*PRINT-PRETTY* (*)
*PRINT-RADIX#* (*)
*PRINT-READABLY* (*)

*PRINT-RIGHT-MARGIN* (*)
*QUERY-ID* (*)
*RANDOM-STATE* (*)
*READ-BASE* (*)
*READ-DEFAULT-FLOAT-FORMAT* (*)
*READ-EVAL* (*)
*READ-SUPPRESS* (*)
*READTABLE* (*)
*STANDARD-INPUT* (*)
*STANDARD-OUTPUT* (*)
*TERMINAL-IO0%* (*)
*TRACE-OUTPUT* (*)

+ (%)

ABORT

ABS

ACONS

ACOS

ACOSH

ADD-METHOD

ADJOIN
ADJUST-ARRAY
ADJUSTABLE-ARRAY-P
ALLOCATE-INSTANCE
ALPHA-CHAR-P
ALPHANUMERICP

AND

APPEND

APPLY



APROPOS BIT-0RC1

APROPOS-LIST BIT-0RC2
AREF BIT-VECTOR
ARITHMETIC-ERROR BIT-VECTOR-P
ARITHMETIC-ERROR-OPERANDS BIT-XOR
ARITHMETIC-ERROR-0PERATION BLOCK
ARRAY BOOLE
ARRAY-DIMENSION BOOLE-1 (*)
ARRAY-DIMENSION-LIMIT (*) BOOLE-2 (*)
ARRAY-DIMENSIONS BOOLE-AND (*)
ARRAY-DISPLACEMENT BOOLE-ANDC1 (*)
ARRAY-ELEMENT-TYPE BOOLE-ANDC2 (*)
ARRAY-HAS-FILL-POINTER-P BOOLE-C1 (*)
ARRAY-IN-BOUNDS-P BOOLE-C2 (*)
ARRAY-RANK BOOLE-CLR (*)
ARRAY-RANK-LIMIT (*) BOOLE-EQV (*)
ARRAY-ROW-MAJOR-INDEX BOOLE-IOR (*)
ARRAY-TOTAL-SIZE BOOLE-NAND (*)
ARRAY-TOTAL-SIZE-LIMIT (*) BOOLE-NOR (*)
ARRAYP BOOLE-ORC1 (*)
ASH BOOLE-ORC2 (*)
ASIN BOOLE-SET (*)
ASINH BOOLE-XOR (*)
ASSERT BOOLEAN
ASSOC BOTH-CASE-P
ASSOC-IF BOUNDP
ASSOC-IF-NOT BREAK
ATAN BROADCAST-STREAM
ATANH BROADCAST-STREAM-STREAMS
ATOM BUILT-IN-CLASS
BUTLAST
B BYTE
BASE-CHAR BYTE-POSITION
BASE-STRING BYTE-SIZE
BIGNUM
BIT C
BIT-AND CAAAAR
BIT-ANDC1 CAAADR
BIT-ANDC2 CAAAR
BIT-EQV CAADAR
BIT-IOR CAADDR
BIT-NAND CAADR
BIT-NOR CAAR
BIT-NOT CADAAR



CADADR CHAR-NOT-LESSP

CADAR CHAR-UPCASE

CADDAR CHAR/=

CADDDR CHAR<

CADDR CHAR<=

CADR CHAR=
CALL-ARGUMENTS-LIMIT (*) CHAR>

CALL-METHOD CHAR>=
CALL-NEXT-METHOD CHARACTER

CAR CHARACTERP

CASE CHECK-TYPE

CATCH CIS

CCASE CLASS

CDAAAR CLASS-NAME

CDAADR CLASS-OF

CDAAR CLEAR-INPUT

CDADAR CLEAR-QUTPUT

CDADDR CLOSE

CDADR CLRHASH

CDAR CODE-CHAR

CDDAAR COERCE

CDDADR COMPILATION-SPEED
CDDAR COMPILE

CDDDAR COMPILE-FILE

CDDDDR COMPILE-FILE-PATHNAME
CDDDR COMPILED-FUNCTION
CDDR COMPILED-FUNCTION-P
CDR COMPILER-MACRO
CEILING COMPILER-MACRO-FUNCTION
CELL-ERROR COMPLEMENT
CELL-ERROR-NAME COMPLEX

CERROR COMPLEXP
CHANGE-CLASS COMPUTE-APPLICABLE-METHODS
CHAR COMPUTE-RESTARTS
CHAR-CODE CONCATENATE
CHAR-CODE-LIMIT (*) CONCATENATED-STREAM
CHAR-DOWNCASE CONCATENATED-STREAM-STREAMS
CHAR-EQUAL COND

CHAR-GREATERP CONDITION

CHAR-INT CONJUGATE
CHAR-LESSP CONS

CHAR-NAME CONSP
CHAR-NOT-EQUAL CONSTANTLY
CHAR-NOT-GREATERP CONSTANTP
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CONTINUE DELETE-DUPLICATES

CONTROL-ERROR DELETE-FILE
COPY-ALIST DELETE-IF
COPY-LIST DELETE-IF-NOT
COPY-PPRINT-DISPATCH DELETE-PACKAGE
COPY-READTABLE DENOMINATOR
COPY-SEQ DEPOSIT-FIELD
COPY-STRUCTURE DESCRIBE
COPY-SYMBOL DESCRIBE-0BJECT
COPY-TREE DESTRUCTURING-BIND
cos DIGIT-CHAR
COSH DIGIT-CHAR-P
COUNT DIRECTORY
COUNT-IF DIRECTORY-NAMESTRING
COUNT-IF-NOT DISASSEMBLE
CTYPECASE DIVISION-BY-ZERD

DO
D DO*
DEBUG DO-ALL-SYMBOLS
DECF DO-EXTERNAL-SYMBOLS
DECLAIM DO-SYMBOLS
DECLARATION DOCUMENTATION
DECLARE DOLIST
DECODE-FLOAT DOTIMES
DECODE-UNIVERSAL-TIME DOUBLE-FLOAT
DEFCLASS DOUBLE-FLOAT-EPSILON (*)
DEFCONSTANT DOUBLE-FLOAT-NEGATIVE-EPSILON (*)
DEFGENERIC DPB
DEFINE-COMPILER-MACRO DRIBBLE
DEFINE-CONDITION DYNAMIC-EXTENT
DEFINE-METHOD-COMBINATION
DEFINE-MODIFY-MACRO E
DEFINE-SETF-EXPANDER ECASE
DEFINE-SYMBOL-MACRO ECHO-STREAM
DEFMACRO ECHO-STREAM-INPUT-STREAM
DEFMETHOD ECHO-STREAM-0UTPUT-STREAM
DEFPACKAGE ED
DEFPARAMETER EIGHTH
DEFSETF ELT
DEFSTRUCT ENCODE-UNIVERSAL-TIME
DEFTYPE END-OF-FILE
DEFUN ENDP
DEFVAR ENOUGH-NAMESTRING
DELETE ENSURE-DIRECTORIES-EXIST
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ENSURE-GENERIC-FUNCTION

EQ

EQL

EQUAL
EQUALP
ERROR
ETYPECASE
EVAL
EVAL-WHEN
EVENP
EVERY

EXP
EXPORT
EXPT
EXTENDED-CHAR

F

FBOUNDP

FCEILING
FDEFINITION
FFLOOR

FIFTH
FILE-AUTHOR
FILE-ERROR
FILE-ERROR-PATHNAME
FILE-LENGTH
FILE-NAMESTRING
FILE-POSITION
FILE-STREAM
FILE-STRING-LENGTH
FILE-WRITE-DATE
FILL
FILL-POINTER
FIND
FIND-ALL-SYMBOLS
FIND-CLASS
FIND-IF
FIND-IF-NOT
FIND-METHOD
FIND-PACKAGE
FIND-RESTART
FIND-SYMBOL
FINISH-OUTPUT
FIRST

FIXNUM

FLET

FLOAT

FLOAT-DIGITS
FLOAT-PRECISION
FLOAT-RADIX

FLOAT-SIGN
FLOATING-POINT-INEXACT
FLOATING-POINT-INVALID-OPERATION
FLOATING-POINT-OVERFLOW
FLOATING-POINT-UNDERFLOW
FLOATP

FLOOR

FMAKUNBOUND

FORCE-OUTPUT

FORMAT

FORMATTER

FOURTH

FRESH-LINE

FROUND

FTRUNCATE

FTYPE

FUNCALL

FUNCTION
FUNCTION-KEYWORDS
FUNCTION-LAMBDA-EXPRESSION
FUNCTIONP

G

GCD

GENERIC-FUNCTION

GENSYM

GENTEMP

GET

GET-DECODED-TIME
GET-DISPATCH-MACRO-CHARACTER
GET-INTERNAL-REAL-TIME
GET-INTERNAL-RUN-TIME
GET-MACRO-CHARACTER
GET-0UTPUT-STREAM-STRING
GET-PROPERTIES
GET-SETF-EXPANSION
GET-UNIVERSAL-TIME

GETF



GETHASH K

GO KEYWORD
GRAPHIC-CHAR-P KEYWORDP
H L
HANDLER-BIND LABELS
HANDLER-CASE LAMBDA
HASH-TABLE LAMBDA-LIST-KEYWORDS (*)
HASH-TABLE-COUNT LAMBDA-PARAMETERS-LIMIT (*)
HASH-TABLE-P LAST
HASH-TABLE-REHASH-SIZE LCM
HASH-TABLE-REHASH-THRESHOLD LDB
HASH-TABLE-SIZE LDB-TEST
HASH-TABLE-TEST LDIFF
HOST-NAMESTRING LEAST-NEGATIVE--

DOUBLE-FLOAT (*)
I LEAST-NEGATIVE--
IDENTITY LONG-FLOAT (*)
IF LEAST-NEGATIVE--
IGNORABLE NORMALIZED-DOUBLE-FLOAT (*)
IGNORE LEAST-NEGATIVE--
IGNORE-ERRORS NORMALIZED-LONG-FLOAT (*)
IMAGPART LEAST-NEGATIVE--
IMPORT NORMALIZED-SHORT-FLOAT (*)
IN-PACKAGE LEAST-NEGATIVE--
INCF NORMALIZED-SINGLE-FLOAT (*)
INITIALIZE-INSTANCE LEAST-NEGATIVE--
INLINE SHORT-FLOAT (*)
INPUT-STREAM-P LEAST-NEGATIVE--
INSPECT SINGLE-FLOAT (*)
INTEGER LEAST-POSITIVE--
INTEGER-DECODE-FLOAT DOUBLE-FLOAT (*)
INTEGER-LENGTH LEAST-POSITIVE--
INTEGERP LONG-FLOAT (*)
INTERACTIVE-STREAM-P LEAST-POSITIVE--
INTERN NORMALIZED-DOUBLE-FLOAT (*)
INTERNAL-TIME-UNITS-PER-SECOND (*) LEAST-POSITIVE--
INTERSECTION NORMALIZED-LONG-FLOAT (*)
INVALID-METHOD-ERROR LEAST-POSITIVE--
INVOKE-DEBUGGER NORMALIZED-SHORT-FLOAT (*)
INVOKE-RESTART LEAST-POSITIVE--
INVOKE-RESTART-INTERACTIVELY NORMALIZED-SINGLE-FLOAT (*)
ISQRT LEAST-POSITIVE--

SHORT-FLOAT (*)
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LEAST-POSITIVE--
SINGLE-FLOAT (*)

LENGTH

LET

LET*

LISP-IMPLEMENTATION-TYPE

LISP-IMPLEMENTATION-VERSION

LIST

LIST*

LIST-ALL-PACKAGES

LIST-LENGTH

LISTEN

LISTP

LOAD

LOAD-LOGICAL-PATHNAME-TRANSLATIONS

LOAD-TIME-VALUE
LOCALLY

LOG

LOGAND

LOGANDC1

LOGANDC2

LOGBITP

LOGCOUNT

LOGEQV
LOGICAL-PATHNAME
LOGICAL-PATHNAME-TRANSLATIONS
LOGIOR

LOGNAND

LOGNOR

LOGNOT

LOGORC1

LOGORC2

LOGTEST

LOGXOR

LONG-FLOAT
LONG-FLOAT-EPSILON (*)
LONG-FLOAT-NEGATIVE-EPSILON (*)
LONG-SITE-NAME

LOOP

LOOP-FINISH
LOWER-CASE-P

M
MACHINE-INSTANCE

MACHINE-TYPE
MACHINE-VERSION
MACRO-FUNCTION
MACROEXPAND
MACROEXPAND-1

MACROLET

MAKE-ARRAY
MAKE-BROADCAST-STREAM
MAKE-CONCATENATED-STREAM
MAKE-CONDITION
MAKE-DISPATCH-MACRO-CHARACTER
MAKE-ECHO-STREAM
MAKE-HASH-TABLE
MAKE-INSTANCE
MAKE-INSTANCES-0BSOLETE
MAKE-LIST
MAKE-LOAD-FORM
MAKE-LOAD-FORM-SAVING-SLOTS
MAKE-METHOD

MAKE-PACKAGE
MAKE-PATHNAME
MAKE-RANDOM-STATE
MAKE-SEQUENCE
MAKE-STRING
MAKE-STRING-INPUT-STREAM
MAKE-STRING-0UTPUT-STREAM
MAKE-SYMBOL
MAKE-SYNONYM-STREAM
MAKE-TWO-WAY-STREAM
MAKUNBOUND

MAP

MAP-INTO

MAPC

MAPCAN

MAPCAR

MAPCON

MAPHASH

MAPL

MAPLIST

MASK-FIELD

MAX

MEMBER

MEMBER-IF

MEMBER-IF-NOT
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MERGE

MERGE-PATHNAMES

METHOD

METHOD-COMBINATION
METHOD-COMBINATION-ERROR
METHOD-QUALIFIERS

MIN

MINUSP

MISMATCH

MOD
MOST-NEGATIVE-DOUBLE-FLOAT (*)
MOST-NEGATIVE-FIXNUM (*)
MOST-NEGATIVE-LONG-FLOAT (*)
MOST-NEGATIVE-SHORT-FLOAT (*
MOST-NEGATIVE-SINGLE-FLOAT
MOST-POSITIVE-DOUBLE-FLOAT
MOST-POSITIVE-FIXNUM (*)
MOST-POSITIVE-LONG-FLOAT (*)
MOST-POSITIVE-SHORT-FLOAT (*)
MOST-POSITIVE-SINGLE-FLOAT (*)
MUFFLE-WARNING
MULTIPLE-VALUE-BIND
MULTIPLE-VALUE-CALL
MULTIPLE-VALUE-LIST
MULTIPLE-VALUE-PROG1
MULTIPLE-VALUE-SETQ
MULTIPLE-VALUES-LIMIT (*)

)
*)

(
*)

N

NAME-CHAR
NAMESTRING
NBUTLAST

NCONC
NEXT-METHOD-P
NIL (%)
NINTERSECTION
NINTH
NO-APPLICABLE-METHOD
NO-NEXT-METHOD
NOT

NOTANY
NOTEVERY
NOTINLINE
NRECONC

NREVERSE
NSET-DIFFERENCE
NSET-EXCLUSIVE-OR
NSTRING-CAPITALIZE
NSTRING-DOWNCASE
NSTRING-UPCASE
NSUBLIS

NSUBST

NSUBST-IF
NSUBST-IF-NOT
NSUBSTITUTE
NSUBSTITUTE-IF
NSUBSTITUTE-IF-NOT
NTH

NTH-VALUE

NTHCDR

NULL

NUMBER

NUMBERP

NUMERATOR

NUNION

0]

0DDP

OPEN
OPEN-STREAM-P
OPTIMIZE

OR

OTHERWISE
OUTPUT-STREAM-P

P

PACKAGE

PACKAGE-ERROR
PACKAGE-ERROR-PACKAGE
PACKAGE-NAME
PACKAGE-NICKNAMES
PACKAGE-SHADOWING-SYMBOLS
PACKAGE-USE-LIST
PACKAGE-USED-BY-LIST
PACKAGEP

PAIRLIS

PARSE-ERROR
PARSE-INTEGER



PARSE-NAMESTRING
PATHNAME
PATHNAME-DEVICE
PATHNAME-DIRECTORY
PATHNAME-HOST
PATHNAME-MATCH-P
PATHNAME-NAME
PATHNAME-TYPE
PATHNAME-VERSION
PATHNAMEP
PEEK-CHAR

PHASE

PI (¥)

PLUSP

POP

POSITION
POSITION-IF
POSITION-IF-NOT
PPRINT
PPRINT-DISPATCH

PPRINT-EXIT-IF-LIST-EXHAUSTED

PPRINT-FILL
PPRINT-INDENT
PPRINT-LINEAR
PPRINT-LOGICAL-BLOCK
PPRINT-NEWLINE
PPRINT-POP
PPRINT-TAB
PPRINT-TABULAR

PRIN1
PRIN1-TO-STRING
PRINC
PRINC-TO-STRING
PRINT
PRINT-NOT-READABLE
PRINT-NOT-READABLE-0BJECT
PRINT-0BJECT
PRINT-UNREADABLE-OBJECT
PROBE-FILE

PROCLAIM

PROG

PROG*

PROG1

PROG2

PROGN
PROGRAM-ERROR
PROGV

PROVIDE

PSETF

PSETQ

PUSH

PUSHNEW

Q

QUOTE

R

RANDOM
RANDOM-STATE
RANDOM-STATE-P
RASSOC

RASSOC-IF
RASSOC-IF-NOT
RATIO

RATIONAL
RATIONALIZE
RATIONALP

READ

READ-BYTE
READ-CHAR
READ-CHAR-NO-HANG
READ-DELIMITED-LIST
READ-FROM-STRING
READ-LINE
READ-PRESERVING-WHITESPACE
READ-SEQUENCE
READER-ERROR
READTABLE
READTABLE-CASE
READTABLEP

REAL

REALP

REALPART

REDUCE
REINITIALIZE-INSTANCE
REM

REMF

REMHASH



REMOVE
REMOVE-DUPLICATES
REMOVE-IF
REMOVE-IF-NOT
REMOVE-METHOD
REMPROP
RENAME-FILE
RENAME-PACKAGE
REPLACE
REQUIRE

REST

RESTART
RESTART-BIND
RESTART-CASE
RESTART-NAME
RETURN
RETURN-FROM
REVAPPEND
REVERSE

ROOM

ROTATEF

ROUND
ROW-MAJOR-AREF
RPLACA

RPLACD

S

SAFETY

SATISFIES

SBIT

SCALE-FLOAT

SCHAR

SEARCH

SECOND

SEQUENCE
SERIOUS-CONDITION
SET

SET-DIFFERENCE
SET-DISPATCH-MACRO-CHARACTER
SET-EXCLUSIVE-OR
SET-MACRO-CHARACTER
SET-PPRINT-DISPATCH
SET-SYNTAX-FROM-CHAR
SETF

70

SETQ

SEVENTH

SHADOW

SHADOWING-IMPORT
SHARED-INITIALIZE
SHIFTF

SHORT-FLOAT
SHORT-FLOAT-EPSILON (*)
SHORT-FLOAT-NEGATIVE-EPSILON (*)
SHORT-SITE-NAME

SIGNAL

SIGNED-BYTE

SIGNUM

SIMPLE-ARRAY
SIMPLE-BASE-STRING
SIMPLE-BIT-VECTOR
SIMPLE-BIT-VECTOR-P
SIMPLE-CONDITION
SIMPLE-CONDITION-FORMAT-ARGUMENTS
SIMPLE-CONDITION-FORMAT-CONTROL
SIMPLE-ERROR
SIMPLE-STRING
SIMPLE-STRING-P
SIMPLE-TYPE-ERROR
SIMPLE-VECTOR
SIMPLE-VECTOR-P
SIMPLE-WARNING

SIN

SINGLE-FLOAT
SINGLE-FLOAT-EPSILON (*)
SINGLE-FLOAT-NEGATIVE-EPSILON (*)
SINH

SIXTH

SLEEP

SLOT-BOUNDP
SLOT-EXISTS-P
SLOT-MAKUNBOUND
SLOT-MISSING
SLOT-UNBOUND

SLOT-VALUE
SOFTWARE-TYPE
SOFTWARE-VERSION

SOME

SORT



SPACE

SPECIAL
SPECIAL-OPERATOR-P
SPEED

SQRT

STABLE-SORT
STANDARD
STANDARD-CHAR
STANDARD-CHAR-P
STANDARD-CLASS
STANDARD-GENERIC-FUNCTION
STANDARD-METHOD
STANDARD-O0BJECT
STEP
STORAGE-CONDITION
STORE-VALUE

STREAM
STREAM-ELEMENT-TYPE
STREAM-ERROR
STREAM-ERROR-STREAM
STREAM-EXTERNAL-FORMAT
STREAMP

STRING
STRING-CAPITALIZE
STRING-DOWNCASE
STRING-EQUAL
STRING-GREATERP
STRING-LEFT-TRIM
STRING-LESSP
STRING-NOT-EQUAL
STRING-NOT-GREATERP
STRING-NOT-LESSP
STRING-RIGHT-TRIM
STRING-STREAM
STRING-TRIM
STRING-UPCASE
STRING/=

STRING<

STRING<=

STRING=

STRING>

STRING>=

STRINGP

STRUCTURE

STRUCTURE-CLASS
STRUCTURE-0BJECT
STYLE-WARNING
SUBLIS

SUBSEQ

SUBSETP

SUBST

SUBST-IF
SUBST-IF-NOT
SUBSTITUTE
SUBSTITUTE-IF
SUBSTITUTE-IF-NOT
SUBTYPEP

SVREF

SXHASH

SYMBOL
SYMBOL-FUNCTION
SYMBOL-MACROLET
SYMBOL-NAME
SYMBOL-PACKAGE
SYMBOL-PLIST
SYMBOL-VALUE
SYMBOLP
SYNONYM-STREAM
SYNONYM-STREAM-SYMBOL

T

T (%)

TAGBODY

TAILP

TAN

TANH

TENTH

TERPRI

THE

THIRD

THROW

TIME

TRACE
TRANSLATE-LOGICAL-PATHNAME
TRANSLATE-PATHNAME
TREE-EQUAL
TRUENAME

TRUNCATE



TWO-WAY-STREAM
TWO-WAY-STREAM-INPUT-STREAM
TWO-WAY-STREAM-0UTPUT-STREAM
TYPE

TYPE-ERROR

TYPE-ERROR-DATUM
TYPE-ERROR-EXPECTED-TYPE
TYPE-OF

TYPECASE

TYPEP

U

UNBOUND-SLOT
UNBOUND-SLOT-INSTANCE
UNBOUND-VARIABLE
UNDEFINED-FUNCTION

UNEXPORT

UNINTERN

UNION

UNLESS

UNREAD-CHAR

UNSIGNED-BYTE

UNTRACE

UNUSE-PACKAGE
UNWIND-PROTECT
UPDATE-INSTANCE-FOR-DIFFERENT-CLASS
UPDATE-INSTANCE-FOR-REDEFINED-CLASS
UPGRADED-ARRAY-ELEMENT-TYPE
UPGRADED-COMPLEX-PART-TYPE
UPPER-CASE-P

USE-PACKAGE

USE-VALUE
USER-HOMEDIR-PATHNAME

%
VALUES

VALUES-LIST
VARIABLE

VECTOR

VECTOR-POP
VECTOR-PUSH
VECTOR-PUSH-EXTEND
VECTORP

W

WARN

WARNING

WHEN

WILD-PATHNAME-P
WITH-ACCESSORS
WITH-COMPILATION-UNIT
WITH-CONDITION-RESTARTS
WITH-HASH-TABLE-ITERATOR
WITH-INPUT-FROM-STRING
WITH-OPEN-FILE
WITH-OPEN-STREAM
WITH-OUTPUT-TO-STRING
WITH-PACKAGE-ITERATOR
WITH-SIMPLE-RESTART
WITH-SLOTS
WITH-STANDARD-ID-SYNTAX
WRITE

WRITE-BYTE

WRITE-CHAR

WRITE-LINE
WRITE-SEQUENCE
WRITE-STRING
WRITE-TO-STRING

Y
Y-OR-N-P
YES-OR-NO-P

Z
ZEROP



C ACL2 Exports

The ACL2 constant symbol *ACL2-EXPORTS* has as its value a list of symbols
that we believe most users will find convenient to import into other packages so
that when those other packages are “current” the "ACL2" package prefix need
not be typed for common ACL2 events. The symbols listed below are those in

*ACL2-EXPORTS*

e

ACL2-COUNT
ASSIGN

ASSUME
CERTIFY-BOOK
CURRENT-THEORY
DECLARE
DEFAXIOM
DEFCONST

DEFDOC
DEFINE-PC-ATOMIC-MACRO
DEFINE-PC-MACROD
DEFLABEL
DEFMACRO

DEFPKG
DEFTHEORY
DEFTHM

DEFUN

DEFUNS

DISABLE

ENABLE
ENCAPSULATE
EXECUTABLE-COUNTERPART-THEORY
FORCE
FUNCTION-THEORY
IFF

References

IMPLIES

IN-THEORY
INCLUDE-BOOK
INTERSECTION-THEORIES
LD

LOCAL
MUTUAL-RECURSION
MV

MV-LET

MV-NTH

PROVE

RETRIEVE
SET-DIFFERENCE-THEORIES
STATE

TABLE

THEORY

THM
TOGGLE-PC-MACRO
UBT

UNION-THEORIES
UNIVERSAL-THEORY
VERIFY
VERIFY-GUARDS
VERIFY-TERMINATION
XARGS
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