
A Precise Description of the ACL2 LogicMatt Kaufmann�and J Strother MooreyDepartment of Computer SciencesTaylor Hall 2.124University of Texas at AustinAustin, TX 78712-1188 USAApril 22, 1998AbstractThe ACL2 logic is a �rst-order, essentially quanti�er-free logic of total re-cursive functions providing mathematical induction and several extension prin-ciples, including symbol package de�nition and recursive function de�nition. Inthis document we describe the logic more precisely.1 BackgroundNaively speaking, a mathematical logic is given by a formal language, someaxioms in that language, and some rules of inference that permit one to derivenew formulas, called \theorems," from those axioms. To \prove" a theorem oneshows how to derive it from the axioms using the rules of inference. This gameis very challenging. Even for very simple sets of axioms and rules, the resultingtheorems are often non-obvious.What prevents logic from being merely an academic game is that, like mostof mathematics, it can be related to our ordinary experience. In particular,it is often possible to give meaning to the formulas in such a way that theaxioms are all accepted as truths and the rules of inference are truth preserving.Consequently, the theorems are also truths. More precisely, the theorems aretruths about what is modeled by the axioms and rules of inference.�EDS, 98 San Jacinto Blvd., Suite 500, Austin, TX 78701, kaufmann@aus.edsr.eds.comyThe theorem prover used in this work was supported in part at Computational Logic,Inc., by the Defense Advanced Research Projects Agency, ARPA Order 7406, and the O�ceof Naval Research, Contract N00014-94-C-0193. The views and conclusions contained in thisdocument are those of the author(s) and should not be interpreted as representing the o�cialpolicies, either expressed or implied, of Computational Logic, Inc., the Defense AdvancedResearch Projects Agency, the O�ce of Naval Research, or the U.S. Government.1

It is di�cult | perhaps impossible | to use formal logic to model the physi-cal world with adequate precision and completeness. Unobtrusive imperfectionsin the correspondence between the formal system and the objects modeled canbe magni�ed into gross distortions of reality by the utterly precise lens of formallogic. Thus, logic is better suited to study the perfect objects of mathematics |i.e., numbers, sets, algorithms, etc. | than the imperfect objects of our physi-cal world. Put another way, logic is best at modeling formal systems. Very fewmodern scientists have tried to use formal logic to study physical systems andthus, in contrast to many other branches of mathematics, the study and use oflogic has been largely con�ned to formal logicians.However, the widespread use of computing machines is changing this. Com-puting machines are imperfect physical artifacts. But they implement formalsystems. That is to say, when such a machine is working as physically intendedby its designer, it is supposed to carry out some algorithm following a �xed set ofprecisely speci�ed rules. The \utterly precise lens" of formal logic is an excellenttool with which to investigate the behavior of such an abstract machine. Thereis often no other way to assure, for example, that a divider actually divides,that a protocol reliably enables communication, or that a calculation involvingmillions of steps produces the \right" answer.So we are interested here in a \working logic." We wish to use a formalmathematical logic to model other formal systems | processor architectures,microcode programs and programming languages | and then to study the prop-erties of those models. But this presupposes some formal logic suitable for ourpurposes. Turning to the logic textbooks for a description of a suitable logic is afrustrating experience. Logicians, the people who might have been thought mostexperienced in designing and using formal logics, have spent most of their timestudying logics rather than using them. Compared to the logic we seek, mostclassical logics are like Turing machines compared to modern processors: whilethey are, in some technical sense, su�ciently powerful, they are impractical touse. Classical logics were designed to be simple enough to study thoroughly,not convenient to use.Therefore, in this document we \roll our own" working logic. It is calledACL2, which stands for \A Computational Logic for Applicative Common Lisp"and might have been abbreviated ACL2. ACL2 is designed to be used to modelcomputing systems and to prove properties of those models. It is likely to bemuch more elaborate than the classical formal logics you have encountered.1.1 Connection with Common LispOne force pushing ACL2 toward complexity is the fact that we want it to bee�ciently executable on a wide range of host processors. That is, the logic canbe used to calculate: most variable-free terms can be reduced to constants bythe routine application of the axioms. To achieve this we decided to make ACL2an extension of a useful subset of the widely used and e�ciently implemented2

applicative programming language Common Lisp [6] and [7].Executability comes at a cost: ACL2 does not support unbounded quanti�-cation, the real numbers, or in�nite sets. ACL2 is essentially just an applicativeprogramming language | and a fairly simple one at that.Common Lisp functions are partial: they are not de�ned on all possibleinputs. But ACL2 functions are total: they are de�ned on all possible inputs.In what sense, then, is ACL2 Common Lisp?In [4] we de�ne the notions of gold functions and theorems. To establish thata function or theorem is gold, certain additional conjectures must be proved.These \guard conjectures" are derived syntactically from the candidate func-tion de�nitions and theorems. If the guard conjectures are theorems, then theevaluation of the ACL2 formulas never tries to apply Common Lisp functionsto inputs outside their \intended domains." We make the following promise: agold theorem in ACL2 evaluates to non-NIL in all compliant implementationsof Common Lisp, unless the implementation encounters a \resource error" suchas memory exhaustion. In this document we do not discuss further the notionof gold theorems or Common Lisp compliance. We focus simply on ACL2 as alogic, thereby de�ning what the theorems are.Although we do not assume familiarity with Common Lisp, readers familiarwith it will notice that we have adopted much of its syntax and many of itsbuilt-in constants and functions.1.2 Connection with the Nqthm LogicThe logic described here is closely connected to the Nqthm (\Boyer-Moore")logic [1]. The Nqthm logic models a \home-grown" Pure Lisp, while ACL2models Common Lisp. Some of the di�erences between the two are summarizedbelow.� Nqthm's arithmetic was essentially just that for the natural numbers, ax-iomatized in a Peano-like fashion. Common Lisp and ACL2 provide therationals and the complex rationals, with the naturals being an inductivelyidenti�ed subset of the rationals.� Nqthm's symbols, the LITATOMs, are very simple compared to CommonLisp's. In particular, Nqthm does not support multiple \packages."� Nqthm provides a \false object," (FALSE), abbreviated F, which is not NILor any other Nqthm symbol, while Common Lisp and ACL2 \overload"NIL as both the false object and the end-of-list marker.� Nqthm's functions CAR and CDR return 0 on non-CONS arguments, butACL2's return NIL. 3

� Nqthm provided the \Shell Principle" for adding new data types; ACL2provides no such facility. But in addition to the richer set of numbers,ACL2 provides character objects and strings among its primitives.The enumeration above should not obscure the fact that the two logics infact only di�er in \minor" details. The two logics \feel" the same. Both are�rst-order, essentially quanti�er-free logics based on total, recursively de�nedfunctions over inductively constructed data objects. Both use untyped, Lisp-like syntax and encourage the use of \terms" where other logics would use\formulas." Both allow (most) variable-free terms to be evaluated to constantsvia a \call-by-value" interpreter.The similarities to Nqthm were the result of deliberate design decisions basedon the success of using Nqthm to model computing machines and systems. ACL2| the logic and its implementation in a theorem-proving system | is bestthought of as a successor to Nqthm intended to make the logic more e�cientlyexecutable and able to support the construction and analysis of larger systemmodels. The paper [3] discusses the original design of ACL2.Bob Boyer was an active participant in the formative years of the design ofACL2. Without his help the project would never have gotten o� the ground.2 Theories and Logical EventsThe view that a logic is given by a language, some axioms, and some rulesfails to accommodate our intention to use it to model other systems. Except inthe unusual case that the given logic already describes what we care about, wemust be able to fashion it somehow. That generally means we must be able toextend the language to include new syntactic concepts and to add new axiomsabout those concepts. Sometimes new rules of inference are added. Thus, inaddition to a language, some axioms, and some rules of inference, we providesome extension principles and we view the logic as \evolving" under the controlof the user who invokes these principles.We say a formula t can be proved directly from a set of axioms A if and onlyif t may be derived from the axioms in A by applying the rules of inferenceof propositional calculus with equality and instantiation (see page 20) and theprinciple of induction (see page 47).There are �ve extension principles and thus �ve kinds of events:� an application of the constant de�nition principle (page 29),� an application of the package de�nition principle (page 48),� the designation of the current package (page 49),� an application of the function de�nition principle (page 49), and� the addition of an arbitrary formula as an axiom.4

Each such event extends the syntax and/or the set of axioms of the logic asnoted below.Note. A derived extension principle, called \encapsulation," permits the intro-duction of unde�ned but constrained function symbols. We describe encapsu-lation and its uses in [8]. ACL2 provides for \Skolem axioms" but these havenot yet been documented. The implemented de�nitional principle allows formutually recursive de�nitions but the one described here does not. The imple-mentation also allows for the de�nition of \macros" that extend the syntax ofthe language, but we do not discuss macros here.A history h is a �nite sequence of events such that either (a) h is emptyor (b) h is obtained by concatenating to the end of a history h0 an event thatis \admissible" under h0. An arbitrary axiom is admissible under any h0. Thespeci�cations of the other kinds of events de�ne \admissibility" for each suchevent. We refer to the order of events in a history as though they were addedchronologically, i.e., the �rst event is the \oldest" and the last event is the \mostrecent."Associated with every history are the following:� an \arity table," specifying how many arguments certain function symbolstake;� a \package system," a�ecting how symbols are written;� a \current package," a�ecting how symbols are written;� the \formal constants" of the language;� a set of \abbreviations," whereby symbolic expressions are transformedinto \formal terms" and \formulas;" and� a set of \axioms."All but the last item, the axioms, are concerned with the syntax. Each of theseconcepts is de�ned below, with respect to a given history h. However, in generalin this document the operative history is left implicit.The arity table of a history is the initial arity table (Table 3, page 18)extended by an entry specifying the arity (number of arguments) of each functionsymbol introduced by each event in the history. Our discussion of each eventmakes clear the function symbols and arities introduced.The package system of a history is a sequence of pairs, each pairing a \pack-age name" with an \imports list." We discuss packages on page 12. The packagesystem of a history is the initial package system, as described in Appendix A,extended successively by an entry for each DEFPKG event in the history, inchronological order. We describe the appropriate entry when we discuss DEFPKG(page 48). 5

The current package of a history is the package name selected by the mostrecent IN-PACKAGE event (see page 49), if any. If there is no IN-PACKAGE eventin the history, the current package is named "ACL2". In this document, unlessotherwise stated, the current package is "ACL2".The formal constants of a history are the primitive formal constants (page 17)together with the formal constants introduced by each event. The addition ofan arbitrary axiom adds no new constants. When we discuss each other kind ofevent we specify the constants, if any, introduced.The abbreviations of a history are the abbreviation rules introduced in thisdocument together with the abbreviations introduced by each event. The addi-tion of an arbitrary axiom adds no abbreviations. When we discuss each otherkind of event we specify the abbreviations, if any, introduced.Finally, the axioms of a history h are the axioms introduced in this docu-ment (including the appropriate instances of the Propositional and Re
exivityaxiom schemas for the formulas of h and the appropriate instances of the Equal-ity Axiom for Functions for every function symbol in the arity table of h, seeSection 5) together with the axioms introduced by each event. The addition ofan arbitrary axiom introduces the given formula as an axiom. When we discusseach other kind of event we specify the axioms, if any, introduced.The syntax of a history is the set of \well-formed formulas" for that history.A large part of this document is devoted to a careful description of this notion.In our development, a formula is a tree structure composed of formulas andother tree structures called \terms." We start by describing how we write downa certain class of tree structures, called \s-expressions." Then we identify asubset of these s-expressions as the \formal terms" in a given history. The mainidea is that such a term is a variable symbol, one of a very few constants, orthe application of a function symbol of the history to an appropriate numberof argument terms. A \well-formed formula" of a history is then a class of s-expressions built from formal terms of the history by certain constructions wedescribe.Finally, we introduce a large number of abbreviations. These abbreviationsare rules for transforming s-expressions that are not formal terms or formulasinto s-expressions that are formal terms or formulas. Of special importance area collection of abbreviations that let us write a large class of constants in termsof the primitive constants and function symbols.The well-formed formulas of a history h are the s-expressions that are eitherformulas of h as we de�ne them here or that can be transformed into formulasof h using the abbreviations of h.We say a formula t in the syntax of history h is a theorem of history h i� tcan be proved directly from the axioms of h.6

3 A Preamble on NotationThe utterances of a formal language are traditionally regarded as strings ofcharacters. Such character strings are often described with a formal grammar.We do not take that approach.The utterances of our formal language are �nite tree structures composed offamiliar mathematical objects. In this section we talk about those objects andhow we write them down. It is not our intention here to de�ne these notions,since we think formal de�nitions would be less clear than what the reader islikely already to understand. So we o�er the following observations as a way ofsettling on some terminology and notation.A binary tree is either an atom or an ordered pair of two binary trees. Theatoms we most commonly use are numbers, characters, strings of characters,and symbols. We will very occasionally include other atoms in our trees, namely\pseudo-symbols."We consider the numbers, characters, strings, symbols and ordered pairsto be �ve di�erent types of objects, i.e., disjoint sets of objects.1 The integerone is di�erent from the character that prints as \1" and is also di�erent fromthe character string containing that one character. We hope that is obvious.Many readers may never have thought about the symbol whose name consistsof the single character \1". But it exists (in the universe we are imagining) andis distinct from the number, character, and string just mentioned. Finally, theordered pair whose �rst component is the integer 1 and whose second componentis, say, the number 0 is di�erent from the other four objects.We obviously need a way to write down these �ve objects. Here they are inthe notation we use:� the integer one: 1� the character \1": #\1� the string containing one \1": "1"� the symbol whose name is the above string: |1|� the ordered pair containing 1 and 0: (1 . 0)The above display probably raises more questions than it answers! But itshould bring home three points. First, �ve distinct mathematical objects areshown. Second, they are all examples of binary trees (the �rst four are atomic,the last is not). Third, we need to agree on a notation for binary trees.Here is a display of more typical examples of these �ve di�erent kinds ofobjects:1And we consider the pseudo-symbols to be a sixth type, not actually available in theACL2 implementation. 7

� numbers:{ integers: 123, -17{ rationals: 22/7, -127/128{ complex rationals: #c(3 1/2) (i.e., 3 + 12 i)� characters: #\A, #\a, #\Space, #\,� strings: "I am.", "She said \"Hi!\" once." (the character after theword \said" is #\Space and the character after that is \string quote mark,"#\")� symbols: X, NIL, A1, |a1| (the �rst character in this symbol's name is alower-case \a", not a vertical bar), LISP::A1 (the �rst character in thissymbol's name is an upper-case \A"; the \package name" of the symbolis "LISP")� lists and pairs: (1 2 3), ((ABC 1) (DEF 2)), (0 . 1)We now discuss the notation for each of these types.3.1 NumbersIntegers are written as sequences of digits. Base 10 is the most common oneused here. So 123 is the integer one hundred twenty three.But we might also write numbers in binary (#b1111011), octal (#o173) orhexadecimal (#x7B). In numeric notation, case is unimportant. So #B1111011and #X7b are also integers. In fact, the same integer is shown in each of theexamples so far, namely 123.The (optional) sign of a number is written immediately before the digitsequence. Thus, -6 is #b-110 and also #o-6.We use typewriter font when we write integers and the other formal math-ematical objects. In such expressions we are always referring to the objectdenoted, not the particular string of glyphs chosen. For example, we might say\#b1111100 is one larger than 123." More likely we would say \124 is one largerthan 123" or \#b1111100 is one larger than #b1111011" but the point is thatwe are not talking about the notation used but the integers denoted. We mightsay \when we write 123 in binary as `#b1111011' nine characters are written."When we talk about notation we generally enclose the notation in quotationmarks, as done above. But generally, except in this preamble, we do not talkabout notation, just the things denoted.Rationals are written as optionally signed, possibly improper, fractions, witha slash separating the \top" of the fraction from the \bottom." Thus, -1/2and 7/2 are rationals. We do not use \mixed notation" to write non-integerrationals; that is, we will not again write 3 12 to mean 7/2.8

We used the terms \top" and \bottom" above in reference to the parts of thefractional notation. We use the terms \numerator" and \denominator" exclu-sively in reference to rationals. The numerator and denominator of a rational rare, respectively, the relatively prime integers i and j (j > 0) such that r = i=j.\5/10" is just another way to write 1/2. More bluntly, 5/10 is 1/2. Thenumerator of 5/10 is 1 and the denominator is 2.The integers are a subset of the rationals. \12/4" is another way to write 3.More bluntly, 12/4 is 3. The denominator of 12/4 is 1.Rationals can be written in binary, octal, or hexadecimal notation. -123/20is #b-1111011/10100 and #o-173/24 and also #x-7B/14.We also need a notation for certain complex numbers, namely the ones whosereal and imaginary parts are rationals. \#c(x y)", where x and y are rationals,is the way we write the complex number more commonly written x + yi. Ofcourse, if y is 0, the number denoted is the rational x. Thus, #c(123 0) is 123.Following traditional mathematical usage, a \complex number" is any num-ber of the form x + yi, for real x and y. Thus, the complex numbers includethe rationals and integers. But when we say a complex number is a \complexrational" we mean its imaginary part is non-0. Thus, the rationals and the com-plex rationals are disjoint. Together they constitute what we call the \ACL2numbers" or simply the \numbers," when the simpler term is not confusing.The ACL2 numbers are a subset of the complex numbers.Di�erent bases may be used to write the two parts of an ACL2 complexnumber. For example, #c(6 -17/10) is #c(#b110 #x-11/A).3.2 CharactersEach character object has a \name" and a unique integer \character code."Character objects are written by writing a number sign, a backslash and thenthe name of the character. The character names and their codes are shown inTable 1. As indicated by our examples, some characters, like #\Space, havenames that are di�erent from the glyph. In addition to the code for each char-acter, Table 1 gives several other characteristics which are explained when wediscuss symbols.Thus, for example, #\A is the character object whose code is 65, #\a is thecharacter with code 97, and #\Newline is the character with code 10. #\A isa di�erent object than #\a. Other than the fact that distinct characters havedistinct codes and the fact that characters are distinct from the other kinds ofobjects, characters have no interesting properties.The correspondence between characters and their codes is an extension ofthe ASCII convention. Each character corresponds to a single (but perhapschorded) keystroke on a standard keyboard. While this document does not ingeneral try to deal with the practical issues of using ACL2 at your terminal,note that the \control characters," that is, those where 0 � code � 31 and name9

code name n s0 ^@1 ^A2 ^B3 ^C4 ^D5 ^E6 ^F7 ^G8 Backspace9 Tab10 Newline s11 ^K12 Page13 Return14 ^N15 ^O16 ^P17 ^Q18 ^R19 ^S20 ^T21 ^U22 ^V23 ^W24 ^X25 ^Y26 ^Z27 ^[28 ^\29 ^]30 ^^31 ^_32 Space s33 !34 " s35 # s36 $37 %38 &39 ' s40 (s41) s42 *

code name n s43 + n44 , s45 - n46 . n s47 /48 0 n49 1 n50 2 n51 3 n52 4 n53 5 n54 6 n55 7 n56 8 n57 9 n58 : s59 ; s60 <61 =62 >63 ?64 @65 A66 B67 C68 D69 E70 F71 G72 H73 I74 J75 K76 L77 M78 N79 O80 P81 Q82 R83 S84 T85 U

code name n s86 V87 W88 X89 Y90 Z91 [92 \ s93]94 ^ n95 _ n96 ` s97 a s98 b s99 c s100 d s101 e s102 f s103 g s104 h s105 i s106 j s107 k s108 l s109 m s110 n s111 o s112 p s113 q s114 r s115 s s116 t s117 u s118 v s119 w s120 x s121 y s122 z s123 {124 | s125 }126 ~127 RuboutTable 1: The ACL2 Character Set
10

is a caret followed by a letter, are generally typed by chording the \Control"key and the key of the indicated letter.We have informal names for some of the characters because the notation issometimes jarring.� #\" (code 34): \string quote mark" or \double gritch,"� #\# (code 35): \hash mark" or \number sign"� #\' (code 39): \quote mark" or \single gritch,"� #\\ (code 92): \backslash"� #\| (code 124): \vertical bar"So we might say \a string quote should be preceded by a backslash" insteadof saying \#\" should be preceded by #\\."3.3 StringsCharacter strings are delimited with string quote marks (#\") at each end. Toindicate that the string contains a string quote mark, you must precede eachsuch occurrence of string quote mark by a backslash. Similarly, to indicatethat the string contains a backslash you must precede each such occurrence ofbackslash by a backslash. The number of characters in the string is called itslength.Thus, "ABC" is a string of length three; the successive characters in it are#\A, #\B, and #\C."A\"B" is also a string of length three; the successive characters in it are#\A, #\", and #\B."A\\B" is also a string of length three; the successive characters in it are#\A, #\\, and #\B.3.4 SymbolsSymbols are the most complicated of our atoms, notationally. Technically, everysymbol is composed of two strings, the �rst called the package name and thesecond called simply the name of the symbol. These two are generally separatedby two colons when we write symbols. For example, LISP::ABC is a symbol. Itspackage name is the string "LISP" and its name is the string "ABC".The notation for symbols is complicated by three factors.� The package name and colons can sometimes be omitted.� The names of symbols (and indeed of packages) can consist of arbitrarycharacters and thus can look like numbers, strings, etc.; a new \escape"convention is required. 11

� Some symbols are abbreviations for others, depending on the \packagesystem."Before discussing symbols further it is convenient to be precise about pack-ages. A package is a pair consisting of a string, called the package name of thepackage, and a �nite sequence of symbols, called the imports list of the package.No two symbols in the imports list may have the same name.A package system is a �nite sequence of packages, each of which has a uniquepackage name. Furthermore, the imports list of each package in the system mayonly contain symbols whose package names are those of packages occurringearlier in the package system sequence. Thus, the �rst package in the sequencemust have an empty imports list, the second package may only import symbolsfrom the �rst package, the third may import symbols from both of the �rst two,etc.The package system of a history, recall, is the initial package system inAppendix A as extended chronologically by each of the DEFPKG events in thehistory. The admissibility requirements on DEFPKG insure the invariants aboveon the package names and imports lists. Among the packages in the initialpackage system are three especially important ones, named "KEYWORD", "LISP",and "ACL2".The witness symbol for the package named p in a package system is a dis-tinguished symbol whose package name is p. We explain how to construct thewitness symbol in Appendix A.Recall that every history also has a designated \current package." Here,that package is the one named "ACL2".When we write symbols, the package name and the colons may be omittedas follows.� If the package name of a symbol is "KEYWORD", it su�ces to write just onecolon preceding the symbol's name, e.g., :ABC is KEYWORD::ABC, or lessbluntly, \:ABC" and \KEYWORD::ABC" are two di�erent notations for thesame symbol. The symbol in question has package name "KEYWORD" andname "ABC".� If the package name of a symbol is that of the current package, the packagename and both colons can be omitted, e.g., if the current package name is"ACL2", then ABC is ACL2::ABC. That is, (given the current package name)the package name of ABC is "ACL2" and the name is "ABC".In a way, the current package is to the notation for symbols what the \currentbase" would be in the notation for numbers. One can imagine a math booksaying, \the numbers in this section are written in octal." Such a remark woulda�ect one's reading of all the numbers in the section. The designation of thecurrent package analogously a�ects how symbols are read and written.Symbol names can be arbitrary strings of characters. The name of thesymbol ABC is "ABC". Since symbol names are arbitrary strings, there is a12

symbol with name "123". Clearly, that symbol is not 123, since 123 is aninteger, and it is not "123", because that is a string. The symbol whose name is"123" is |123|. The symbol whose name is "|123|" is |\|123\||. That is, toindicate a symbol whose name string contains a vertical bar, you must precedethe occurrence of the vertical bar by a backslash.Every symbol name and package name could be delimited by vertical bars(with the explicit vertical bars in the names being \escaped" with backslashas above). That is, ABC is |ABC|, which is also |ACL2|::|ABC|. However,by convention, we only write the vertical bars when, without them, the symbolwould be mistaken for a number or some other binary tree, or when the symbol'sname has lower-case characters in it. More precisely, if the �rst character in thesymbol's name string is one of those marked with n (for \numeric") in Table 1or the name string contains any of the characters marked with s (for \signs andlower-case"), then the vertical bar notation is mandatory. Otherwise it maybe dropped; when the vertical bar notation is not used for a symbol, all thealphabetic characters in its name are understood to be in upper-case.The convention concerning case allows us to write a symbol in lower-case eventhough all the alphabetic characters in its name are upper-case. For example,abc is ABC. The symbol with name "abc" is |abc|.Technically, every symbol can be written down in the form |p|::|name|,where "p" is the name of a package and "name" is the name of the symbol.(This statement must be understood in the context of the \backslash escape"notation. For example, if "p" is "|||" then by \|p|" we mean \|\|\|\||".)Finally, some symbols are abbreviations for others. This is akin to theconvention that \5/10" is just another way to write 1/2, or as we have saidbefore, 5/10 is 1/2. Similarly, ACL2::NIL is LISP::NIL. Why? What are therules for determining when two di�erent notations denote the same symbol?The fundamental idea involved in resolving the denotation of \x/y" is thenotion of relatively prime integers. The fundamental idea involved in resolvingthe denotation of \|p|::|name|" is the notion of importation, as speci�ed bythe current package system.ACL2::NIL is LISP::NIL because the latter symbol is imported into the"ACL2" package in the current package system. The list of symbols importedinto an ACL2 package is �nite and �xed forever at the time the package isadmitted. The imports list is recorded with the package name in the packagesystem in the history. No two symbols with the same name may be importedinto a package and the package name of every symbol imported must have beenadmitted earlier in the history. These invariants give us a simple algorithm forresolving symbol notation.To read fractional notation one must be able to answer the question \whatis the numerator and denominator of the denoted rational?" To read symbolnotation one must be able to answer the question \what is the package nameand name of the denoted symbol?"The name of the symbol denoted by \|p|::|name|" is the string "name".13

Here is how you determine the package name of the denoted symbol. Lookat the list of symbols declared imported when package "p" was admitted. Ifnone of them have the name "name", the package name of |p|::|name| isthe string "p". If, on the other hand, one of them, x, has the name "name",then recursively determine the package name of x. This algorithm is �nite anddeterministic because of the ACL2 importation rules.What symbol is meant when we write \QUOTE" in this document? Obvi-ously, some symbol with name "QUOTE", but which one? What is the packagename of QUOTE? The current package is understood here to be "ACL2", so hereQUOTE is ACL2::QUOTE. Inspection of Appendix A and Appendix B reveals thatLISP::QUOTE is imported into the "ACL2" package. So the package name ofACL2::QUOTE is the package name of LISP::QUOTE. Inspection of Appendix Aagain reveals that no symbols are imported into the "LISP" package. Thus,the package name of LISP::QUOTE, and hence of ACL2::QUOTE and of QUOTE, is"LISP".Similarly, the package name of T is "LISP". The package name of NIL is"LISP". But the package name of ABC, i.e., of ACL2::ABC, is "ACL2", becauseno symbol with name "ABC" is imported into the "ACL2" package.For typographic reasons, sometimes when we are speaking informally wemay break long symbols on hyphens or colons, e.g.,The symbol *COMMON-LISP-SYMBOLS-FROM-MAIN--LISP-PACKAGE* is de�ned in an Appendix.provided the context permits an unambiguous interpretation. An extra hyphenis added at the break.3.5 Ordered PairsSo far we have just talked about the \atoms" in our binary trees. How do wewrite pairs? We seldom use the traditional notation for pairs, hx; yi. Instead,we use a more elaborate notation that is ultimately more succinct.Consider an arbitrary ordered pair p containing x and y. One way to write itis (x . y). But if y can be written in such parenthetical notation, e.g., (:::),then a more succinct way to write p is (x :::). Finally, one way to write NIL is(), i.e., as an empty pair of parentheses.For example, let p1 be the pair whose �rst component is the symbol X andwhose second component is NIL. Then we could write p1 as (X . NIL) or (X .()) but we prefer the more succinct (X).Now let p2 be the pair whose �rst component is the integer 123 and whosesecond component is p1. We can write p2 as (123 . (X)) but usually preferthe more succinct (123 X).Finally, let p3 be the pair whose �rst component is p2 and whose secondcomponent is also p2. Then p3 can be written ((123 X) 123 X). It could alsobe written ((123 X) . (123 X)), which might sometimes be preferred.14

A binary tree whose rightmost branch is n long and concludes with the atomatm could be written (x1 . (x2 . (... . (xn . atm)...))) but, us-ing the more succinct notation above is most commonly written as (x1 x2 :::xn . atm). Such a tree is often called a \sequence" or \list" of \length" n.Its \elements" are enumerated in the order shown, i.e., the �rst element is x1and the last is xn. In the special case that atm is NIL, we call the list a true listand, of course, it can be written (x1 x2 ::: xn).When we write ordered pairs we allow an arbitrary (non-empty) amount of\whitespace" where we show spaces above. By whitespace we mean spaces, newlines, and comments. A comment is text delimited on the left by a semi-colonand on the right by the end of line.Below we show the true list of length four containing, successively, the symbolABC, the list p3 above, the string "I am." and the symbol |(I am)|.(ABC ; The first element of the sequence is a symbol.; This is a comment.((123 X) ; The second element is a list.123X)"I am." ; The third is a string.|(I am)| ; The fourth is a symbol.; And now we close.) Finally, a binary tree of the form (QUOTE x), that is, a true list of lengthtwo whose �rst element is the symbol QUOTE and whose second is some tree x,may be abbreviated 'x.Thus, for example, (H 'ABC (G X Y)) is (H (QUOTE ABC) (G X Y)) and(H ''ABC) is (H (QUOTE (QUOTE ABC))).What ordered pair is ''2? The answer is (QUOTE (QUOTE 2)), i.e., the truelist of length two whose �rst element is the symbol QUOTE and whose secondelement is the true list of length two whose �rst element is the symbol QUOTEand whose second element is the integer 2.One might try to parse \''2" as two binary trees, the �rst being \''" andthe second being \2". To proceed along these lines, \''" would have to beparsed as \(QUOTE ')". But \'" denotes no binary tree in our notation; inparticular, it is not how we write any number, character object, string, symbolor list. If one is tempted to write \'" as a binary tree one is probably thinking ofthe character #\', the string "'", the symbol |'| or perhaps the symbol QUOTE.But \'" doesn't denote a binary tree so \''" cannot be seen as one either.3.6 S-ExpressionsThe notation we have just described for binary trees is that supported by Com-mon Lisp. In Lisp parlance, a binary tree is called an s-expression (or symbolic15

expression). Henceforth, we use the term \s-expression" rather than \binarytree." But the reader should keep in mind that by s-expression we just mean avery familiar and simple mathematical object: a binary tree of several kinds ofatoms.We assume the reader is able to parse the notation so that when we exhibit ans-expression the appropriate binary tree comes to mind. We assume no specialproperties of the components, e.g., the characters or symbols, other than thosesketched above, namely how to read and write the di�erent objects.To talk about s-expressions it is convenient to use so-called metavariablesthat are understood by the reader to stand for other s-expressions or theircomponents. We use typewriter font when we exhibit particular s-expressionsor components and italics when we exhibit metavariables.For example, if f is understood to stand for the symbol CONS, and t to standfor the s-expression (CAR X), then by (f t X) we mean the s-expression (CONS(CAR X) X).If n is the integer 123 and we use Xn as a symbol, we mean the symbol X123.This meta-convention arbitrarily adopts decimal notation. (A careful readeronce asked \If n is the integer #b1111011, doesn't Xn mean |X#b1111011|?")This concludes our review of notation. We will now identify certain s-expressions as \terms" in our formal logic and proceed to give the axioms andrules of inference.4 Formal SyntaxNote. In this section we describe the set of s-expressions that represent the\terms" of our formal language. For those readers unfamiliar with the taxonomyof traditional formal logical syntax: formulas are built out of terms, axioms areformulas, and rules of inference allow us to manipulate formulas (sometimes bymanipulating the terms in them, as by replacing the variables by other terms).The rules of inference are most clearly stated if the structure of formulas is verysimple. Thus we follow logical tradition when we describe a very simple termlanguage and then, in Section 6, extend it with a host of abbreviations so thatit is convenient to use.Terminology. A symbol v is a variable symbol of our language unless prohibitedas below:� Symbols marked with (*) in Appendix B are not variable symbols. Thisprohibition means that T and NIL (among many others) are not variablesymbols.� Symbols with package name "KEYWORD" are not variable symbols.16

constant comment0 zero1 oneNIL false; empty listSTRING symbolic tokenACL2::WITNESS ACL2 package witness symbolLISP::WITNESS LISP package witness symbolKEYWORD::WITNESS KEYWORD package witness symbolACL2-OUTPUT-CHANNEL::WITNESS ACL2-OUTPUT-CHANNEL package witness symbolACL2-INPUT-CHANNEL::WITNESS ACL2-INPUT-CHANNEL package witness symbolACL2-PC::WITNESS ACL2-PC package witness symbolACL2-USER::WITNESS ACL2-USER package witness symbolTable 2: The ACL2 Primitive Constants� Symbols whose names start and end with the character #* are not vari-able symbols.� Symbols whose names start with #\& are not variable symbols.� Symbols with package name "LISP" that are not listed in Appendix B arenot variable symbols.Terminology. A primitive formal constant is an s-expression of length twowhose �rst element is the symbol QUOTE and whose second element is one of theintegers or symbols listed in Table 2.Examples. '0 and 'ACL2::WITNESS are primitive formal constants. Perhapssurprisingly, '3 and 'ABC are not formal constants in our language. We havechosen to keep the term structure exceedingly simple; in any given history,the set of formal constants is �nite. We introduce abbreviation conventionsallowing us to use other s-expressions, such as '3 and 'ABC, as though theywere constants; in fact these abbreviations are \expanded" into formal termsinvolving the formal constants above.Terminology. A symbol f is a function symbol of our language unless prohib-ited as below:� Symbols with package name "KEYWORD" are not function symbols.� Symbols with package name "LISP" are not function symbols unless theyare so de�ned in this document.Terminology. Associated with every function symbol in a history h is a non-negative integer called the arity of the symbol. The arity indicates how manyargument terms must follow each application of the function symbol. The arity17

function symbol arity commentBINARY-* 2 multiplies two numbersBINARY-+ 2 adds two numbersUNARY-- 1 negates a numberUNARY-/ 1 inverts a number< 2 less than on the rationalsBOOLEANP 1 recognizes 'T and `NILCAR 1 �rst element of a listCDR 1 all but �rst element of a listCHAR-CODE 1 maps characters to integersCHARACTERP 1 recognizes charactersCODE-CHAR 1 maps integers to charactersCOMPLEX 2 builds a complex from two rationalsCOMPLEX-RATIONALP 1 recognizes a complex numberCOERCE 2 maps between character lists and stringsCONS 2 builds a listCONSP 1 recognizes a non-empty listDENOMINATOR 1 denominator of a rationalEQUAL 2 equality predicateIF 3 if-then-elseIMAGPART 1 imaginary part of a complexINTEGERP 1 recognizes integersINTERN-IN-PACKAGE-OF-SYMBOL 2 maps a string to a symbolNUMERATOR 1 numerator of a rationalRATIONALP 1 recognizes rationalsREALPART 1 real part of a complexSTRINGP 1 recognizes strings of charactersSYMBOL-NAME 1 name of a symbolSYMBOL-PACKAGE-NAME 1 package name of a symbolSYMBOLP 1 recognizes symbolsTable 3: The ACL2 Primitive Function Symbolsof each primitive function symbol is given in Table 3, along with a brief descrip-tive comment. Certain of our axioms, namely those labeled \(Def)," introduceadditional function symbols with equations that relate the new symbols to oldones. Table 3 should be understood to be extended by appropriate entries forthese \de�ned" symbols.Terminology. An s-expression t is a formal term of a history h if and only if� t is variable symbol;� t is a primitive formal constant of h ; or� t is of the form (f t1:::tn), where f is a function symbol with arity n inthe arity table of h and the ti are formal terms of h.Examples. The following are formal terms (in every history h):18

(CONS X (CONS Y 'NIL))(BINARY-+ '1 (BINARY-* U V))(IF B(BINARY-+ '1(BINARY-+ '1 '1))(CAR (CDR X)))Terminology. A term t is a call of f with arguments a1, :::, an i� t has theform (f a1 ::: an).Terminology. If a term t is a call of f we say f is the top function symbol oft. A function symbol f is called in a term t i� either t is a call of f or t is anonvariable, non-constant term and f is called in an argument of t. The set ofsubterms of a term t is ftg if t is a variable symbol or constant and otherwise isthe union of ftg together with the union of the subterms of the arguments of t.The variables of a term t is the set of variable subterms of t.Examples. The term (CONS X Y) is a call of CONS with arguments X and Y.CONS is called in (IF A (CONS X Y) B). The set of subterms of (CONS X Y) isf(CONS X Y), X, Yg. The set of variables of (CONS X Y) is fX, Yg.Terminology. A function symbol f is new in a history h i� f is called in noaxiom of h (except for the Propositional, Re
exivity, and Equality Axioms ofSection 5).Terminology. A �nite set � of ordered pairs is said to be a substitution pro-vided that for each ordered pair hv; ti in �, v is a variable, t is a term, and noother member of � has v as its �rst component. The result of substituting asubstitution � into a term or formula x, denoted x=�, is the term or formulaobtained by simultaneously replacing, for each hv; ti in �, each occurrence of vas a variable in x with t. We sometimes say x=� is the result of instantiating xwith �. We say that x0 is an instance of x if there is a substitution � such thatx0 is x=�.Example. If � is fh X, (CAR L) i, h Y, Z i, h G, FOO ig then � is a substitution.If G is a function symbol of two arguments, then(CONS X (G Y X))is a term, which we shall here call p. Then p=� is the term(CONS (CAR L) (G Z (CAR L))).Note that even though the substitution contains the pair h G, FOO i the occur-rence of G in p was not replaced by FOO since the occurrence of G is not as avariable. 19

5 Propositional Calculus with EqualityNote. Our logic is built on top of traditional propositional calculus with equal-ity. Any classical formalization of propositional calculus and equality will suitour purposes. So that this document is self-contained we have included one suchformalization, namely that of Shoen�eld [5]. Shoen�eld formalizes propositionalcalculus with one axiom schema and four rules of inference. He introduces equal-ity with three axiom schemas. We then add the rule of instantiation in place ofthe parts of [5] that refer to quanti�cation, since our logic is quanti�er-free.Terminology. The pseudo-symbols are =, 6=, :, _, ^, ! and $.Note. The pseudo-symbols are not symbols as we have de�ned symbols. (Thecareful reader will notice the di�erence between the pseudo-symbol = andthe symbol =.) We will use pseudo-symbols as atoms in a certain class of s-expressions described below, called formulas.Terminology. An atomic formula is any s-expression of the form (t1 = t2),where t1 and t2 are terms. A formula is either an atomic formula, or else of theform (:�), where � is a formula, or else of the form (�1 _ �2), where �1 and �2are both formulas. Parentheses are omitted from formulas (but not from terms)when no ambiguity arises.Terminology. Generally, we use Greek letters as metavariables standing forformulas. Greek letters, in particular \�", are also used to stand for substitu-tions.Terminology. We extend the notion of \instance" in the natural way so that aninstance �=� of a formula � under a substitution � is obtained by instantiatingevery term in � with �.Abbreviation. When (t1 6= t2) is used as a formula it is an abbreviation for theformula (:(t1 = t2)). When (�1 ! �2) is used as a formula, it is an abbreviationfor (:�1 _ �2). When (�1 ^ �2) is used as a formula, it is an abbreviation forthe formula :(:�1 _ :�2). When (�1 $ �2) is used as a formula, it is anabbreviation for the formula abbreviated by (�1 ! �2) ^ (�2 ! �1).Axiom Schema (the Propositional Axiom).(:� _ �)Note. By this we mean to add such an axiom for every formula �.Rules of Inference.� Expansion: derive (�1 _ �2) from �2;� Contraction: derive � from (� _ �);20

� Associativity: derive ((�1 _ �2) _ �3) from (�1 _ (�2 _ �3)); and� Cut: derive (�2 _ �3) from (�1 _ �2) and (:�1 _ �3).Axiom Schema (Re
exivity).(x = x)Axiom Schema (Equality Axioms for Functions).For every function symbol f of arity n we add:((X1 = Y1) !::: ((Xn = Yn) !(f X1 ::: Xn) = (f Y1 ::: Yn)):::)Axiom. (Equality Axiom for =)((X1=Y1) ! ((X2=Y2) ! ((X1=X2) ! (Y1=Y2)))):Rule of Inference. Instantiation:Derive �=� from �.6 Primitive MacrosTerminology. When we write \pat =)term" or say that \pat is an abbrevia-tion for term" we mean that when an s-expression x matching pat is used wherea formal term is expected and the corresponding interpretation of term is (orabbreviates) a formal term, t, then x should be read as t.The formally inclined reader may prefer to think of this section as de�ninga map, =), from a certain set of s-expressions (containing all terms and allabbreviations of terms) to a subset of it (the set of terms). More precisely, =)isthe transitive closure of the relation given below. Although =)is a function, itis not one-to-one; for example, we'll see that both 2 and '2 abbreviate the sameterm, namely (BINARY-+ '1 '1).Note. ACL2 provides a \macro" facility (derived from the one in Common Lisp[7]) whereby the user can add abbreviations. In our implementation of ACL2we add most of the abbreviations below as macros that expand as shown here.Abbreviation. We use (AND p1:::pn) to abbreviate certain formal terms asindicated by the sequence of examples below.� (AND) =)'T.� (AND p1) =)p1. 21

� (AND p1 p2) =)(IF p1 p2 'NIL).� (AND p1 p2 p3) =)(IF p1 (IF p2 p3 'NIL) 'NIL).� (AND p1 p2 p3 p4) =)(IF p1 (IF p2 (IF p3 p4 'NIL) 'NIL) 'NIL).� etc.Abbreviation. We use (OR p1:::pn) to abbreviate certain formal terms asindicated by the sequence of examples below.� (OR) =)'NIL.� (OR p1) =)p1.� (OR p1 p2) =)(IF p1 p1 p2).� (OR p1 p2 p3) =)(IF p1 p1 (IF p2 p2 p3)).� (OR p1 p2 p3 p4) =)(IF p1 p1 (IF p2 p2 (IF p3 p3 p4))).� etc.Abbreviation. We use (+ x1:::xn) to abbreviate certain formal terms as in-dicated by the sequence of examples below.� (+) =)'0.� (+ x1) =)(BINARY-+ '0 x1).� (+ x1 x2) =)(BINARY-+ x1 x2).� (+ x1 x2 x3) =)(BINARY-+ x1 (BINARY-+ x2 x3)).� (+ x1 x2 x3 x4) =)(BINARY-+ x1 (BINARY-+ x2 (BINARY-+ x3 x4))).� etc.Abbreviation. We use (* x1:::xn) to abbreviate certain formal terms as in-dicated by the sequence of examples below.� (*) =)'1.� (* x1) =)(BINARY-* '1 x1).� (* x1 x2) =)(BINARY-* x1 x2).� (* x1 x2 x3) =)(BINARY-* x1 (BINARY-* x2 x3)).22

� (* x1 x2 x3 x4) =)(BINARY-* x1 (BINARY-* x2 (BINARY-* x3 x4))).� etc.Abbreviation.� (- x1) =)(UNARY-- x1).� (- x1 x2) =)(BINARY-+ x1 (UNARY-- x2)).Abbreviation.� (/ x1) =)(UNARY-/ x1).� (/ x1 x2) =)(BINARY-* x1 (UNARY-/ x2)).Abbreviation. (LET ((v1 a1) ::: (vn an)) term) =)termfhv1;a1i;:::hvn;anig, where the vi are distinct variable symbols.Abbreviation. ((LAMBDA (v1 ::: vn) term) a1 ::: an) =)(LET ((v1 a1) ::: (vn an)) term).Abbreviation.� (LET* () term) =)term.� (LET* ((v1 a1) :::) term) =)(LET ((v1 a1)) (LET* (:::) term)).Abbreviation.� (COND) =)'NIL.� (COND (T x)) =)x.� (COND (p x) :::)=)(IF p x (COND :::)), when p is not the s-expressionT.Abbreviation.� (LIST) =)'NIL.� (LIST x1 :::) =)(CONS x1 (LIST :::)).Abbreviation. 23

� (LIST* x1) =)x1.� (LIST* x1 x2 :::) =)(CONS x1 (LIST* x2 :::)).Examples. Thus, (LIST X Y Z)=)(CONS X (CONS Y (CONS Z 'NIL)))while(LIST* X Y Z) =)(CONS X (CONS Y Z)).Abbreviation.� (<= x y) =)(NOT (< y x)).� (> x y) =)(< y x).� (>= x y) =)(NOT (< x y)).Abbreviation.� (CAAR x) =)(CAR (CAR x)).� (CADR x) =)(CAR (CDR x)).� (CDAR x) =)(CDR (CAR x)).� (CDDR x) =)(CDR (CDR x)).� (CAAAR x) =)(CAR (CAAR x)).� (CAADR x) =)(CAR (CADR x)).� (CADAR x) =)(CAR (CDAR x)).� (CADDR x) =)(CAR (CDDR x)).� (CDAAR x) =)(CDR (CAAR x)).� (CDADR x) =)(CDR (CADR x)).� (CDDAR x) =)(CDR (CDAR x)).� (CDDDR x) =)(CDR (CDDR x)).� (CAAAAR x) =)(CAR (CAAAR x)).� (CAAADR x) =)(CAR (CAADR x)).� (CAADAR x) =)(CAR (CADAR x)).� (CAADDR x) =)(CAR (CADDR x)).� (CADAAR x) =)(CAR (CDAAR x)).24

� (CADADR x) =)(CAR (CDADR x)).� (CADDAR x) =)(CAR (CDDAR x)).� (CADDDR x) =)(CAR (CDDDR x)).� (CDAAAR x) =)(CDR (CAAAR x)).� (CDAADR x) =)(CDR (CAADR x)).� (CDADAR x) =)(CDR (CADAR x)).� (CDADDR x) =)(CDR (CADDR x)).� (CDDAAR x) =)(CDR (CDAAR x)).� (CDDADR x) =)(CDR (CDADR x)).� (CDDDAR x) =)(CDR (CDDAR x)).� (CDDDDR x) =)(CDR (CDDDR x)).7 Abbreviations for Quoted ConstantsNote. It would be nice to be able to say that \((+ 2 2) = 4) is a theorem."But 2 and 4 are not formal terms. It is convenient to have a notation for repre-senting \constants," that is, variable-free terms constructed from the primitiveconstants and function symbols. We now introduce abbreviation conventionsthat codify the construction of all of the s-expressions built from numbers, char-acters, strings and/or symbols. That is, if x is such an s-expression then therules below are su�cient to make 'x an abbreviation for a formal term.Terminology.� '2 =)(+ '1 '1).� '3 =)(+ '1 '2).� '4 =)(+ '1 '3).� More generally, 'n, where n is an integer greater than 1, and n = m+ 1,abbreviates (+ '1 'm).� '-1 =)(- '1).� '-2 =)(- '2).� '-3 =)(- '3). 25

� More generally, '-n, where n is a positive integer, abbreviates (- 'n).� 'r, where r is a non-integer rational with numerator i and denominatorj (i.e., r = i=j where i and j are relatively-prime integers and j > 1),abbreviates (* 'i (/ 'j)).� 'c, where c is a complex rational with real part x and imaginary part y,abbreviates (COMPLEX 'x 'y).Together with '0 and '1, the above terms are the numeric constants.Example. '4 abbreviates the formal term(BINARY-+ '1 (BINARY-+ '1 (BINARY-+ '1 '1))).The s-expression '4/3 abbreviates (the same term as abbreviated by) (* '4 (/'3)). The s-expression '#c(4 3) abbreviates (the same term as abbreviatedby) (COMPLEX '4 '3).Abbreviation. 'char =)(CODE-CHAR 'code), when char is a character objectwith character code code. (See Table 1.) Such terms are the character constants.Examples. '#\A is an abbreviation for (CODE-CHAR '65). '#\Newline is anabbreviation for (CODE-CHAR '10).Abbreviation. 'string =)(COERCE (LIST 'char1 ::: 'charn) 'STRING)when string is a string of length n containing, successively, the character objectschar1; :::; charn. Such terms are the string constants.Example. '"I am" is an abbreviation for(COERCE (LIST '#\I '#\Space '#\a '#\m) 'STRING).The term '"Say \"Hi!\" Jo" is an abbreviation for(COERCE (LIST '#\S '#\a '#\y '#\Space'#\" '#\H '#\i '#\! '#\" '#\Space'#\J '#\o)'STRING)Abbreviation. 'symbol =)(INTERN-IN-PACKAGE-OF-SYMBOL 'name 'witness), when symbol is a symbolnot listed in Table 2, name is the name of symbol and 'witness is the witnesssymbol (see below) for the package name of symbol. (Note that 'witness isthus a primitive constant.) Together with the primitive constants other than'0 and '1, such terms are the symbol constants.Example. The symbol constant 'ABC is an abbreviation for26

(INTERN-IN-PACKAGE-OF-SYMBOL '"ABC" 'ACL2::WITNESS).That is, in turn, an abbreviation for(INTERN-IN-PACKAGE-OF-SYMBOL(COERCE (LIST '#\A '#\B '#\C)'STRING)'ACL2::WITNESS)which is an abbreviation for(INTERN-IN-PACKAGE-OF-SYMBOL(COERCE (LIST (CODE-CHAR '65)(CODE-CHAR '66)(CODE-CHAR '67))'STRING)'ACL2::WITNESS).We could, of course, further expand the integers above into the form (BINARY-+'1 (BINARY-+ '1 :::)). Furthermore, since the current package is ACL2 wecould write 'ACL2::WITNESS as simply 'WITNESS but we chose to make thepackage explicit since that is the role of the second argument of INTERN-IN--PACKAGE-OF-SYMBOL.Example. Since the ACL2 package is the current package, 'T is 'ACL2::T. Butthe symbol ACL2::T is LISP::T, since the symbol LISP::T is imported into theACL2 package. Hence, the formal term abbreviated by 'T is(INTERN-IN-PACKAGE-OF-SYMBOL '"T" 'LISP::WITNESS).Abbreviation. '(s1 s2 ::: sn) =)(LIST 's1 's2 ::: 'sn).Abbreviation. '(s1 s2 ::: . sn) =)(LIST* 's1 's2 ::: 'sn�1 'sn).Note. We appear to have given two con
icting abbreviation rules above. Forexample the �rst can be applied directly to '(1 2) to produce (LIST '1 '2).But the second can be applied to '(1 2) also if we �rst write that s-expressionequivalently as '(1 2 . NIL). This produces the term (LIST* '1 '2 'NIL).Which is meant? The answer is that it doesn't matter: the two \terms" areabbreviations for the same term.Note. The foregoing abbreviations, together with the primitive constants ofTable 2, su�ce to allow us to write 'x as a term, for all s-expressions x composedof the numeric, character, string or symbol atoms. It is convenient to allow thesingle quote mark to be dropped in certain cases where ambiguity does not arise.Abbreviation.� T =)'T. 27

� NIL =)'NIL.� keyword =)'keyword, when keyword is a symbol whose package nameis "KEYWORD".� n =)'n, when n is a number.� char =)'char, when char is a character.� string =)'string, when string is a string.Note. If we were to drop the single quote mark on an arbitrary symbol, allowingABC to be an abbreviation for 'ABC, then ambiguity results because ABC is aformal term, namely a variable symbol. Similarly, if we were to drop the singlequote mark on lists, allowing (CAR X) to be an abbreviation for '(CAR X), thenambiguity might result since some lists are formal terms.Example. It is clarifying of our conventions to consider what is meant when''2 is used as a term. To use ''2 as a term is to imply it is an s-expression.Recall that the s-expression ''2 is (QUOTE (QUOTE 2)).So what term is abbreviated by ''2? The answer is (CONS 'QUOTE (CONS'2 'NIL)):2''2 is the same as'(QUOTE 2) which abbreviates(LIST 'QUOTE '2) which abbreviates(CONS 'QUOTE (CONS '2 'NIL))where 'QUOTE and '2 could be further expanded, though we stop here.These abbreviation conventions are compatible with those of Common Lisp[7]. Some newcomers to Lisp mistake ''2 as just another way to write 2, arguing\you can drop the quote marks before numbers." This reasoning is incorrect.An accurate reading of \n =)'n, when n is a number" is that you can dropthe quote marks before a number when the number is used as a term. But in''2 the 2 is not being used as a term, it is just a component of the s-expression''2. It is the s-expression ''2 that is being used as a term.Another mistake is to read ''2 as '(BINARY-+ '1 '1). The specious rea-soning here is to �rst expand '2 into \the term it abbreviates." But again, '2abbreviates (BINARY-+ '1 '1) only when '2 is used as a term and '2 is notused as a term in ''2.2Technically, since neither of these s-expressions is a formal term, we should say that theyboth abbreviate the same formal term. 28

8 Abbreviations for Constant SymbolsNote. The conventions above allow us to write terms such as (CONS X '(AB)) in which quoted constants appear. Because quoted constants can be quitelarge it is convenient to be able to give them names. For example, if the symbol*LST* were understood to be '(A B) then the above term could be written as(CONS X *LST*). This could be accomplished by adding the new abbreviationconvention *LST* =)'(A B). This would make the symbol *LST* look like a\global" variable symbol with a �xed value. Such a convention is unambiguousbecause the symbol *LST* is not a variable symbol (its name begins and endswith #*) and so that symbol does not already have a meaning as a formal term.We now make a convention by which the user can add such abbreviations. Inparticular, the event (DEFCONST *LST* '(A B)) would add the abbreviation*LST* =)'(A B)."Terminology. A symbol v is a constant symbol of our language if the �rst andlast character in its name is #* and the package name of the symbol is neither"KEYWORD" nor "LISP".Terminology. A term t is evaluable (in an implicit history h) i� there is ans-expression v such that (t = 'v) is a theorem (in h). We call any such v avalue of t. Unless the history is inconsistent, there is at most one value for anyterm.Note. We can de�ne a subset of the evaluable terms syntactically, namelythose terms containing no variables such that every function symbol called issyntactically evaluable in h. A function is syntactically evaluable in a historyif it is one of the symbols axiomatized here or was introduced into the historywith the de�nitional principle (cf. Section 14) and every function symbol calledin its body is evaluable.A call-by-value interpreter will compute the value of any syntactically evalu-able term (given su�cient stack and memory resources). A de�ned functionfails to be evaluable when it is de�ned in terms of a constrained (i.e., unde-�ned) function. The implementation of ACL2 can, in addition, determine thevalue of certain other evaluable terms, namely those for which the call-by-valueinterpreter never encounters an unde�ned function.To prove that there is at least one value for the syntactically evaluable terms,one shows how the axioms of the logic can be used to \compute," i.e., to reduceevery evaluable term into a formal term that can be abbreviated by 'v, for somes-expression v. To prove that there is at most one such constant one must provethat if two quoted s-expressions can be proved equal then the two s-expressionsare identical. We do not give the proofs here. However, we illustrate the idea.When we use an s-expression as an evaluable term we are of course using itas a term, and hence the abbreviation rules for terms apply. So for example,29

if we say \(LIST 1 2) is an evaluable term" we mean that the formal term itabbreviates is an evaluable term.Examples. (+ 2 2) is an evaluable term. Note that it abbreviates the formalterm (BINARY-+ (BINARY-+ '1 '1) (BINARY-+ '1 '1)). Using the axiom ofthe associativity of BINARY-+ we can prove this term equal to (BINARY-+ '1(BINARY-+ '1 (BINARY-+ '1 '1))), which may be written as '4. Thus, thevalue of the evaluable term (+ 2 2) is 4. Here is another example. (CONS (+2 2) 3) is an evaluable term. Its value is '(4 . 3).Event.(DEFCONST nameterm)Admissibility Requirements.For this event to be admissible in a history h, name must be a constant symbolthat has not already been assigned a value as an abbreviation in h and termmust be evaluable in h.Syntactic Extension.If admissible, then add to the abbreviations of h the abbreviation name =)'v,where v is the value of term in h.Axiomatic Extension.No new axioms are added by this event.In Appendices B and C we give the de�nitions of three new constant symbols,� *COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*,� *COMMON-LISP-SPECIALS-AND-CONSTANTS*, and� *ACL2-EXPORTS*.Each is a true list of symbols.9 AxiomsNote. In this draft of the document, there are four changes to the axiomspresented in the draft dated \January, 1997." Axiom 10 has been modi�ed sothat it additionally declares that < is a Boolean function. Second, Axiom 60has been modi�ed so that it additionally declares that SYMBOL-NAME returns aSTRINGP. Axioms 79.1 and 79.2 have been added, de�ning the function symbolsATOM and MAKE-CHARACTER-LIST. The latter function symbol is used in Axiom80 but was left unde�ned in the previous draft. Finally, Axiom 95 has beenmodi�ed to say that ACL2-COUNT returns a nonnegative INTEGERP.30

Note. We now present the axioms of ACL2. The axioms essentially specifythe value of every evaluable term. These axioms are alleged to be consistentwith Common Lisp, with two major caveats. First, certain \predicates" inACL2 are assumed to be Boolean valued while Common Lisp does not requirethat. We discuss this brie
y in Subsection 9.2. Second, Common Lisp functionsare only partially de�ned, i.e., de�ned on a subset of the possible arguments.ACL2 \completes" the de�nitions by providing \default" values for argumentsof \unexpected type." See Subsection 9.8.9.1 BasicsAxiom 1.T 6= NILAxiom 2.X = Y ! (EQUAL X Y) = TAxiom 3.X 6= Y ! (EQUAL X Y) = NILAxiom 4.X = NIL ! (IF X Y Z) = ZAxiom 5.X 6= NIL ! (IF X Y Z) = Y.Axiom 6.(NOT P) = (IF P NIL T)Axiom 7.(IMPLIES P Q) = (IF P (IF Q T NIL) T)Axiom 8.(IFF P Q) = (AND (IMPLIES P Q) (IMPLIES Q P))Abbreviation. When we refer to a term t as a formula, one should read inplace of t the formula t 6= NIL.Example. If P, Q, F and G are function symbols of the indicated arity, then(IMPLIES (AND (P X) (Q Y))(EQUAL (F X Y) (G X Y))),is a term. If that term is used where a formula is expected (e.g., in the allegationthat it is an axiom or a theorem), then it is to be read as the formula31

(IMPLIES (AND (P X) (Q Y))(EQUAL (F X Y) (G X Y)))6=NIL.Given the foregoing axioms and the rules of inference of propositional calculusand equality, the above formula can be shown equivalent to((P X) 6='NIL ^ (Q Y) 6='NIL)!(F X Y)=(G X Y)which, following the same abbreviation convention, we can write as((P X) ^ (Q Y)) ! (F X Y) = (G X Y).9.2 Boolean Valued FunctionsAxiom 9.(BOOLEANP X)=(IF (EQUAL X T)T(EQUAL X NIL))Axiom 10.(AND (BOOLEANP (COMPLEX-RATIONALP X))(BOOLEANP (RATIONALP X))(BOOLEANP (INTEGERP X))(BOOLEANP (EQUAL X Y))(BOOLEANP (CONSP X))(BOOLEANP (SYMBOLP X))(BOOLEANP (STRINGP X))(BOOLEANP (CHARACTERP X))(BOOLEANP (< X Y)))Note. The Common Lisp de�nition [7] does not specify that these functionsare Boolean. Instead, it says that they are \predicates." Then we learn (cf. [7],page 95), \One may think of a predicate as producing a Boolean value, wherenil stands for false and anything else stands for true." And �nally, \If no betternon-nil value is available for the purpose of indicating success, by conventionthe symbol t is used as the `standard' true value." We are unaware of anyCommon Lisp implementation that does not in fact obey the axiom above. Butas the implementation of ACL2 now stands, it does not accurately model those(hypothetical) Common Lisp implementations that use non-standard indicatorsof success for these predicates. 32

9.3 DisjointnessAxiom 11 (Def).(ACL2-NUMBERP X)=(OR (COMPLEX-RATIONALP X)(RATIONALP X))Axiom 12.(AND (IMPLIES (COMPLEX-RATIONALP X) (NOT (RATIONALP X)))(IMPLIES (RATIONALP X) (NOT (COMPLEX-RATIONALP X))))Axiom 13.(IMPLIES (INTEGERP X) (RATIONALP X))Axiom 14.(AND (IMPLIES (ACL2-NUMBERP X) (NOT (CHARACTERP X)))(IMPLIES (ACL2-NUMBERP X) (NOT (CONSP X)))(IMPLIES (ACL2-NUMBERP X) (NOT (STRINGP X)))(IMPLIES (ACL2-NUMBERP X) (NOT (SYMBOLP X)))(IMPLIES (CHARACTERP X) (NOT (ACL2-NUMBERP X)))(IMPLIES (CHARACTERP X) (NOT (CONSP X)))(IMPLIES (CHARACTERP X) (NOT (STRINGP X)))(IMPLIES (CHARACTERP X) (NOT (SYMBOLP X)))(IMPLIES (CONSP X) (NOT (ACL2-NUMBERP X)))(IMPLIES (CONSP X) (NOT (CHARACTERP X)))(IMPLIES (CONSP X) (NOT (STRINGP X)))(IMPLIES (CONSP X) (NOT (SYMBOLP X)))(IMPLIES (STRINGP X) (NOT (ACL2-NUMBERP X)))(IMPLIES (STRINGP X) (NOT (CHARACTERP X)))(IMPLIES (STRINGP X) (NOT (CONSP X)))(IMPLIES (STRINGP X) (NOT (SYMBOLP X)))(IMPLIES (SYMBOLP X) (NOT (ACL2-NUMBERP X)))(IMPLIES (SYMBOLP X) (NOT (CHARACTERP X)))(IMPLIES (SYMBOLP X) (NOT (CONSP X)))(IMPLIES (SYMBOLP X) (NOT (STRINGP X))))9.4 ArithmeticAxiom 15.(AND (ACL2-NUMBERP (+ X Y))(ACL2-NUMBERP (* X Y))(ACL2-NUMBERP (- X)) 33

(ACL2-NUMBERP (/ X)))Axiom 16.(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z)))Axiom 17.(EQUAL (+ X Y) (+ Y X))Axiom 18 (Def).(FIX X)=(IF (ACL2-NUMBERP X) X 0)Axiom 19.(EQUAL (+ 0 X) (FIX X))Axiom 20.(EQUAL (+ X (- X)) 0)Axiom 21.(EQUAL (* (* X Y) Z) (* X (* Y Z)))Axiom 22.(EQUAL (* X Y) (* Y X))Axiom 23.(EQUAL (* 1 X) (FIX X))Axiom 24.(IMPLIES (AND (ACL2-NUMBERP X)(NOT (EQUAL X 0)))(EQUAL (* X (/ X)) 1))Axiom 25.(EQUAL (* X (+ Y Z))(+ (* X Y) (* X Z)))Axiom 26.(EQUAL (< X Y)(< (+ X (- Y)) 0))Axiom 27.(NOT (< 0 0))Axiom 28.(AND(IMPLIES (ACL2-NUMBERP X)(OR (< 0 X)(EQUAL X 0) 34

(< 0 (- X))))(OR (NOT (< 0 X))(NOT (< 0 (- X)))))Axiom 29.(AND (IMPLIES (AND (< 0 X) (< 0 Y))(< 0 (+ X Y)))(IMPLIES (AND (RATIONALP X)(RATIONALP Y)(< 0 X)(< 0 Y))(< 0 (* X Y))))Axiom 30.(IMPLIES (RATIONALP X)(AND (INTEGERP (DENOMINATOR X))(INTEGERP (NUMERATOR X))(< 0 (DENOMINATOR X))))Axiom 31.(IMPLIES (RATIONALP X)(EQUAL (* (NUMERATOR X) (/ (DENOMINATOR X))) X))Axiom 32.(AND (RATIONALP (REALPART X))(RATIONALP (IMAGPART X)))Axiom 33.(IMPLIES (AND (RATIONALP X)(RATIONALP Y))(EQUAL (COMPLEX X Y)(+ X (* #C(0 1) Y))))Axiom 34.(EQUAL (* #C(0 1) #C(0 1)) -1)Axiom 35.(IMPLIES (COMPLEX-RATIONALP X)(NOT (EQUAL 0 (IMAGPART X))))Axiom 36.(IMPLIES (ACL2-NUMBERP X)(EQUAL (COMPLEX (REALPART X) (IMAGPART X)) X))Axiom 37.(IMPLIES (AND (RATIONALP X)(RATIONALP Y))(EQUAL (REALPART (COMPLEX X Y))35

X))Axiom 38.(IMPLIES (AND (RATIONALP X)(RATIONALP Y))(EQUAL (IMAGPART (COMPLEX X Y))Y))Axiom 39.(IMPLIES (RATIONALP X)(<= 0 (* X X)))Axiom 40.(INTEGERP 0)Axiom 41.(INTEGERP 1)Axiom 42.(< 0 1)Axiom 43.(IMPLIES (INTEGERP X)(AND (INTEGERP (+ X 1))(INTEGERP (+ X -1))))Axiom 44.(IMPLIES (AND (INTEGERP N)(RATIONALP X)(INTEGERP R)(INTEGERP Q)(< 0 N)(EQUAL (NUMERATOR X) (* N R))(EQUAL (DENOMINATOR X) (* N Q)))(EQUAL N 1))9.5 ListsAxiom 45.(CONSP (CONS X Y))Axiom 46.(IMPLIES (CONSP X)(EQUAL (CONS (CAR X) (CDR X)) X))Axiom 47.(EQUAL (CAR (CONS X Y)) X)Axiom 48.(EQUAL (CDR (CONS X Y)) Y) 36

9.6 Characters and StringsAxiom 49.(AND (INTEGERP (CHAR-CODE X))(<= 0 (CHAR-CODE X))(< (CHAR-CODE X) 256))Axiom 50.(CHARACTERP (CODE-CHAR N))Axiom 51.(IMPLIES (CHARACTERP C)(EQUAL (CODE-CHAR (CHAR-CODE C)) C))Axiom 52.(IMPLIES (AND (INTEGERP N)(<= 0 N)(< N 256))(EQUAL (CHAR-CODE (CODE-CHAR N)) N))Axiom 53 (Def).(CHARACTER-LISTP l)=(IF (CONSP L)(AND (CHARACTERP (CAR L))(CHARACTER-LISTP (CDR L)))(EQUAL L NIL))Axiom 54.(IMPLIES (CHARACTER-LISTP X)(EQUAL (COERCE (COERCE X 'STRING) 'LIST) X))Axiom 55.(IMPLIES (STRINGP X)(EQUAL (COERCE (COERCE X 'LIST) 'STRING) X))Axiom 56.(STRINGP (COERCE X 'STRING))Axiom 57.(CHARACTER-LISTP (COERCE X 'LIST)) 37

9.7 SymbolsAxiom 58.(AND(EQUAL 'KEYWORD::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'KEYWORD::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'KEYWORD::WITNESS)"KEYWORD")(EQUAL 'LISP::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'LISP::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'LISP::WITNESS)"LISP")(EQUAL 'ACL2::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'ACL2::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'ACL2::WITNESS)"ACL2")(EQUAL 'ACL2-OUTPUT-CHANNEL::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'ACL2-OUTPUT-CHANNEL::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'ACL2-OUTPUT-CHANNEL::WITNESS)"ACL2-OUTPUT-CHANNEL")(EQUAL 'ACL2-INPUT-CHANNEL::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'ACL2-INPUT-CHANNEL::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'ACL2-INPUT-CHANNEL::WITNESS)"ACL2-INPUT-CHANNEL")(EQUAL 'ACL2-PC::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'ACL2-PC::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'ACL2-PC::WITNESS)"ACL2-PC")(EQUAL 'ACL2-USER::WITNESS(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESS"'ACL2-USER::WITNESS))(EQUAL (SYMBOL-PACKAGE-NAME 'ACL2-USER::WITNESS)"ACL2-USER"))Axiom 59.(AND(EQUAL 'LISP::NIL(INTERN-IN-PACKAGE-OF-SYMBOL "NIL"'LISP::WITNESS))(EQUAL 'LISP::STRING(INTERN-IN-PACKAGE-OF-SYMBOL "STRING"38

'LISP::WITNESS)))Axiom 60.(AND (STRINGP (SYMBOL-NAME X))(STRINGP (SYMBOL-PACKAGE-NAME X)))Axiom 61.(SYMBOLP (INTERN-IN-PACKAGE-OF-SYMBOL X Y))Axiom 62.(IMPLIES (AND (SYMBOLP X)(EQUAL (SYMBOL-PACKAGE-NAME X) (SYMBOL-PACKAGE-NAME Y)))(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL (SYMBOL-NAME X) Y) X))Axiom 63.(IMPLIES (AND (STRINGP X)(SYMBOLP Y))(EQUAL (SYMBOL-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y)) X))Axiom 64.(IMPLIES (AND (STRINGP X)(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y)"ACL2-INPUT-CHANNEL"))(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))"ACL2-INPUT-CHANNEL"))Axiom 65.(IMPLIES (AND (STRINGP X)(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y)"ACL2-OUTPUT-CHANNEL"))(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))"ACL2-OUTPUT-CHANNEL"))Axiom 66 (Def).(MEMBER-SYMBOL-NAME STR L)=(COND ((NOT (CONSP L)) NIL)((EQUAL STR (SYMBOL-NAME (CAR L))) L)(T (MEMBER-SYMBOL-NAME STR (CDR L))))Axiom 67.(IMPLIES (AND (STRINGP X)(NOT (MEMBER-SYMBOL-NAMEX*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*))(SYMBOLP Y) 39

(EQUAL (SYMBOL-PACKAGE-NAME Y) "ACL2"))(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))"ACL2"))See Appendix B for the de�nition of the constant symbol *COMMON-LISP--SYMBOLS-FROM-MAIN-LISP-PACKAGE*.Axiom 68.(IMPLIES (AND (MEMBER-SYMBOL-NAMEX*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*)(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y) "ACL2"))(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL X Y)(CAR (MEMBER-SYMBOL-NAMEX*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*))))Axiom 69.(IMPLIES (AND (STRINGP X)(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y)"KEYWORD"))(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))"KEYWORD"))Axiom 70.(IMPLIES (AND (STRINGP X)(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y) "LISP"))(EQUAL (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))"LISP"))9.8 CompletionsNote. What is the value of (+ T 5)? This is (an abbreviation of) a well-formedterm involving only the primitive functions and no variables. Common Lisp doesnot specify a value for this term, but ACL2 provides one. The �rst axiom belowmakes this term proveably equal to (+ 0 5) and can be viewed as \coercing"the arguments of + to ACL2 numbers by defaulting non-numbers to 0.Axiom 71.(EQUAL (+ X Y)(IF (ACL2-NUMBERP X)(IF (ACL2-NUMBERP Y)(+ X Y)X)(IF (ACL2-NUMBERP Y)Y 40

0)))Axiom 72.(EQUAL (* X Y)(IF (ACL2-NUMBERP X)(IF (ACL2-NUMBERP Y)(* X Y)0)0))Axiom 73.(EQUAL (- X)(IF (ACL2-NUMBERP X)(- X)0))Axiom 74.(EQUAL (/ X)(IF (AND (ACL2-NUMBERP X)(NOT (EQUAL X 0)))(/ X)0))Axiom 75.(EQUAL (< X Y)(IF (AND (RATIONALP X)(RATIONALP Y))(< X Y)(LET ((X1 (IF (ACL2-NUMBERP X) X 0))(Y1 (IF (ACL2-NUMBERP Y) Y 0)))(OR (< (REALPART X1) (REALPART Y1))(AND (EQUAL (REALPART X1) (REALPART Y1))(< (IMAGPART X1) (IMAGPART Y1)))))))Axiom 76.(EQUAL (CAR X)(IF (CONSP X) (CAR X) NIL))Axiom 77.(EQUAL (CDR X)(IF (CONSP X) (CDR X) NIL))Axiom 78.(EQUAL (CHAR-CODE X)(IF (CHARACTERP X)(CHAR-CODE X)0))Axiom 79.(EQUAL (CODE-CHAR X) 41

(IF (AND (INTEGERP X)(>= X 0)(< X 256))(CODE-CHAR X)(CODE-CHAR 0)))Axiom 80.(EQUAL (COMPLEX X Y)(COMPLEX (IF (RATIONALP X) X 0)(IF (RATIONALP Y) Y 0)))Axiom 80.1 (Def).(ATOM X)=(NOT (CONSP X))Axiom 80.2 (Def).(MAKE-CHARACTER-LIST X)=(COND ((ATOM X) NIL)((CHARACTERP (CAR X))(CONS (CAR X)(MAKE-CHARACTER-LIST (CDR X))))(T (CONS (CODE-CHAR 0)(MAKE-CHARACTER-LIST (CDR X)))))Axiom 81.(EQUAL (COERCE X Y)(IF (EQUAL Y 'LIST)(IF (STRINGP X)(COERCE X 'LIST)NIL)(COERCE (MAKE-CHARACTER-LIST X) 'STRING)))Axiom 82.(EQUAL (DENOMINATOR X)(IF (RATIONALP X)(DENOMINATOR X)1))Axiom 83.(EQUAL (IMAGPART X)(IF (ACL2-NUMBERP X)(IMAGPART X)0))Axiom 84.(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL X Y)42

(IF (AND (STRINGP X)(SYMBOLP Y))(INTERN-IN-PACKAGE-OF-SYMBOL X Y)NIL))Axiom 85.(EQUAL (NUMERATOR X)(IF (RATIONALP X)(NUMERATOR X)0))Axiom 86.(EQUAL (REALPART X)(IF (ACL2-NUMBERP X)(REALPART X)0))Axiom 87.(EQUAL (SYMBOL-NAME X)(IF (SYMBOLP X)(SYMBOL-NAME X)""))Axiom 88.(EQUAL (SYMBOL-PACKAGE-NAME X)(IF (SYMBOLP X)(SYMBOL-PACKAGE-NAME X)""))10 The OrdinalsNote. Using the nonnegative integers and lists we can represent the ordinals upto �0. (For readers familiar with ordinals: �0 is the �rst in�nite ordinal that isclosed under ordinal exponentiation.) The ACL2 notion of ordinal is the same asthat found in [1] and both are very similar to the development given in [2]. Thefollowing notes are only intended to provide some intuition about ordinals. Weultimately axiomatize two functions below, E0-ORDINALP and E0-ORD-<, whichformalize the concepts.Very intuitively, think of each non-zero natural number as by being denotedby a series of the appropriate number of strokes, i.e.,ordinal01 |2 ||43

3 |||4 ||||::: :::Then ! is the ordinal that might be written as |||:::, i.e., an in�nite number ofstrokes.Addition here is just concatenation. Observe that adding one to the front of! produces |||::: or ! again, which gives rise to a standard de�nition of !: theleast ordinal such that adding another stroke at the beginning does not changethe ordinal.We denote by ! + ! or ! � 2 the \doubly in�nite" sequence that we mightwrite as! � 2 |||::: |||:::One way to think of ! � 2 is that it is obtained by replacing each stroke in therepresentation of 2 (i.e., ||) by !. Thus, one can imagine ! � 3, ! � 4, etc.,which leads ultimately to the idea of ! � !, the ordinal obtained by replacingeach stroke in ! by !. This is also written as !2, or:!2 |||::: |||::: |||::: |||::: |||::: :::or!2 ! ! ! :::We can analogously construct !3 by replacing each stroke in ! by !2 (which,it turns out, is the same as replacing each stroke in !2 by !). That is, we canconstruct !3 as ! copies of !2,!3 !2 !2 !2 :::Then we can construct !4 as ! copies of !3, !5 as ! copies of !4, etc.,ultimately suggesting !!. We can then stack !s, i.e., !!! , etc. Consider the\limit" of all of those stacks, which we might display as !!!::: . That ordinal iscalled �0.It is possible to construct a sequence of s-expressions in 1:1 correspondencewith the ordinals up to �0. In Table 4 we list some of the ordinals up to �0;the reader can �ll in the gaps at his or her leisure. (!) We show in the leftcolumn the conventional notation and in the right column the correspondings-expression.Each of the s-expressions in the right-hand column of Table 4, when quoted,represents a constant in ACL2 and in that sense the logic contains a repre-sentation of each ordinal up to �0. The function E0-ORDINALP, de�ned below,recognizes these ordinals. Readers familiar with ordinals will �nd it useful torealize that what we are really doing is mapping s-expressions to ordinals by themap f de�ned as the identity on atoms and extended to pairs as follows, using\+" to denote ordinal addition: f((A:B)) = !f(A) + f(B).44

ordinal s-expression0 01 12 23 3::: :::! (1 . 0)! + 1 (1 . 1)! + 2 (1 . 2)::: :::! � 2 = ! + ! (1 1 . 0)(! � 2) + 1 (1 1 . 1)::: :::! � 3 = ! + ! � 2 (1 1 1 . 0)(! � 3) + 1 (1 1 1 . 1)::: :::!2 (2 . 0)::: :::!2 + ! � 4 + 3 (2 1 1 1 1 . 3)::: :::!3 (3 . 0)::: :::!! ((1 . 0) . 0)::: :::!! + !99 + ! � 4 + 3 ((1 . 0) 99 1 1 1 1 . 3)::: :::!!2 ((2 . 0) . 0)::: :::!!! (((1 . 0) . 0) . 0)::: :::Table 4: Some Ordinals in ACL2
45

Observe that the sequence of s-expressions starts with the nonnegative inte-gers. That is, the natural numbers are ordinals. Thus, if we require that a giventerm be proved to produce an ordinal (as we do in the induction principle) thenit su�ces to prove that the term produces a natural number.Axiom 89 (Def).(E0-ORD-< X Y)=(IF (CONSP X)(IF (CONSP Y)(IF (E0-ORD-< (CAR X) (CAR Y))T(IF (EQUAL (CAR X) (CAR Y))(E0-ORD-< (CDR X) (CDR Y))NIL))NIL)(IF (CONSP Y)T(< (IF (RATIONALP X) X 0)(IF (RATIONALP Y) Y 0))))The ordinals in Table 4 are listed in ascending order. This ordering is rec-ognized by the function E0-ORD-<, de�ned above. Fundamental to ACL2 isthe fact that E0-ORD-< is well-founded on E0-ORDINALPs. That is, there is no\in�nitely descending chain" of such ordinals.Axiom 90 (Def).(E0-ORDINALP X)=(IF (CONSP X)(AND (E0-ORDINALP (CAR X))(NOT (EQUAL (CAR X) 0))(E0-ORDINALP (CDR X))(OR (NOT (CONSP (CDR X)))(NOT (E0-ORD-< (CAR X) (CADR X)))))(AND (INTEGERP X) (>= X 0)))10.1 MeasuresAxiom 91 (Def).(LEN X)=(IF (CONSP X)(+ 1 (LEN (CDR X)))0)Axiom 92 (Def).(LENGTH X)= 46

(IF (STRINGP X)(LEN (COERCE X 'LIST))(LEN X))Axiom 93 (Def).(INTEGER-ABS X)=(IF (INTEGERP X)(IF (< X 0) (- X) X)0)Axiom 94 (Def).(ACL2-COUNT X)=(IF (CONSP X)(+ 1 (ACL2-COUNT (CAR X))(ACL2-COUNT (CDR X)))(IF (RATIONALP X)(IF (INTEGERP X)(INTEGER-ABS X)(+ (INTEGER-ABS (NUMERATOR X))(DENOMINATOR X)))(IF (COMPLEX-RATIONALP X)(+ 1 (ACL2-COUNT (REALPART X))(ACL2-COUNT (IMAGPART X)))(IF (STRINGP X) (LENGTH X) 0)))))Axiom 95.(AND (INTEGERP (ACL2-COUNT X))(<= 0 (ACL2-COUNT X)))11 InductionRule of Inference. Induction:Derive p from� Base Case:(IMPLIES (AND (NOT q1) ... (NOT qk)) p), and� Induction Step(s): For each 1 � i � k,(IMPLIES (AND qip=�i;1:::p=�i;hi)p) , 47

provided that for terms m, q1; :::qk, and substitutions �i;j (1 � i � k; 1 � j �hi), the following are theorems:� Ordinal Condition:(E0-ORDINALP m) , and� Measure Condition(s): For each 1 � i � k, and 1 � j � hi,(IMPLIES qi (EO-ORD-< m=�i;j m)) .12 Package De�nitionEvent.(DEFPKG name term)Admissibility Requirements.For this event to be admissible in a history h, name must be a string that is notthe name of any package in the package system of h and term is an evaluableterm whose value in h, imports, is a true list of symbols such that no twoelements of imports have the same name.Syntactic Extension.If admissible, this event extends the package system of h by adding a packagewith name name and imports list imports.In addition, an admissible DEFPKG event introduces the witness symbol forthe package as a new formal constant symbol. The witness symbol, witness, isspeci�ed below.Let x be the shortest sequence of zero or more exclamation marks (#\!)such that the evaluable term (MEMBER-SYMBOL-NAME "WITNESSx" 'imports)has value NIL in h. Let witness be the symbol |name|::WITNESSx.Add 'witness to the formal constants of the language.Axiomatic Extension.If admissible, add the following three axioms to the axioms of h.� Axiom(AND (EQUAL 'witness(INTERN-IN-PACKAGE-OF-SYMBOL "WITNESSx"'witness))(EQUAL (SYMBOL-PACKAGE-NAME 'witness)name)) 48

� Axiom(IMPLIES (AND (STRINGP X)(NOT (MEMBER-SYMBOL-NAME X 'imports))(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y) name))(EQUAL (SYMBOL-PACKAGE-NAME(INTERN-IN-PACKAGE-OF-SYMBOL X Y))name))� Axiom(IMPLIES (AND (MEMBER-SYMBOL-NAME X 'imports)(SYMBOLP Y)(EQUAL (SYMBOL-PACKAGE-NAME Y) name))(EQUAL (INTERN-IN-PACKAGE-OF-SYMBOL X Y)(CAR (MEMBER-SYMBOL-NAME X name))))13 Current Package SelectionEvent.(IN-PACKAGE name)Admissibility Requirements.For this event to be admissible in a history h, name must be a string that iscurrently one of the package names in the package system of h.Syntactic Extension.By virtue of this event being in the new history, the current package of thathistory will (by our de�nition of \current package") be name (until anotherIN-PACKAGE event is admitted).Axiomatic Extension.No new axioms are added by this event.14 Function De�nitionTerminology. We say that a term t governs an occurrence of a term s in a termb i� either (a) b contains a subterm of the form (IF t p q) and the occurrenceof s is in p or (b) b contains a subterm of the form (IF t0 p q), where t is (NOTt0) and the occurrence of s is in q.Examples. The terms P and (NOT Q) govern the �rst occurrence of S in49

(IF P(IF (IF Q A S)SB)C)The terms P and (IF Q A S) govern the second occurrence of S.Note. The mechanization of the logic is slightly more restrictive because it onlyinspects the \top-level" IFs in b. Thus, the mechanization recognizes that P gov-erns S in (IF P (FN (IF Q S A)) B) but it does not recognize that Q governsS also. The implementation does this because the mechanical theorem prover'sinduction heuristic derives \induction schemas" from recursive de�nitions andthen manipulates these schemas. By keeping the schemas simple (sometimes atthe expense of forcing the user to rearrange de�nitions) we �nd the heuristicsare more often successful at choosing an appropriate induction.Event.(DEFUN f (x1 ::: xn)body)Admissibility Requirements.For this event to be admissible,� f must be a new function symbol in h,� the xi must be distinct variable symbols,� body must be a term in the history, h0, obtained from h by adding an entryto the arity table of h declaring f to have arity n, and body must mentionno symbol as a variable other than the xi; and� there is a term m of h such that{ (E0-ORDINALP m) can be proved directly in h, and{ for each occurence of a subterm of the form (f y1 ::: yn) in body,the following formula can be proved directly in h0 (the extension ofh described above):(IMPLIES (AND t1 ::: tk)(E0-ORD-< m=� m))where the terms t1, :::, tk govern the occurrence in question and � isthe substitution fhx1; y1i:::hxn; ynig.Syntactic Extension.If admissible, add a new entry to the arity table of the history. The new entrygives f arity n. 50

Axiomatic Extension.If admissible, this event adds the following axiom to the axioms of the history.Axiom(f x1 ::: xn) = body.15 Problems1 S-expression syntax is complicated. Most s-expressions can be written inmore than one way in our notation. Identify those items below that denotes-expressions. For those that do, write the denoted s-expression again, ina di�erent way, if you can.a. 0.33b. #b-1101c. +123d. 13e. #b+001/011f. 11012g. 12E-7h. #\Ai. #\Umlattj. #\Spacek. #\�l. "Error 33"m. "No such name: "Smithville""n. abo. :questionp. x;yq. nilr. ACL2::SETQs. ACL2::FOOt. ((A . 1)(B . 2) . 27)u. (A B . C D E)v. (A . (B . (C . 27)))w. (a |aB| #xF1 |nil| . nil)51

2 Let s be a true list of length 3. Let the elements be, successively,� the current month, represented by a symbol;� the current day, represented by an integer;� the current year, represented by an integer;Write s.3 Which of the following s-expressions are formal terms in all histories?a. xb. |xY|c. :Kd. SBITe. &RESTf. SIGMAg. PIh. '-1i. 'LISP::WITNESSj. (CAADR X)k. (car (cons x pi))l. (car (cdr (symbol-name u)))m. (binary-+ 1 x)n. (if x y (if a b c))4 Which of the following s-expressions abbreviate formal terms? For thosethat do, write another s-expression that abbreviates the same term.a. (+ epsilon (* a b) (/ 3 x))b. (cond ((equal x y) 1) ((equal x z) 2)(t 3))c. (LET ((x 2))(cons x x))d. (let ((x 1)(X 2)) (cons x X))e. (LIST a b c d)f. (LIST* a b c d)g. (LIST*)h. 4i. #\hj. "�Why?�" 52

k. 'WHY?l. 'ACL2::NEXT-METHOD-Pm. 'LISP::WITNESSn. '(1 2 3)o. '((A . 1) (#\B . "1"))p. (IF 33 x y)5 Suppose three packages have been added. The �rst, named "A", importsno symbols. The second, named "B", imports A::X. The third, named"c", imports A::Y and B::X.a. What is the package name of B::X?b. What is the package name of B::Yc. Write a symbol with package name "c".d. Suppose "c" is the current package. What is the package name of X?Of Y? Of Z?e. What is the name of the symbol A::xyz?6 Theorem?(+ 3 2) = 57 Theorem?(- 7 4) = 38 Theorem?(ACL2-NUMBERP 23)9 Theorem?23 6= 'ABC10 Theorem?(< 0 7)11 Theorem?0 6= 112 Theorem?0 6= 2 53

13 Theorem?2 6= 714 Theorem?(< -2 0)15 Theorem?(ACL2-NUMBERP X) ! (- (- X)) = X16 Theorem?(< X Y) $ (< (- Y) (- X))17 Theorem?((< X Y) ^ (< Y Z)) ! (< X Z)18 Theorem?(ACL2-NUMBERP X) ! (< (+ X -1) X)19 Theorem?((ACL2-NUMBERP X) ^ (ACL2-NUMBERP Y))!((<= x Y) $ (< X Y) _ X=Y)20 Theorem?(RATIONALP 2)21 Theorem?(CADDR (LIST A B C D)) = C22 Theorem?(CONS X Y) = (CONS U V) $ (X=U ^ Y=V)23 Theorem?(SYMBOLP 'ABC)24 Theorem?'ABC 6= 'DEF 54

16 The CS389R PackageOne awkward aspect of the ACL2 logic is that it is hard to know what symbolscan be used as the names of functions, because the list of Common Lisp symbolsin Appendix B is so long. For example, can the symbol POP be de�ned? CanMETRIC? Can REMOVE? It is relatively easy to recognize the names one has seenaxiomatized and de�ned. None of the names above have been so introduced.But to know whether they can be introduced one must search Appendix B.We can make eliminate this awkwardness by creating a new package. Wewill call the package "CS389R". We will import into it all of the symbols wehave axiomatized or de�ned so far. We will import no other symbols into it.Then, we will declare "CS389R" the current package in our subsequent work.Thus, we will then be able to de�ne, for example, the three symbols mentionedabove, without worrying whether they are in Appendix B.Before we carry out this program, we extend the logic with a few more usefulde�nitions. All are easily admitted.Axiom 96 (Def).(TRUE-LISTP X)=(IF (CONSP X)(TRUE-LISTP (CDR X))(EQUAL X NIL))Axiom 97 (Def).(ZP I)=(IF (INTEGERP I) (<= I 0) T)Axiom 98 (Def).(NFIX I)=(IF (AND (INTEGERP X) (>= X 0))X0)Axiom 99 (Def).(ASSOC-EQUAL X ALIST)=(COND ((ENDP ALIST) NIL)((EQUAL X (CAR (CAR ALIST)))(CAR ALIST))(T (ASSOC-EQUAL X (CDR ALIST))))Axiom 100 (Def).(ENDP X) = (ATOM X)Axiom 101 (Def).(NTH N LST) 55

=(COND ((ENDP LST) NIL)((ZP N) (CAR LST))(T (NTH (1- N) (CDR LST))))Axiom 102 (Def).(BINARY-APPEND X Y)=(COND ((ENDP X) Y)(T (CONS (CAR X)(BINARY-APPEND (CDR X) Y))))Abbreviation� (APPEND x1 x2) =)(BINARY-APPEND x1 x2).� (APPEND x1 ...) =)(BINARY-APPEND x1 (APPEND ...)).We now de�ne a new constant, *CS389R*, which has as its value a list of allthe symbols used in our axioms and abbreviations.(DEFCONST *CS389R*'(; Selected Primitive Formal Constants from Table 2TNILSTRINGWITNESS; Primitive Function Symbols from Table 3BINARY-*BINARY-+UNARY--UNARY-/<BOOLEANPCARCDRCHAR-CODECHARACTERPCODE-CHARCOMPLEXCOMPLEX-RATIONALPCOERCECONSCONSPDENOMINATOREQUAL 56

IFIMAGPARTINTEGERPINTERN-IN-PACKAGE-OF-SYMBOLNUMERATORRATIONALPREALPARTSTRINGPSYMBOL-NAMESYMBOL-PACKAGE-NAMESYMBOLP; Primitive MacrosANDOR+*-/LETLAMBDALET*CONDLISTLIST*<=>>=CAARCADRCDARCDDRCAAARCAADRCADARCADDRCDAARCDADRCDDARCDDDRCAAAARCAAADRCAADARCAADDRCADAARCADADRCADDAR 57

CADDDRCDAAARCDAADRCDADARCDADDRCDDAARCDDADRCDDDARCDDDDRAPPEND; Defined Constant Symbols*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE**COMMON-LISP-SPECIALS-AND-CONSTANTS**ACL2-EXPORTS**CS389R*; Defined Function Symbols in AxiomsNOTIMPLIESIFFACL2-NUMBERPFIXCHARACTER-LISTPMEMBER-SYMBOL-NAMEATOMMAKE-CHARACTER-LISTE0-ORD-<E0-ORDINALPLENLENGTHINTEGER-ABSACL2-COUNTTRUE-LISTPZPNFIXASSOC-EQUALENDPNTHBINARY-APPEND; EventsDEFCONSTDEFPKGIN-PACKAGEDEFUNDEFTHM 58

))We declare a new package that imports just the *CS389R* symbols.(DEFPKG "CS389R" *CS389R*)Henceforth we will be in the package "CS389R".(IN-PACKAGE "CS389R")A The Initial Package SystemBelow, for each initial package, we specify the symbols imported.� "KEYWORD": No symbols are imported into this package.� "LISP": No symbols are imported into this package.� "ACL2": The symbols listed in Appendix B are imported into this package.All of those symbols have package name "LISP".� "ACL2-OUTPUT-CHANNEL": No symbols are imported into this package.� "ACL2-INPUT-CHANNEL": No symbols are imported into this package.� "ACL2-PC": No symbols are imported into this package.� "ACL2-USER": The symbols listed in Appendix B together with the sym-bols listed in Appendix C are imported into this package.The witness symbol of a package p in a package system is the symbol whosepackage name is p and whose name is shortest string s of the form WITNESSxwhere x is a sequence of zero or more exclamation points such that no symbolwith name s is imported into p in the given package system.For each initial package p shown above, the witness symbol for p is p::WITNESS.If a package, say "PKG" imported both, say, LISP::WITNESS and ACL2::WITNESS!(and no others), then the witness symbol "PKG" would be PKG::WITNESS!!. Infact, we do not care what the name of the witness symbol is, as long as for everypackage we can write at least one symbol whose package name is that package.Since only a �nite number of symbols are imported into every package, there isalways such a symbol. 59

B Common Lisp SymbolsIn this appendix we list some symbols. All of the symbols listed are to beunderstood to have package name "LISP". These symbols are all imported intothe "ACL2" package. That is, to determine whether a symbol we might print asACL2::name actually stands for LISP::name, determine whether name occursas one of the symbols below.To make it easier to �nd a given name we list the symbols in alphabeticalorder and group them according to their �rst letter.*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE* abbreviates a quotedlist containing just these symbols.Finally, some of the symbols have a parenthesized asterisk (*) after them.*COMMON-LISP-SPECIALS-AND-CONSTANTS* abbreviates a quoted list containingjust the so marked symbols.

60

Symbols starting with signs&ALLOW-OTHER-KEYS&AUX&BODY&ENVIRONMENT&KEY&OPTIONAL&REST&WHOLE* (*)** (*)*** (*)*BREAK-ON-SIGNALS* (*)*COMPILE-FILE-PATHNAME* (*)*COMPILE-FILE-TRUENAME* (*)*COMPILE-PRINT* (*)*COMPILE-VERBOSE* (*)*DEBUG-IO* (*)*DEBUGGER-HOOK* (*)*DEFAULT-PATHNAME-DEFAULTS* (*)*ERROR-OUTPUT* (*)*FEATURES* (*)*GENSYM-COUNTER* (*)*LOAD-PATHNAME* (*)*LOAD-PRINT* (*)*LOAD-TRUENAME* (*)*LOAD-VERBOSE* (*)*MACROEXPAND-HOOK* (*)*MODULES* (*)*PACKAGE* (*)*PRINT-ARRAY* (*)*PRINT-BASE* (*)*PRINT-CASE* (*)*PRINT-CIRCLE* (*)*PRINT-ESCAPE* (*)*PRINT-GENSYM* (*)*PRINT-LENGTH* (*)*PRINT-LEVEL* (*)*PRINT-LINES* (*)*PRINT-MISER-WIDTH* (*)*PRINT-PPRINT-DISPATCH* (*)*PRINT-PRETTY* (*)*PRINT-RADIX* (*)*PRINT-READABLY* (*)

PRINT-RIGHT-MARGIN (*)*QUERY-IO* (*)*RANDOM-STATE* (*)*READ-BASE* (*)*READ-DEFAULT-FLOAT-FORMAT* (*)*READ-EVAL* (*)*READ-SUPPRESS* (*)*READTABLE* (*)*STANDARD-INPUT* (*)*STANDARD-OUTPUT* (*)*TERMINAL-IO* (*)*TRACE-OUTPUT* (*)+ (*)++ (*)+++ (*)- (*)/ (*)// (*)/// (*)/=1+1-<<==>>=AABORTABSACONSACOSACOSHADD-METHODADJOINADJUST-ARRAYADJUSTABLE-ARRAY-PALLOCATE-INSTANCEALPHA-CHAR-PALPHANUMERICPANDAPPENDAPPLY61

APROPOSAPROPOS-LISTAREFARITHMETIC-ERRORARITHMETIC-ERROR-OPERANDSARITHMETIC-ERROR-OPERATIONARRAYARRAY-DIMENSIONARRAY-DIMENSION-LIMIT (*)ARRAY-DIMENSIONSARRAY-DISPLACEMENTARRAY-ELEMENT-TYPEARRAY-HAS-FILL-POINTER-PARRAY-IN-BOUNDS-PARRAY-RANKARRAY-RANK-LIMIT (*)ARRAY-ROW-MAJOR-INDEXARRAY-TOTAL-SIZEARRAY-TOTAL-SIZE-LIMIT (*)ARRAYPASHASINASINHASSERTASSOCASSOC-IFASSOC-IF-NOTATANATANHATOMBBASE-CHARBASE-STRINGBIGNUMBITBIT-ANDBIT-ANDC1BIT-ANDC2BIT-EQVBIT-IORBIT-NANDBIT-NORBIT-NOT

BIT-ORC1BIT-ORC2BIT-VECTORBIT-VECTOR-PBIT-XORBLOCKBOOLEBOOLE-1 (*)BOOLE-2 (*)BOOLE-AND (*)BOOLE-ANDC1 (*)BOOLE-ANDC2 (*)BOOLE-C1 (*)BOOLE-C2 (*)BOOLE-CLR (*)BOOLE-EQV (*)BOOLE-IOR (*)BOOLE-NAND (*)BOOLE-NOR (*)BOOLE-ORC1 (*)BOOLE-ORC2 (*)BOOLE-SET (*)BOOLE-XOR (*)BOOLEANBOTH-CASE-PBOUNDPBREAKBROADCAST-STREAMBROADCAST-STREAM-STREAMSBUILT-IN-CLASSBUTLASTBYTEBYTE-POSITIONBYTE-SIZECCAAAARCAAADRCAAARCAADARCAADDRCAADRCAARCADAAR62

CADADRCADARCADDARCADDDRCADDRCADRCALL-ARGUMENTS-LIMIT (*)CALL-METHODCALL-NEXT-METHODCARCASECATCHCCASECDAAARCDAADRCDAARCDADARCDADDRCDADRCDARCDDAARCDDADRCDDARCDDDARCDDDDRCDDDRCDDRCDRCEILINGCELL-ERRORCELL-ERROR-NAMECERRORCHANGE-CLASSCHARCHAR-CODECHAR-CODE-LIMIT (*)CHAR-DOWNCASECHAR-EQUALCHAR-GREATERPCHAR-INTCHAR-LESSPCHAR-NAMECHAR-NOT-EQUALCHAR-NOT-GREATERP

CHAR-NOT-LESSPCHAR-UPCASECHAR/=CHAR<CHAR<=CHAR=CHAR>CHAR>=CHARACTERCHARACTERPCHECK-TYPECISCLASSCLASS-NAMECLASS-OFCLEAR-INPUTCLEAR-OUTPUTCLOSECLRHASHCODE-CHARCOERCECOMPILATION-SPEEDCOMPILECOMPILE-FILECOMPILE-FILE-PATHNAMECOMPILED-FUNCTIONCOMPILED-FUNCTION-PCOMPILER-MACROCOMPILER-MACRO-FUNCTIONCOMPLEMENTCOMPLEXCOMPLEXPCOMPUTE-APPLICABLE-METHODSCOMPUTE-RESTARTSCONCATENATECONCATENATED-STREAMCONCATENATED-STREAM-STREAMSCONDCONDITIONCONJUGATECONSCONSPCONSTANTLYCONSTANTP63

CONTINUECONTROL-ERRORCOPY-ALISTCOPY-LISTCOPY-PPRINT-DISPATCHCOPY-READTABLECOPY-SEQCOPY-STRUCTURECOPY-SYMBOLCOPY-TREECOSCOSHCOUNTCOUNT-IFCOUNT-IF-NOTCTYPECASEDDEBUGDECFDECLAIMDECLARATIONDECLAREDECODE-FLOATDECODE-UNIVERSAL-TIMEDEFCLASSDEFCONSTANTDEFGENERICDEFINE-COMPILER-MACRODEFINE-CONDITIONDEFINE-METHOD-COMBINATIONDEFINE-MODIFY-MACRODEFINE-SETF-EXPANDERDEFINE-SYMBOL-MACRODEFMACRODEFMETHODDEFPACKAGEDEFPARAMETERDEFSETFDEFSTRUCTDEFTYPEDEFUNDEFVARDELETE

DELETE-DUPLICATESDELETE-FILEDELETE-IFDELETE-IF-NOTDELETE-PACKAGEDENOMINATORDEPOSIT-FIELDDESCRIBEDESCRIBE-OBJECTDESTRUCTURING-BINDDIGIT-CHARDIGIT-CHAR-PDIRECTORYDIRECTORY-NAMESTRINGDISASSEMBLEDIVISION-BY-ZERODODO*DO-ALL-SYMBOLSDO-EXTERNAL-SYMBOLSDO-SYMBOLSDOCUMENTATIONDOLISTDOTIMESDOUBLE-FLOATDOUBLE-FLOAT-EPSILON (*)DOUBLE-FLOAT-NEGATIVE-EPSILON (*)DPBDRIBBLEDYNAMIC-EXTENTEECASEECHO-STREAMECHO-STREAM-INPUT-STREAMECHO-STREAM-OUTPUT-STREAMEDEIGHTHELTENCODE-UNIVERSAL-TIMEEND-OF-FILEENDPENOUGH-NAMESTRINGENSURE-DIRECTORIES-EXIST64

ENSURE-GENERIC-FUNCTIONEQEQLEQUALEQUALPERRORETYPECASEEVALEVAL-WHENEVENPEVERYEXPEXPORTEXPTEXTENDED-CHARFFBOUNDPFCEILINGFDEFINITIONFFLOORFIFTHFILE-AUTHORFILE-ERRORFILE-ERROR-PATHNAMEFILE-LENGTHFILE-NAMESTRINGFILE-POSITIONFILE-STREAMFILE-STRING-LENGTHFILE-WRITE-DATEFILLFILL-POINTERFINDFIND-ALL-SYMBOLSFIND-CLASSFIND-IFFIND-IF-NOTFIND-METHODFIND-PACKAGEFIND-RESTARTFIND-SYMBOLFINISH-OUTPUTFIRST

FIXNUMFLETFLOATFLOAT-DIGITSFLOAT-PRECISIONFLOAT-RADIXFLOAT-SIGNFLOATING-POINT-INEXACTFLOATING-POINT-INVALID-OPERATIONFLOATING-POINT-OVERFLOWFLOATING-POINT-UNDERFLOWFLOATPFLOORFMAKUNBOUNDFORCE-OUTPUTFORMATFORMATTERFOURTHFRESH-LINEFROUNDFTRUNCATEFTYPEFUNCALLFUNCTIONFUNCTION-KEYWORDSFUNCTION-LAMBDA-EXPRESSIONFUNCTIONPGGCDGENERIC-FUNCTIONGENSYMGENTEMPGETGET-DECODED-TIMEGET-DISPATCH-MACRO-CHARACTERGET-INTERNAL-REAL-TIMEGET-INTERNAL-RUN-TIMEGET-MACRO-CHARACTERGET-OUTPUT-STREAM-STRINGGET-PROPERTIESGET-SETF-EXPANSIONGET-UNIVERSAL-TIMEGETF65

GETHASHGOGRAPHIC-CHAR-PHHANDLER-BINDHANDLER-CASEHASH-TABLEHASH-TABLE-COUNTHASH-TABLE-PHASH-TABLE-REHASH-SIZEHASH-TABLE-REHASH-THRESHOLDHASH-TABLE-SIZEHASH-TABLE-TESTHOST-NAMESTRINGIIDENTITYIFIGNORABLEIGNOREIGNORE-ERRORSIMAGPARTIMPORTIN-PACKAGEINCFINITIALIZE-INSTANCEINLINEINPUT-STREAM-PINSPECTINTEGERINTEGER-DECODE-FLOATINTEGER-LENGTHINTEGERPINTERACTIVE-STREAM-PINTERNINTERNAL-TIME-UNITS-PER-SECOND (*)INTERSECTIONINVALID-METHOD-ERRORINVOKE-DEBUGGERINVOKE-RESTARTINVOKE-RESTART-INTERACTIVELYISQRT

KKEYWORDKEYWORDPLLABELSLAMBDALAMBDA-LIST-KEYWORDS (*)LAMBDA-PARAMETERS-LIMIT (*)LASTLCMLDBLDB-TESTLDIFFLEAST-NEGATIVE--DOUBLE-FLOAT (*)LEAST-NEGATIVE--LONG-FLOAT (*)LEAST-NEGATIVE--NORMALIZED-DOUBLE-FLOAT (*)LEAST-NEGATIVE--NORMALIZED-LONG-FLOAT (*)LEAST-NEGATIVE--NORMALIZED-SHORT-FLOAT (*)LEAST-NEGATIVE--NORMALIZED-SINGLE-FLOAT (*)LEAST-NEGATIVE--SHORT-FLOAT (*)LEAST-NEGATIVE--SINGLE-FLOAT (*)LEAST-POSITIVE--DOUBLE-FLOAT (*)LEAST-POSITIVE--LONG-FLOAT (*)LEAST-POSITIVE--NORMALIZED-DOUBLE-FLOAT (*)LEAST-POSITIVE--NORMALIZED-LONG-FLOAT (*)LEAST-POSITIVE--NORMALIZED-SHORT-FLOAT (*)LEAST-POSITIVE--NORMALIZED-SINGLE-FLOAT (*)LEAST-POSITIVE--SHORT-FLOAT (*)66

LEAST-POSITIVE--SINGLE-FLOAT (*)LENGTHLETLET*LISP-IMPLEMENTATION-TYPELISP-IMPLEMENTATION-VERSIONLISTLIST*LIST-ALL-PACKAGESLIST-LENGTHLISTENLISTPLOADLOAD-LOGICAL-PATHNAME-TRANSLATIONSLOAD-TIME-VALUELOCALLYLOGLOGANDLOGANDC1LOGANDC2LOGBITPLOGCOUNTLOGEQVLOGICAL-PATHNAMELOGICAL-PATHNAME-TRANSLATIONSLOGIORLOGNANDLOGNORLOGNOTLOGORC1LOGORC2LOGTESTLOGXORLONG-FLOATLONG-FLOAT-EPSILON (*)LONG-FLOAT-NEGATIVE-EPSILON (*)LONG-SITE-NAMELOOPLOOP-FINISHLOWER-CASE-PMMACHINE-INSTANCE

MACHINE-TYPEMACHINE-VERSIONMACRO-FUNCTIONMACROEXPANDMACROEXPAND-1MACROLETMAKE-ARRAYMAKE-BROADCAST-STREAMMAKE-CONCATENATED-STREAMMAKE-CONDITIONMAKE-DISPATCH-MACRO-CHARACTERMAKE-ECHO-STREAMMAKE-HASH-TABLEMAKE-INSTANCEMAKE-INSTANCES-OBSOLETEMAKE-LISTMAKE-LOAD-FORMMAKE-LOAD-FORM-SAVING-SLOTSMAKE-METHODMAKE-PACKAGEMAKE-PATHNAMEMAKE-RANDOM-STATEMAKE-SEQUENCEMAKE-STRINGMAKE-STRING-INPUT-STREAMMAKE-STRING-OUTPUT-STREAMMAKE-SYMBOLMAKE-SYNONYM-STREAMMAKE-TWO-WAY-STREAMMAKUNBOUNDMAPMAP-INTOMAPCMAPCANMAPCARMAPCONMAPHASHMAPLMAPLISTMASK-FIELDMAXMEMBERMEMBER-IFMEMBER-IF-NOT67

MERGEMERGE-PATHNAMESMETHODMETHOD-COMBINATIONMETHOD-COMBINATION-ERRORMETHOD-QUALIFIERSMINMINUSPMISMATCHMODMOST-NEGATIVE-DOUBLE-FLOAT (*)MOST-NEGATIVE-FIXNUM (*)MOST-NEGATIVE-LONG-FLOAT (*)MOST-NEGATIVE-SHORT-FLOAT (*)MOST-NEGATIVE-SINGLE-FLOAT (*)MOST-POSITIVE-DOUBLE-FLOAT (*)MOST-POSITIVE-FIXNUM (*)MOST-POSITIVE-LONG-FLOAT (*)MOST-POSITIVE-SHORT-FLOAT (*)MOST-POSITIVE-SINGLE-FLOAT (*)MUFFLE-WARNINGMULTIPLE-VALUE-BINDMULTIPLE-VALUE-CALLMULTIPLE-VALUE-LISTMULTIPLE-VALUE-PROG1MULTIPLE-VALUE-SETQMULTIPLE-VALUES-LIMIT (*)NNAME-CHARNAMESTRINGNBUTLASTNCONCNEXT-METHOD-PNIL (*)NINTERSECTIONNINTHNO-APPLICABLE-METHODNO-NEXT-METHODNOTNOTANYNOTEVERYNOTINLINENRECONC

NREVERSENSET-DIFFERENCENSET-EXCLUSIVE-ORNSTRING-CAPITALIZENSTRING-DOWNCASENSTRING-UPCASENSUBLISNSUBSTNSUBST-IFNSUBST-IF-NOTNSUBSTITUTENSUBSTITUTE-IFNSUBSTITUTE-IF-NOTNTHNTH-VALUENTHCDRNULLNUMBERNUMBERPNUMERATORNUNIONOODDPOPENOPEN-STREAM-POPTIMIZEOROTHERWISEOUTPUT-STREAM-PPPACKAGEPACKAGE-ERRORPACKAGE-ERROR-PACKAGEPACKAGE-NAMEPACKAGE-NICKNAMESPACKAGE-SHADOWING-SYMBOLSPACKAGE-USE-LISTPACKAGE-USED-BY-LISTPACKAGEPPAIRLISPARSE-ERRORPARSE-INTEGER68

PARSE-NAMESTRINGPATHNAMEPATHNAME-DEVICEPATHNAME-DIRECTORYPATHNAME-HOSTPATHNAME-MATCH-PPATHNAME-NAMEPATHNAME-TYPEPATHNAME-VERSIONPATHNAMEPPEEK-CHARPHASEPI (*)PLUSPPOPPOSITIONPOSITION-IFPOSITION-IF-NOTPPRINTPPRINT-DISPATCHPPRINT-EXIT-IF-LIST-EXHAUSTEDPPRINT-FILLPPRINT-INDENTPPRINT-LINEARPPRINT-LOGICAL-BLOCKPPRINT-NEWLINEPPRINT-POPPPRINT-TABPPRINT-TABULARPRIN1PRIN1-TO-STRINGPRINCPRINC-TO-STRINGPRINTPRINT-NOT-READABLEPRINT-NOT-READABLE-OBJECTPRINT-OBJECTPRINT-UNREADABLE-OBJECTPROBE-FILEPROCLAIMPROGPROG*PROG1PROG2

PROGNPROGRAM-ERRORPROGVPROVIDEPSETFPSETQPUSHPUSHNEWQQUOTERRANDOMRANDOM-STATERANDOM-STATE-PRASSOCRASSOC-IFRASSOC-IF-NOTRATIORATIONALRATIONALIZERATIONALPREADREAD-BYTEREAD-CHARREAD-CHAR-NO-HANGREAD-DELIMITED-LISTREAD-FROM-STRINGREAD-LINEREAD-PRESERVING-WHITESPACEREAD-SEQUENCEREADER-ERRORREADTABLEREADTABLE-CASEREADTABLEPREALREALPREALPARTREDUCEREINITIALIZE-INSTANCEREMREMFREMHASH69

REMOVEREMOVE-DUPLICATESREMOVE-IFREMOVE-IF-NOTREMOVE-METHODREMPROPRENAME-FILERENAME-PACKAGEREPLACEREQUIRERESTRESTARTRESTART-BINDRESTART-CASERESTART-NAMERETURNRETURN-FROMREVAPPENDREVERSEROOMROTATEFROUNDROW-MAJOR-AREFRPLACARPLACDSSAFETYSATISFIESSBITSCALE-FLOATSCHARSEARCHSECONDSEQUENCESERIOUS-CONDITIONSETSET-DIFFERENCESET-DISPATCH-MACRO-CHARACTERSET-EXCLUSIVE-ORSET-MACRO-CHARACTERSET-PPRINT-DISPATCHSET-SYNTAX-FROM-CHARSETF

SETQSEVENTHSHADOWSHADOWING-IMPORTSHARED-INITIALIZESHIFTFSHORT-FLOATSHORT-FLOAT-EPSILON (*)SHORT-FLOAT-NEGATIVE-EPSILON (*)SHORT-SITE-NAMESIGNALSIGNED-BYTESIGNUMSIMPLE-ARRAYSIMPLE-BASE-STRINGSIMPLE-BIT-VECTORSIMPLE-BIT-VECTOR-PSIMPLE-CONDITIONSIMPLE-CONDITION-FORMAT-ARGUMENTSSIMPLE-CONDITION-FORMAT-CONTROLSIMPLE-ERRORSIMPLE-STRINGSIMPLE-STRING-PSIMPLE-TYPE-ERRORSIMPLE-VECTORSIMPLE-VECTOR-PSIMPLE-WARNINGSINSINGLE-FLOATSINGLE-FLOAT-EPSILON (*)SINGLE-FLOAT-NEGATIVE-EPSILON (*)SINHSIXTHSLEEPSLOT-BOUNDPSLOT-EXISTS-PSLOT-MAKUNBOUNDSLOT-MISSINGSLOT-UNBOUNDSLOT-VALUESOFTWARE-TYPESOFTWARE-VERSIONSOMESORT70

SPACESPECIALSPECIAL-OPERATOR-PSPEEDSQRTSTABLE-SORTSTANDARDSTANDARD-CHARSTANDARD-CHAR-PSTANDARD-CLASSSTANDARD-GENERIC-FUNCTIONSTANDARD-METHODSTANDARD-OBJECTSTEPSTORAGE-CONDITIONSTORE-VALUESTREAMSTREAM-ELEMENT-TYPESTREAM-ERRORSTREAM-ERROR-STREAMSTREAM-EXTERNAL-FORMATSTREAMPSTRINGSTRING-CAPITALIZESTRING-DOWNCASESTRING-EQUALSTRING-GREATERPSTRING-LEFT-TRIMSTRING-LESSPSTRING-NOT-EQUALSTRING-NOT-GREATERPSTRING-NOT-LESSPSTRING-RIGHT-TRIMSTRING-STREAMSTRING-TRIMSTRING-UPCASESTRING/=STRING<STRING<=STRING=STRING>STRING>=STRINGPSTRUCTURE

STRUCTURE-CLASSSTRUCTURE-OBJECTSTYLE-WARNINGSUBLISSUBSEQSUBSETPSUBSTSUBST-IFSUBST-IF-NOTSUBSTITUTESUBSTITUTE-IFSUBSTITUTE-IF-NOTSUBTYPEPSVREFSXHASHSYMBOLSYMBOL-FUNCTIONSYMBOL-MACROLETSYMBOL-NAMESYMBOL-PACKAGESYMBOL-PLISTSYMBOL-VALUESYMBOLPSYNONYM-STREAMSYNONYM-STREAM-SYMBOLTT (*)TAGBODYTAILPTANTANHTENTHTERPRITHETHIRDTHROWTIMETRACETRANSLATE-LOGICAL-PATHNAMETRANSLATE-PATHNAMETREE-EQUALTRUENAMETRUNCATE71

TWO-WAY-STREAMTWO-WAY-STREAM-INPUT-STREAMTWO-WAY-STREAM-OUTPUT-STREAMTYPETYPE-ERRORTYPE-ERROR-DATUMTYPE-ERROR-EXPECTED-TYPETYPE-OFTYPECASETYPEPUUNBOUND-SLOTUNBOUND-SLOT-INSTANCEUNBOUND-VARIABLEUNDEFINED-FUNCTIONUNEXPORTUNINTERNUNIONUNLESSUNREAD-CHARUNSIGNED-BYTEUNTRACEUNUSE-PACKAGEUNWIND-PROTECTUPDATE-INSTANCE-FOR-DIFFERENT-CLASSUPDATE-INSTANCE-FOR-REDEFINED-CLASSUPGRADED-ARRAY-ELEMENT-TYPEUPGRADED-COMPLEX-PART-TYPEUPPER-CASE-PUSE-PACKAGEUSE-VALUEUSER-HOMEDIR-PATHNAMEVVALUESVALUES-LISTVARIABLEVECTORVECTOR-POPVECTOR-PUSHVECTOR-PUSH-EXTENDVECTORP

WWARNWARNINGWHENWILD-PATHNAME-PWITH-ACCESSORSWITH-COMPILATION-UNITWITH-CONDITION-RESTARTSWITH-HASH-TABLE-ITERATORWITH-INPUT-FROM-STRINGWITH-OPEN-FILEWITH-OPEN-STREAMWITH-OUTPUT-TO-STRINGWITH-PACKAGE-ITERATORWITH-SIMPLE-RESTARTWITH-SLOTSWITH-STANDARD-IO-SYNTAXWRITEWRITE-BYTEWRITE-CHARWRITE-LINEWRITE-SEQUENCEWRITE-STRINGWRITE-TO-STRINGYY-OR-N-PYES-OR-NO-PZZEROP

72

C ACL2 ExportsThe ACL2 constant symbol *ACL2-EXPORTS* has as its value a list of symbolsthat we believe most users will �nd convenient to import into other packages sothat when those other packages are \current" the "ACL2" package pre�x neednot be typed for common ACL2 events. The symbols listed below are those in*ACL2-EXPORTS*@ IMPLIESACL2-COUNT IN-THEORYASSIGN INCLUDE-BOOKASSUME INTERSECTION-THEORIESCERTIFY-BOOK LDCURRENT-THEORY LOCALDECLARE MUTUAL-RECURSIONDEFAXIOM MVDEFCONST MV-LETDEFDOC MV-NTHDEFINE-PC-ATOMIC-MACRO PROVEDEFINE-PC-MACRO RETRIEVEDEFLABEL SET-DIFFERENCE-THEORIESDEFMACRO STATEDEFPKG TABLEDEFTHEORY THEORYDEFTHM THMDEFUN TOGGLE-PC-MACRODEFUNS UBTDISABLE UNION-THEORIESENABLE UNIVERSAL-THEORYENCAPSULATE VERIFYEXECUTABLE-COUNTERPART-THEORY VERIFY-GUARDSFORCE VERIFY-TERMINATIONFUNCTION-THEORY XARGSIFFReferences[1] R. S. Boyer and J S. Moore, A Computational Logic Handbook, Aca-demic Press: New York, 1988.[2] G. Gentzen, \New Version of the Consistency Proof for ElementaryNumber Theory" in M. E. Szabo, ed., The Collected Papers of GerhardGentzen, North-Holland Publishing Company: Amsterdam, 1969, pp.132{213. 73

[3] M. Kaufmann and J S. Moore, \Design Goals of ACL2," TechnicalReport 101, Computational Logic, Inc., 1717 West Sixth Street, Suite290, Austin, TX 78703, 1994.[4] M. Kaufmann and J S. Moore. ACL2: An Industrial Strength Ver-sion of Nqthm. In Proceedings of the Eleventh Annual Conference onComputer Assurance (COMPASS-96), IEEE Computer Society Press,June, 1996, pp. 23{34.[5] J. R. Shoen�eld, Mathematical Logic, Addison-Wesley: Reading, MA,1967.[6] G. L. Steele, Jr. Common LISP: The Language, Digital Press, 30 NorthAvenue, Burlington, MA 01803, 1984.[7] G. L. Steele, Jr. Common Lisp The Language, Second Edition. DigitalPress, 30 North Avenue, Burlington, MA 01803, 1990.[8] M. Kaufmann and J Strother Moore, \Structured Theory Develop-ment for a Mechanized Logic," (in preparation, eventually to befound at URL http://www.cs.utexas.edu/users/moore/acl2/reports/-km98.ps).

74

