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Abstract. The ACL2 system is based upon a first-order logic and imple-
ments traditional first-order reasoning techniques, notably (conditional)
rewriting, as well as extensions including mathematical induction and
a “functional instantiation” capability for mimicking second-order rea-
soning. Additionally, one can engage in meta-reasoning — using ACL2
to reason, and prove theorems, about ACL2’s logic from within ACL2.
One can then use these theorems to augment ACL2’s proof engine with
custom extensions. ACL2 also supports forms of meta-level control of its
rewriter. Relatively recent additions of these forms of control, as well as
extensions to ACL2’s long-standing meta-reasoning capability, allow a
greater range of rules to be written than was possible before, allowing
one to specify more comprehensive proof strategies.

1 Introduction

ACL2 is a logic, a programming language, and a semi-automatic theorem prover
[6,4,5]. This paper is about the meta reasoning facilities of ACL2, the theorem
prover. We give a brief overview of ACL2’s operations, paying particular atten-
tion to ACL2’s rule-based rewriter, which is generally considered to be its main
proof procedure. We then present a sequence of increasingly complex problems
that cannot be solved with normal rewrite rules and show how they can be solved
using ACL2’s meta-reasoning facilities. Although occasionally simplified, all but
one of these examples are based upon items from actual proof efforts. One can
find these as well as many additional examples in the proof scripts distributed
with ACL2 by searching for the keywords syntaxp, meta, and bind-free.

The facilities presented in this paper correspond to “computational reflec-
tion” as described by Harrison [3]. We do not, however, wish to argue with his
thesis that there is often a “too-easy acceptance of reflection principles as a prac-
tical necessity.” Rather, we argue that these facilities, when carefully integrated
into a system such as ACL2, can greatly enhance the user experience. Although
ACL2 does have a tactic programming language — for its interactive utility (the
so-called proof-checker) — experience has shown that the techniques described
here are often simpler and more profitable to use.



The facilities described in this paper fall into three categories: meta functions
(dating back to [1]), syntaxp directives, and bind-free directives. In addition, each
of these three facilities can be divided into a “plain” and an “extended” version.
The plain version of meta functions has been present in ACL2 from its inception,
and syntaxp was added not long thereafter (in the early 1990s). Extended meta
functions were added in Version 2.6 (2001). The bind-free directive was added
to Version 2.7 (2002), in both its plain and extended versions. The extended
syntaxp directive was added at the same time.

Syntaxp and bind-free might be appropriate within an LCF-style system
such as HOL [2]. We do not intend to argue that point vigorously, although it
seems that they could serve to free users from the need to work in the tactic
meta-language.! We do believe that these facilities bring many of the benefits
of HOL’s programmability to ACL2. Additionally, even experienced ACL2 users
may find it simpler to add a syntaxp or bind-free directive than to prove a meta
rule that installs a new simplification procedure.

We begin with a few words about the ACL2 language. The ACL2 language
is based upon a subset of Common Lisp. As such, it uses a prefix notation. For
example, one might write an expression 3*f (x,y+3) in a traditional notation,
or in the C programming language, which would be written in Lisp notation as
(* 3 (f x (+ y 3))). We should also mention that ACL2 terms are themselves
objects, which therefore can be constructed and analyzed by ACL2. Without this
ability, the features we describe in this paper would not have been possible. In
this paper, however, we stick with a traditional (or C language) notation for
pedagogical purposes.

We will also use function names that are self-explanatory. For example, the
ACL2 term (quotep x), which we could write as quotep(x), would be written
in this paper as constant (x) (so that we need not explain that quotep is the rec-
ognizer for constant terms). We will also avoid Lisp’s quote notation by writing,
for example, fn-symb(x) == + to indicate that the top function symbol of the
term x is the symbol +, in place of the ACL2 notation (equal (fn-symb x) ’+).
We therefore assume no familiarity with Lisp on the part of the reader, yet with
the comments above we also expect it to be readable by those familiar with Lisp
or ACL2.

We now give our brief overview of ACL2. The user submits a purported
theorem to ACL2, which applies a series of procedures in an attempt to prove
the theorem. These procedures include, among others, the following: simplifica-
tion that includes rewriting and linear arithmetic; generalization; and induction.
ACL2 is fully automatic in the sense that this process, once started, cannot be
further guided.

That said, however, ACL2 will rarely succeed at proving any but the simplest
of theorems on its own. The user usually must assist ACL2 in finding a proof,
generally by attaching hints to a theorem or by proving additional rules. New

! We thank a referee for pointing out that Isabelle’s Isar user interface is an example
of a “recent trend in some higher order logic theorem provers to shield users from
having to learn the tactic meta-language.”



rules will be added to ACL2’s database and used in subsequent proof attempts.
The judicious development of a library of rules can make ACL2 not only powerful
but — in the words of a game review — strangely glee to play with.

ACL2’s rewriter uses conditional rewrite rules and proceeds in a left-to-right,
inside-out manner, maintaining a context as it goes. This will be clearer after
an example. When ACL2 is rewriting a goal of the form:

<hyp 1> &&
<hyp 2>
==> <from> == <to>

it acts as if it were rewriting the equivalent clause (i.e., disjunction, represented
here using | |)

not (<hyp 1>) || not(<hyp 2>) || (<from> == <to>)

and attempts to rewrite, in (left-to-right) order, each of the following to true:
not (<hyp 1>), not(<hyp 2>), and (<from> == <to>). As ACL2 rewrites each
disjunct above, it does so in a context in which it assumes the falsity of the
others. Thus, when ACL2 rewrites not (<hyp 1>), it assumes both <hyp 2> and
(<from> != <to>). Similarly, when it rewrites (<from> == <to>), it assumes
rewritten forms of <hyp 1> and <hyp 2>. These assumptions are the context.

Suppose ACL2 is rewriting a function application, say foo (<argl>, <arg2>).
In this case, ACL2 will recursively rewrite (proceeding left to right) each of
<argl> and <arg2>, yielding <argl’> and <arg2’> and then rewrite the expres-
sion foo(<argl’>, <arg2’>). Note that this inside-out rewriting order mimics
that for evaluation — a function’s arguments are evaluated before the function
is applied to them?.

Let us now examine the rewriter in more detail, and see how this last expres-
sion, foo(<argl’>, <arg2’>), may be rewritten. Assume that the conditional
rewrite rule

GIVEN p(x)

a(y)
REWRITE foo(x, y) TO bar(y, x)

had been previously proved. The left-hand side of the above conclusion —
foo(x, y) — can be matched with our target term — foo(<argl’>, <arg2’>)
— by replacing the variables x with <argl’> and y with <arg2’>. Instantiating
the above theorem thus yields:

2 And as for evaluation, the rewriter handles if-then-else terms in a “lazy” manner: in
order to rewrite the term

if <test> then <true-branch> else <false-branch>

ACL2 first rewrites the test, and if the result is true or false then ACL2 rewrites only
the true branch or the false branch, respectively. Otherwise the resulting if term
will generally lead, ultimately, to a case split.



GIVEN p(<argl’>)
q(<arg2’>)
REWRITE foo(<argl’>, <arg2’>) TO bar(<arg2’>, <argl’>).

If ACL2 can relieve the hypotheses — recursively rewrite them to true — it will
replace the expression foo(<argl’>, <arg2’>) with bar(<arg2’>, <argl’>).

Conditional rewriting, as illustrated above, is quite restrictive. This paper
presents techniques that allow a much greater range of replacements to be spec-
ified — they allow one to specify solutions to classes of problems and to ex-
periment speculatively with several rewriting strategies, selecting among these
based upon the predetermined outcome of these strategies. Note, in particular,
that we are not claiming that these facilities allow us to prove things we could
not, in principle, before. Rather, we developed these facilities to help the user
to prove theorems more easily and naturally, by removing much of the tedium
of repeatedly carrying out simple and “obvious” steps.

2 Syntaxp

When reasoning about arithmetic expressions, it is usual to have some rules like
the following to assist with normalizing sums:

RULE: associativity-of-+
REWRITE (x + y) + z TO x + (y + 2)

RULE: commutativity-of-+
REWRITE y + x TO x + y

RULE: commutativity-2-of-+
REWRITE y + ( x + z) TO x + (y + 2)

Although it may appear that the second and third rules could each loop or
be applied repeatedly, they permute the individual summands into a pre-defined
term-order.® Rules that merely permute their elements without introducing any
new function symbols, such as the aforementioned two rules, are recognized by
ACL2 as potentially looping. It will apply such rules only when doing so will
move a smaller term to the left of a larger one. Thus, for instance, ACL2 will
use commutativity-of-+to rewrite x + 3,y + x,and (y + z) + xto 3 + x,
x + y,and x + (y + z) respectively, but will not apply it to any of these latter
expressions.

Note that although there was no meta-level reasoning used to justify these
rules, and although there were no meta-level heuristics explicitly given by the
user, the behavior of commutativity-of-+ and commutativity-2-of-+ are re-
stricted based upon the syntactic form of the instantiations of the variables x,
y, and z.

% The details of this term-order are irrelevant to the present paper; but, crudely, it is
a lexicographic order based upon the number of variables, the number of function
symbols, and an alphabetic order.



Let us now consider the term x + (3 + 4). Recall that ACL2 rewrites inside-
out. Thus, ACL2 will first rewrite the two arguments, x and (3 + 4). The first of
these is a variable, and so rewrites to itself. The second of these is a ground term
and, since ACL2 implements an executable logic, this term will get evaluated
to produce 7. Finally, ACL2 will use commutativity-of-+ to rewrite x + 7 to
7 + x.

But what about 3 + (4 + x)7? Ideally, this would rewrite to the same thing,
but there is nothing the above rules can do with this. If we could only get the
3 and 4 together, things would proceed as for x + (3 + 4). The following rule
will do this for us:

RULE: fold-consts-in-+
GIVEN syntaxp(constant(c))
syntaxp (constant (d))
REWRITE c + (d + x) TO (c + d) + x.

This rule is just the reverse of associativity-of-+, with the addition of two
syntaxp hypotheses. Without these extra hypotheses, this rule would loop with
associativity-of-+.

How do these syntaxp hypotheses work? Logically, a syntaxp expression eval-
uates to true. The above rule is, therefore, logically equivalent to

GIVEN t
t
REWRITE ¢ + (d + x) TO (¢ + d) + x

or
REWRITE ¢ + (d + x) TO (¢ + d) + x

and this is the meaning of syntaxp when one is proving the correctness of a rule.
(Note that t denotes true.)

However, when attempting to apply such a rule, the test inside the syntaxp
expression is treated as a meta-level statement about the proposed instantiation
of the rule’s variables, and that instantiated statement must evaluate to true to
establish the syntaxp hypothesis. Note, in particular, that the statement must
evaluate to true, rather than be proved true as for a regular hypothesis. Thus,
just as term-order is automatically used as a syntactic restriction on the oper-
ation of commutativity-of-+ and commutativity-2-of-+, so we have placed
a syntactic restriction on the behavior of fold-consts-in-+ — the variables c
and d must be matched with constants.

Here, we are considering the application of fold-consts-in-+ to the term
3 + (4 + x). The variable c of the rule is matched with 3, d with 4, and x
with x. Since 3 and 4 are, indeed, constants, 3 + (4 + x) will be rewritten to
(3 + 4) + x. This last term will then be rewritten in an inside-out manner,
with the final result being the desired 7 + x.

We have thus used syntaxp to assist in specifying a strategy for simplifying
sums involving constants. Fold-consts-in-+ merely places the constants into a



position in which ACL2 can finish the job using pre-existing abilities — in this
case evaluation of constant sums. Without such a rule we would have had to
write a rule such as:

RULE: crock
REWRITE 3 + (4 + x) TO 7 + x

for each combination of constants encountered in the proof. Without syntaxp
the necessity for rules such as crock would make ACL2 much more tedious to
use.

Although the example presented here uses a very simple syntactic test in
the syntaxp hypothesis, this need not be the case in general. There are ACL2
functions, not presented here, to deconstruct a term and examine the resulting
pieces. Although rare, quite sophisticated syntaxp hypotheses are possible.

Before concluding this section, we wish to emphasize an important fact about
syntaxp hypotheses that is easily overlooked. As mentioned above, a syntaxp
hypothesis is logically true, and is treated as such during the verification of the
rule containing it. Consider the rule

RULE: example
GIVEN integer(x)
REWRITE f(x, y) TO g(y, x)

in which the integer (x) hypothesis is required for the rule to be correct. We
would not, then, be able to prove:

RULE: synp-example-bad
GIVEN syntaxp(x == 0)
REWRITE f(x, y) TO g(y, x)

Even though we, as users, know that the syntaxp hypothesis requires x to be
the constant 0 (which is an integer), ACL2 does not get to use this fact during
the proof of synp-example-bad. Rather we must use:

RULE: synp-example-good

GIVEN syntaxp(x == 0)
integer (x)

REWRITE f(x, y) TO g(y, x)

ACL2 must impose this seemingly arbitrary restriction in order to maintain
logical soundness. Recall that, logically speaking, syntaxp always returns true;
hence the hypothesis (integerp x) does not follow logically from the syntaxp
hypothesis.

3 Meta functions

In the previous section we discussed certain aspects of the process of normalizing
sums, and saw how syntaxp hypotheses can be used to achieve a greater degree



of control than was possible without them. They allowed us to specify a rule
based upon the ability to analyze the lexical structure of an ACL2 expression.

In this section we present facilities not only for examining a term, but also for
constructing a new term, via so-called meta rules. These were first implemented
in Ngthm, ACL2’s predecessor; see [1], and we refer the reader to that paper,
or the “Essay on Correctness of Meta Reasoning” in the ACL2 source code for
a careful description. In a nutshell, meta rules install user-defined simplification
code into the rewriter, where the user’s proof obligation for those rules guar-
antees that each application of that code returns a term provably equal to its
input. Here, we review the basics of meta rules before describing their extension
in Section 4. More details may also be found in the extensive documentation
distributed with ACL2, specifically within the topic “meta”.

Consider the following example: arrange that for an equality between two
sums, cancel any addends that are common to both sides of the equality. For
instance, x + 3*y + z == a + b + y should be simplified to:

X + 2%y + z == a + b.

If one knew ahead of time the maximum number of addends that could appear
in a sum, one could write (a large number of) rules to handle all the potential
permutations in which common addends could appear; but this will not work in
general and is potentially expensive in terms both of the user’s labor to develop
the set of rules and of ACL2’s labor in sorting through such a number of rules,
any particular one of which is unlikely to be needed.

Instead, we will use a meta function. A meta function is a custom piece of code
that transforms certain terms into equivalent ones. When this transformation is
proved to be correct via a meta rule, the meta function will be used to extend
the operations of ACL2’s simplifier.

Here is pseudo-code for our meta function, which cancels common summands
from both sides of an equality.

FUNCTION: cancel-plus-equal(term)
1 if (fn-symb(term) == EQUAL

2 && fn-symb(argl(term)) +

3 && fn-symb(arg2(term)) == +) then
4 {1hs = sum-fringe(argl(term))

5 rhs
6

7

8

9

sum-fringe (arg2(term))

intersect(lhs, rhs)

if non-empty(int) then

make-term(sum-tree(diff (1lhs, int)),
<,

10 sum-tree(diff (rhs, int)))

11 else term}

12 else term

int

And here is the associated meta rule.

RULE: cancel-plus-equal-correct



META-REWRITE term TO cancel-plus-equal(term).

Unlike the syntaxp example, which merely performed a simple textual test on a
term, cancel-plus-equal-correct takes a term and constructs an equivalent
one under programmatic control.

We now examine its action on:

3+ £f(x) + g(x, y) ==x + g(x, y) + h(y, x).

The test of the if expression, lines 1-3, ask whether term is an equality be-
tween two sums. If term were not, cancel-plus-equal would return it un-
changed — line 12. By returning a term unchanged, a meta function signals
lack of applicability, i.e., failure. But since in the present case term is bound to
3+ f(x) + g(x, y) == x + g(x, y) + h(y, x) and so is such an equality,
ACL2 will execute the true-branch of the if expression in lines 4-11. Lines 4
and 5 assign to the variables 1hs and rhs lists of the addends of the left-hand
side and right-hand side respectively. In line 6, the intersection of these two
lists is assigned to int. If this intersection is empty, ACL2 evaluates line 11 and
returns term unchanged, signaling lack of applicability. Since in our case the
addend g(x, y) is common to both sides of the equality, int is non-empty and
so ACL2 constructs two new sums and a new equality in lines 8-10:

3+ f(x) == x + h(y, x).

The addends of these sums are the (bag-wise) difference of the two lists of ad-
dends, 1hs and rhs — {3, f£(x), g(x, y)}and {x, g(x, y), h(y, x)}, with
the list int — {g(x, y)}.

Thus, meta rules allow one to write a custom simplifier for entire classes of
terms, rather than having to write rules for a myriad of subclasses. We are able
to do so because an ACL2 term is merely a structure consisting of a function
symbol and the function’s arguments, and we can deconstruct, examine, and
reconstruct such structures using ACL2 functions.

We now briefly examine the “meaning” of a meta rule and touch upon how to
prove its correctness. A meta rule not only has an associated meta function, but
also has an associated evaluator that operates in an environment. An evaluator
is a function that can evaluate terms by first looking in the environment for
the values of any variables present in the term and then evaluating the resulting
ground term. The meta rule then states that, using this evaluator, the evaluation
of a manipulated term in the environment is equal to the evaluation of the
original term in the same environment.

4 Extended Meta-functions

Sometime prior to ACL2 Version 2.6, one of the authors of this paper became
dissatisfied with some of the limitations inherent in meta functions. In particular,
he wanted to write a rule similar to cancel-plus-equal-correct that would
cancel like factors from either side of an inequality, but was unable to do so. The



difficulty stemmed from the fact that within ACL2’s logic, as opposed to stan-
dard mathematics, complex numbers are linearly ordered using the dictionary
order on their real and imaginary parts respectively. Thus, for example, 0 < i
and i < 1. It is therefore not true that for numbers x, y, and z:

0 <x
==> x*y < x*z ==y < 2Z.

For a counterexample, let x and y be i, and z be 0. In contrast with a high
school mathematics exam, within ACL2, one can perform such a simplification
only if one also knows that x is rational?. The correct theorem in ACL2 is

rational(x) &&
0 < x
==> XXy < x*z == y < zZ.

In this section, we describe an extension to meta functions that allows us to
perform such simplifications. This extension will allow us to gather information,
for heuristic purposes only, that would not be otherwise available.

A “plain” meta function takes one argument — the term under consideration.
This is what we saw in the previous section. An “extended” meta function takes
two additional arguments, mfc® and state. These extra arguments give one
access to functions that can be used for heuristic purposes, with names of the
form mf c-xxx. These functions allow one to access and examine ACL2’s internal
data structures as well as giving one the ability to call a couple of the major
functions of ACL2’s rewriter.

We will see below how to make use of the following function.

FUNCTION: provably-pos-rat(x, mfc, state)
mfc-rw(make-term(make-term(RATIONAL, x),
&&,
make-term(0, <, x))
t t mfc state)

It asks whether ACL2 can rewrite an expression of the form rational(x) &&
0 < x to true. We wish to emphasize here that the ability to construct and
examine ACL2 terms within ACL2’s logic is fundamental to such capabilities.

Here is pseudocode for our meta function, which cancels a common positive
rational factor (if any) from both sides of an inequality.

FUNCTION: cancel-times-<(term, mfc, state)
1 if (fn-symb(term) ==

2 && fn-symb(argl(term))
3 && fn-symb(arg2(term)) == *) then

= %

* There are no irrational numbers in ACL2.

5 Mfc stands for “Meta Function Context.” The meta function context is a large and
complex data structure that contains the current dynamic environment of ACL2’s
rewriter.



4 {1lhs = product-fringe (argl(term))

5 rhs = product-fringe (arg2(term))

6 int = intersect(lhs, rhs)

7 pos-rat = find-pos-rat(int, mfc, state)

8 if non-empty(pos-rat) then

9 make-term(IF,

10 make-term(make-term(RATIONAL, pos-rat),

11 &&

12 make-term(0, <, pos-rat)),

13 make-term(product-tree(diff (lhs, pos-rat)),
14 <,

15 product-tree(diff (rhs, pos-rat))),
16 term)

17 else term}

18 else term)

And here is the associated meta rule.

RULE: cancel-times-<-correct
META-REWRITE term TO cancel-times-<(term).

The function above is similar to cancel-plus-equal, but with three distinc-
tions. First, in lines 2 and 3 cancel-times-< tests for the presence of products
rather than sums and in lines 13 and 15 produces new products rather than
sums. Second, line 7 is new. Find-pos-rat takes three arguments — int (the
list of common factors), mfc, and state. Find-pos-rat steps through the ele-
ments of int, searching for one for which provably-pos-rat(element, mfc,
state) returns true. If it is able to find one, find-pos-rat returns a list con-
taining that positive, rational factor. If it is unable to find one, it returns the
empty list.

Third, in lines 9-16 cancel-times-< constructs a more complex return value
than just a simple equality between two sums or products. We must do so be-
cause, although we as users know that if pos-rat is non-empty it must contain
a positive rational, ACL2 does not know this logically. Just as any information
gathered by a syntaxp hypothesis cannot be used during verification of the rule
with that hypothesis, so any information gathered by an mfc-xxx function is
not available to ACL2 during a meta rules verification. ACL2 has no knowledge
about the mfc-xxx functions, other than that they are functions.

We now examine the action of this rule in more detail, using

3% £(x) * g(x, y) <x *x g(x, y) * h(y, x)

as our example. We assume that in the present context, g(x, y) is provably
a positive rational. Things will proceed much as in the previous example and,
as described immediately above, find-pos-rat will return a list containing the
single term g(x, y), and this value will be assigned to the variable pos-rat.
The test in line 8 is therefore true, and ACL2 will evaluate lines 9-16. The result
is



if (rational(g(x, y)) && 0 < g(x, y))
then 3 * f(x) < x * h(y, x)
else 3 * f(x) * g(x, y) < x * g(x, y) * h(y, x).

During subsequent simplification of this expression, ACL2 will first rewrite
the test of the if in order to determine which branch to use. Since (by construc-
tion) the test will rewrite to true, ACL2 will rewrite only the “then” sub-term,
leading to the desired final result:

3 x £f(x) < x * h(y, x).

Although this “extra” rewriting of the if expression’s test might seem to be a
source of inefficiency, in practice we have not found this to be true. Failure is
the norm and the vast majority of the time any particular rule does not apply to
the current term. Thus, only a small percentage of the work is ever duplicated,
and this only when progress is (supposedly) being made.

5 Bind-free

The careful reader may have noticed that the meta rule, cancel-plus-equal-
correct, presented in Section 3 would not actually simplify the first, motivat-
ing, example — the addends 3 * y and y are not equal, and so would not be
found by merely taking the intersection of the two sets of addends. While this
could be fixed by using something more sophisticated than intersection to
determine what to subtract from both sides, we instead present a solution using
a bind-free hypothesis.

Bind-free hypotheses grew out of a discussion between several of this paper’s
authors dissatisfied with the difficulty of proving simple meta rules correct. In
general, this proof burden is equivalent to proving the total correctness of a piece
of software. Although theoretically meta rules, plain or extended, are much more
powerful than a rule using bind-free, this extra power is rarely needed. Giving
up this extra power, when it is not needed, can make it much easier to write
and verify the appropriate rules. This exchange, in turn, encourages one to focus
upon the larger picture by proving the most general rules possible and thereby
helps one to avoid getting lost in the details.

A bind-free hypothesis is similar to a syntaxp hypothesis in that its treatment
when verifying the rule in which it appears differs from its treatment when that
rule is being applied to a term during rewriting. Both bind-free and syntaxp
hypotheses are treated as being logically true during verification of a rule, and
both are evaluated during the rules application. As before this differing treatment
is sound, and for the same reasons.®

A bind-free hypothesis differs from a syntaxp hypothesis as follows. A syntaxp
hypothesis evaluates to true or false, signaling success or failure. A bind-free
hypothesis either evaluates to the empty list or signals success by returning a

% ACL2 actually implements both bind-free and syntaxp using a single primitive, synp,
an implementation detail that is beyond the scope of this paper.



list of pairs binding the free variables of the rule, as illustrated by the following
example.

FUNCTION: find-matching-addends (lhs rhs)
if (fn-symb(lhs) == +
&& fn-symb(rhs) == +) then
{common-addends = find-common(sum-fringe(lhs),
sum-fringe (rhs))
if common-addends then
list(pair(x, common-addends))
else empty-list}
else empty-list

00 ~NOoO O WN -

RULE: simplify-equality-of-sums
GIVEN rational (rhs)
rational (1hs)
bind-free(find-matching-addends(lhs, rhs))
REWRITE lhs == rhs TO lhs - x == rhs - x.

Note that it is the job of other rules, not shown here, to simplify the resulting
differences.

Briefly, this rule cancels any common addends by adding their inverse to both
sides of the equality. There are two things to note about this rule. First, note
that the variable x does not appear in the left-hand side of the concluding equal-
ity of simplify-equality-of-sums. It is, therefore, a free variable. (As briefly
described in the Introduction, ACL2 matches the left-hand side of a rule’s con-
cluding equality with the term currently being rewritten, binding any variables
to their matching sub-terms. Since x does not appear in the left-hand side of
simplify-equality-of-sums’s conclusion, it is unbound or free. We will make
this more explicit shortly.) ACL2 has several automatic mechanisms for choos-
ing an instantiation of such variables, which we do not discuss here. Rather, we
describe how we use bind-free to programmatically determine the appropriate
binding.

Second, the correctness of this rule does not depend upon the value that we
subtract from both sides. We are free to pick this value however we want.

How is this rule applied to the following equality?

x+ 3y +z==a+b+y

As hinted in the Introduction, when ACL2 attempts to apply the rule simplify-
equality-of-sums to the term under discussion, it first forms a substitution
that instantiates the left-hand side of the rule’s concluding equality so that it
is identical to the target term. This substitution has the following value in our
example.

((1hs == x + 3%y + z)
(rhs == a + b + y))



ACL2 then attempts to relieve the hypotheses in the order they were given. Here,
the first two hypotheses are regular ones, to be relieved by standard rewriting.
Let us assume that in the current context these hypotheses rewrite to true; we
examine the final, bind-free, hypothesis.

ACL2 evaluates find-matching-addends (1hs, rhs) in an environment in
which 1hs and rhs are instantiated as determined by the substitution. In this
case we evaluate

find-matching-addends(x + 3%y + z, a + b + y).

The test of the if expression (lines 1 and 2 above) asks whether 1hs and rhs
are sums. If they weren’t the expression would evaluate to the empty list in line
8, signaling failure or lack of applicability. Since they are sums, ACL2 evaluates
the true branch of simplify-equality-of-sums in lines 3 — 7. Lines 3 and 4
assign to the variable common-addends a list of addends common to both 1lhs
and rhs. Find-common is a much more complex function than intersection
and examines the addends in a more intelligent manner. We do not further
describe this than to say that in the present case, find-common returns y, the
“matching” part of 1hs and rhs. The returned value of find-matching-addends
is, therefore, list(pair(x, y)), informally written as (x == y), and this is
then used to extend the substitution:

((lhs == x + 3%y + z)
(rhs == a + b + y)
(x == y)).

This is used to substitute back into the TO side of simplify-equality-of-sums’s
concluding rewrite, yielding the result:

X +3*xy+z-y=a+b+y-y.

Again, we have preemptively eliminated the need for a large collection of similar
rules with one rule.

This rule both was able to search for matching addends in a more sophis-
ticated manner than in cancel-plus-equal-correct and was easier to prove.
The authors of a meta rule might be reluctant to use such a complex search
method, because it could greatly complicate the proof of correctness and the
simpler method was usually “good enough.” A well-constructed bind-free rule,
however, is often trivial to prove.

6 Extended Syntaxp

We now return to syntaxp hypotheses, but in an extended form. Just as meta
rules come in two flavors, so do syntaxp hypotheses. In this section, we describe
two more mfc-xxx functions and show how they can be used with extended
syntaxp hypotheses.

(Recall that a syntaxp hypothesis is treated as being logically true when it
is one of the hypotheses of the rule being proven correct. It is only during a



rule’s use, when the hypothesis must be relieved, that ACL2 will execute these
functions. As before, any information gathered is of heuristic use only — it
cannot be used to justify the correctness of a rule.)

— mfc-clause(mfc): returns the current goal being proved. From the dis-
tributed finite-set-theory books” we take the following example:

function: rewriting-conc-lit(term, mfc, state)
subterm-of (term, last(mfc-clause(mfc)))

This function asks whether the term now being rewritten is the conclusion of
the current goal. It has been found useful for certain expensive rules to act
only upon the conclusion of a goal. The heuristic thought behind this is that
often the hypotheses of a goal merely set forth the conditions under which the
conclusion is true. It is therefore reasonable to expend more effort rewriting
a conclusion than a hypothesis. See the finite-set-theory/osets books
distributed with ACL2 for examples of this.

— mfc-ancestors(mfc): returns the current list of the negations of the back-
chaining hypotheses being pursued. The only use we envision for this function
is in:

function: rewriting-goal-literal(term, mfc, state)
is-empty-list(mfc-ancestors(mfc))

(Note that term and state are being ignored here.) This function asks
whether we are rewriting a term from the current goal — as opposed to
rewriting a hypothesis from a rewrite (or other) rule. This has been found
useful in such rules as the following.

rule: floor-positive

given: syntaxp(rewriting-goal-literal(x, mfc, state))
rational (x)
rational(y)

rewrite: 0 < floor(x, y)

to: (0<y&& y<=x) || (y <0 && x <=y)

By using rewriting-goal-literal we avoid the expense of inducing a case-
split for the two disjuncts while backchaining to relieve a rule’s hypotheses
(when it is unlikely to do any good).

7 Extended Bind-free

Bind-free hypotheses also come in an extended form. In this section we illus-
trate such hypotheses by presenting a rule for simplifying terms of the form
integer (<sum>) where <sum> is a sum. For example, if we can show that y is
an integer, we would like to simplify integer(x + y + z) to integer(x + z).

" Books are ACL2 input files that can be run through ACL2’s certification process.



FUNCTION: reduce-integer-+-fn(sum, mfc, state)

1 if fn-symb(sum) '= + then

2 empty-list

3 else if provably-integer(argl(sum), mfc, state) then
4 list(pair(int, argl(sum)))

5 else if fn-symb(arg2(sum)) == + then

6 reduce-integer-+-fn(arg2(sum), mfc, state)

7 else if provably-integer (arg2(sum), mfc, state) then
8 list(pair(int, arg2(sum)))

9 else empty-list

RULE: reduce-integer-+

GIVEN bind-free(reduce-integer-+-fn(sum, mfc, state))
integer (int)

REWRITE integer(sum) TO integer (sum - int)

We emphasize here that although we (as users) know that the second hy-
pothesis, integer (int) must be true by the way that we selected int, this
information is not available to ACL2. ACL2 must rederive this fact for its own
use. Again, although this might seem a source of inefficiency, in practice we have
not found this to be true.

We now consider our example, integer(x + y + z), where y is provably an
integer, and describe the action of reduce-integer-+-fn on this term. First
note that addition is actually a binary operation in ACL2; we are really looking
at the term integer(x + (y + z)). Reduce-integer-+-fn recurs on the ad-
dends so since y, by assumption, is provably an integer, reduce-integer—+-fn
returns 1list (pair(int, y)). The right-hand side of the concluding equality of
reduce-integer-+is therefore rewritten to the appropriate instance of the term
integer ((x + y + z) - y), which will be simplified by other rules to yield our
desired result.

8 Conclusion

In this paper we have described three facilities afforded by ACL2 for varying lev-
els of meta level control and reasoning. The weakest of these, syntaxp hypothe-
ses, allow one to control the behavior of ordinary rewrite rules by restricting
their operations based upon the syntactic form of their instantiated variables. A
quick search reveals that there are over 800 uses of syntaxp hypotheses among
more than 150 of the proof scripts distributed with ACL2. Bind-free hypothe-
ses, which allow one to programmatically select a binding for free variables, are
slightly more powerful and there are more than 50 uses of this relatively new
facility in approximately 15 scripts. Finally, there are about 25 uses of meta rules
in 12 scripts®.

8 It seems likely that all but a couple of these meta rules could, instead, be made
bind-free rules. For example, the meta rule cancel-plus-equal-correct could be



The initial designs of these facilities sprang from users’ frustrations with the
effort required to carry out certain proofs which required one to continually point
out to ACL2 simple and seemingly “obvious” steps. The initial implementations
were then tested, generalized, and tested again. They were not placed into the
main development branch of ACL2’s source code until all were satisfied that
they were correctly and efficiently implemented, as easy to use as possible, and
sufficiently general to be broadly useful.

As we have seen, these meta level facilities allow one to specify solutions to
entire classes of problems, avoiding the need for a myriad of rules in their stead.
This allows one to concentrate on the structure of the desired proof, and to leave
many of the details to ACL2. See [7] for an example of this in the domain of
bags, or multisets.
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