
Meta Reasoning in ACL2Warren A. Hunt, Jr., Matt Kaufmann, Robert Bellarmine Krug, J Moore, andEri
 Whitman SmithDepartment of Computer S
ien
esUniversity of Texas at AustinAustin, TX 78712-1188, USAE-mail: hunt�
s.utexas.edu, kaufmann�
s.utexas.edu, rkrug�
s.utexas.edu,moore�
s.utexas.edu, ewsmith�stanford.eduAbstra
t. The ACL2 system is based upon a �rst-order logi
 and imple-ments traditional �rst-order reasoning te
hniques, notably (
onditional)rewriting, as well as extensions in
luding mathemati
al indu
tion anda \fun
tional instantiation"
apability for mimi
king se
ond-order rea-soning. Additionally, one
an engage in meta-reasoning | using ACL2to reason, and prove theorems, about ACL2's logi
 from within ACL2.One
an then use these theorems to augment ACL2's proof engine with
ustom extensions. ACL2 also supports forms of meta-level
ontrol of itsrewriter. Relatively re
ent additions of these forms of
ontrol, as well asextensions to ACL2's long-standing meta-reasoning
apability, allow agreater range of rules to be written than was possible before, allowingone to spe
ify more
omprehensive proof strategies.1 Introdu
tionACL2 is a logi
, a programming language, and a semi-automati
 theorem prover[6, 4, 5℄. This paper is about the meta reasoning fa
ilities of ACL2, the theoremprover. We give a brief overview of ACL2's operations, paying parti
ular atten-tion to ACL2's rule-based rewriter, whi
h is generally
onsidered to be its mainproof pro
edure. We then present a sequen
e of in
reasingly
omplex problemsthat
annot be solved with normal rewrite rules and show how they
an be solvedusing ACL2's meta-reasoning fa
ilities. Although o

asionally simpli�ed, all butone of these examples are based upon items from a
tual proof e�orts. One
an�nd these as well as many additional examples in the proof s
ripts distributedwith ACL2 by sear
hing for the keywords syntaxp, meta, and bind-free.The fa
ilities presented in this paper
orrespond to \
omputational re
e
-tion" as des
ribed by Harrison [3℄. We do not, however, wish to argue with histhesis that there is often a \too-easy a

eptan
e of re
e
tion prin
iples as a pra
-ti
al ne
essity." Rather, we argue that these fa
ilities, when
arefully integratedinto a system su
h as ACL2,
an greatly enhan
e the user experien
e. AlthoughACL2 does have a ta
ti
 programming language | for its intera
tive utility (theso-
alled proof-
he
ker) | experien
e has shown that the te
hniques des
ribedhere are often simpler and more pro�table to use.

The fa
ilities des
ribed in this paper fall into three
ategories: meta fun
tions(dating ba
k to [1℄), syntaxp dire
tives, and bind-free dire
tives. In addition, ea
hof these three fa
ilities
an be divided into a \plain" and an \extended" version.The plain version of meta fun
tions has been present in ACL2 from its in
eption,and syntaxp was added not long thereafter (in the early 1990s). Extended metafun
tions were added in Version 2.6 (2001). The bind-free dire
tive was addedto Version 2.7 (2002), in both its plain and extended versions. The extendedsyntaxp dire
tive was added at the same time.Syntaxp and bind-free might be appropriate within an LCF-style systemsu
h as HOL [2℄. We do not intend to argue that point vigorously, although itseems that they
ould serve to free users from the need to work in the ta
ti
meta-language.1 We do believe that these fa
ilities bring many of the bene�tsof HOL's programmability to ACL2. Additionally, even experien
ed ACL2 usersmay �nd it simpler to add a syntaxp or bind-free dire
tive than to prove a metarule that installs a new simpli�
ation pro
edure.We begin with a few words about the ACL2 language. The ACL2 languageis based upon a subset of Common Lisp. As su
h, it uses a pre�x notation. Forexample, one might write an expression 3*f(x,y+3) in a traditional notation,or in the C programming language, whi
h would be written in Lisp notation as(* 3 (f x (+ y 3))). We should also mention that ACL2 terms are themselvesobje
ts, whi
h therefore
an be
onstru
ted and analyzed by ACL2. Without thisability, the features we des
ribe in this paper would not have been possible. Inthis paper, however, we sti
k with a traditional (or C language) notation forpedagogi
al purposes.We will also use fun
tion names that are self-explanatory. For example, theACL2 term (quotep x), whi
h we
ould write as quotep(x), would be writtenin this paper as
onstant(x) (so that we need not explain that quotep is the re
-ognizer for
onstant terms). We will also avoid Lisp's quote notation by writing,for example, fn-symb(x) == + to indi
ate that the top fun
tion symbol of theterm x is the symbol +, in pla
e of the ACL2 notation (equal (fn-symb x) '+).We therefore assume no familiarity with Lisp on the part of the reader, yet withthe
omments above we also expe
t it to be readable by those familiar with Lispor ACL2.We now give our brief overview of ACL2. The user submits a purportedtheorem to ACL2, whi
h applies a series of pro
edures in an attempt to provethe theorem. These pro
edures in
lude, among others, the following: simpli�
a-tion that in
ludes rewriting and linear arithmeti
; generalization; and indu
tion.ACL2 is fully automati
 in the sense that this pro
ess, on
e started,
annot befurther guided.That said, however, ACL2 will rarely su

eed at proving any but the simplestof theorems on its own. The user usually must assist ACL2 in �nding a proof,generally by atta
hing hints to a theorem or by proving additional rules. New1 We thank a referee for pointing out that Isabelle's Isar user interfa
e is an exampleof a \re
ent trend in some higher order logi
 theorem provers to shield users fromhaving to learn the ta
ti
 meta-language."

rules will be added to ACL2's database and used in subsequent proof attempts.The judi
ious development of a library of rules
an make ACL2 not only powerfulbut | in the words of a game review | strangely glee to play with.ACL2's rewriter uses
onditional rewrite rules and pro
eeds in a left-to-right,inside-out manner, maintaining a
ontext as it goes. This will be
learer afteran example. When ACL2 is rewriting a goal of the form:<hyp 1> &&<hyp 2>==> <from> == <to>it a
ts as if it were rewriting the equivalent
lause (i.e., disjun
tion, representedhere using ||)not(<hyp 1>) || not(<hyp 2>) || (<from> == <to>)and attempts to rewrite, in (left-to-right) order, ea
h of the following to true:not(<hyp 1>), not(<hyp 2>), and (<from> == <to>). As ACL2 rewrites ea
hdisjun
t above, it does so in a
ontext in whi
h it assumes the falsity of theothers. Thus, when ACL2 rewrites not(<hyp 1>), it assumes both <hyp 2> and(<from> != <to>). Similarly, when it rewrites (<from> == <to>), it assumesrewritten forms of <hyp 1> and <hyp 2>. These assumptions are the
ontext.Suppose ACL2 is rewriting a fun
tion appli
ation, say foo(<arg1>, <arg2>).In this
ase, ACL2 will re
ursively rewrite (pro
eeding left to right) ea
h of<arg1> and <arg2>, yielding <arg1'> and <arg2'> and then rewrite the expres-sion foo(<arg1'>, <arg2'>). Note that this inside-out rewriting order mimi
sthat for evaluation | a fun
tion's arguments are evaluated before the fun
tionis applied to them2.Let us now examine the rewriter in more detail, and see how this last expres-sion, foo(<arg1'>, <arg2'>), may be rewritten. Assume that the
onditionalrewrite ruleGIVEN p(x)q(y)REWRITE foo(x, y) TO bar(y, x)had been previously proved. The left-hand side of the above
on
lusion |foo(x, y)|
an be mat
hed with our target term | foo(<arg1'>, <arg2'>)| by repla
ing the variables x with <arg1'> and y with <arg2'>. Instantiatingthe above theorem thus yields:2 And as for evaluation, the rewriter handles if-then-else terms in a \lazy" manner: inorder to rewrite the termif <test> then <true-bran
h> else <false-bran
h>ACL2 �rst rewrites the test, and if the result is true or false then ACL2 rewrites onlythe true bran
h or the false bran
h, respe
tively. Otherwise the resulting if termwill generally lead, ultimately, to a
ase split.

GIVEN p(<arg1'>)q(<arg2'>)REWRITE foo(<arg1'>, <arg2'>) TO bar(<arg2'>, <arg1'>).If ACL2
an relieve the hypotheses | re
ursively rewrite them to true | it willrepla
e the expression foo(<arg1'>, <arg2'>) with bar(<arg2'>, <arg1'>).Conditional rewriting, as illustrated above, is quite restri
tive. This paperpresents te
hniques that allow a mu
h greater range of repla
ements to be spe
-i�ed | they allow one to spe
ify solutions to
lasses of problems and to ex-periment spe
ulatively with several rewriting strategies, sele
ting among thesebased upon the predetermined out
ome of these strategies. Note, in parti
ular,that we are not
laiming that these fa
ilities allow us to prove things we
ouldnot, in prin
iple, before. Rather, we developed these fa
ilities to help the userto prove theorems more easily and naturally, by removing mu
h of the tediumof repeatedly
arrying out simple and \obvious" steps.2 SyntaxpWhen reasoning about arithmeti
 expressions, it is usual to have some rules likethe following to assist with normalizing sums:RULE: asso
iativity-of-+REWRITE (x + y) + z TO x + (y + z)RULE:
ommutativity-of-+REWRITE y + x TO x + yRULE:
ommutativity-2-of-+REWRITE y + (x + z) TO x + (y + z)Although it may appear that the se
ond and third rules
ould ea
h loop orbe applied repeatedly, they permute the individual summands into a pre-de�nedterm-order.3 Rules that merely permute their elements without introdu
ing anynew fun
tion symbols, su
h as the aforementioned two rules, are re
ognized byACL2 as potentially looping. It will apply su
h rules only when doing so willmove a smaller term to the left of a larger one. Thus, for instan
e, ACL2 willuse
ommutativity-of-+ to rewrite x + 3, y + x, and (y + z) + x to 3 + x,x + y, and x + (y + z) respe
tively, but will not apply it to any of these latterexpressions.Note that although there was no meta-level reasoning used to justify theserules, and although there were no meta-level heuristi
s expli
itly given by theuser, the behavior of
ommutativity-of-+ and
ommutativity-2-of-+ are re-stri
ted based upon the synta
ti
 form of the instantiations of the variables x,y, and z.3 The details of this term-order are irrelevant to the present paper; but,
rudely, it isa lexi
ographi
 order based upon the number of variables, the number of fun
tionsymbols, and an alphabeti
 order.

Let us now
onsider the term x + (3 + 4). Re
all that ACL2 rewrites inside-out. Thus, ACL2 will �rst rewrite the two arguments, x and (3 + 4). The �rst ofthese is a variable, and so rewrites to itself. The se
ond of these is a ground termand, sin
e ACL2 implements an exe
utable logi
, this term will get evaluatedto produ
e 7. Finally, ACL2 will use
ommutativity-of-+ to rewrite x + 7 to7 + x.But what about 3 + (4 + x)? Ideally, this would rewrite to the same thing,but there is nothing the above rules
an do with this. If we
ould only get the3 and 4 together, things would pro
eed as for x + (3 + 4). The following rulewill do this for us:RULE: fold-
onsts-in-+GIVEN syntaxp(
onstant(
))syntaxp(
onstant(d))REWRITE
 + (d + x) TO (
 + d) + x.This rule is just the reverse of asso
iativity-of-+, with the addition of twosyntaxp hypotheses. Without these extra hypotheses, this rule would loop withasso
iativity-of-+.How do these syntaxp hypotheses work? Logi
ally, a syntaxp expression eval-uates to true. The above rule is, therefore, logi
ally equivalent toGIVEN ttREWRITE
 + (d + x) TO (
 + d) + xorREWRITE
 + (d + x) TO (
 + d) + xand this is the meaning of syntaxp when one is proving the
orre
tness of a rule.(Note that t denotes true.)However, when attempting to apply su
h a rule, the test inside the syntaxpexpression is treated as a meta-level statement about the proposed instantiationof the rule's variables, and that instantiated statement must evaluate to true toestablish the syntaxp hypothesis. Note, in parti
ular, that the statement mustevaluate to true, rather than be proved true as for a regular hypothesis. Thus,just as term-order is automati
ally used as a synta
ti
 restri
tion on the oper-ation of
ommutativity-of-+ and
ommutativity-2-of-+, so we have pla
eda synta
ti
 restri
tion on the behavior of fold-
onsts-in-+| the variables
and d must be mat
hed with
onstants.Here, we are
onsidering the appli
ation of fold-
onsts-in-+ to the term3 + (4 + x). The variable
 of the rule is mat
hed with 3, d with 4, and xwith x. Sin
e 3 and 4 are, indeed,
onstants, 3 + (4 + x) will be rewritten to(3 + 4) + x. This last term will then be rewritten in an inside-out manner,with the �nal result being the desired 7 + x.We have thus used syntaxp to assist in spe
ifying a strategy for simplifyingsums involving
onstants. Fold-
onsts-in-+merely pla
es the
onstants into a

position in whi
h ACL2
an �nish the job using pre-existing abilities | in this
ase evaluation of
onstant sums. Without su
h a rule we would have had towrite a rule su
h as:RULE:
ro
kREWRITE 3 + (4 + x) TO 7 + xfor ea
h
ombination of
onstants en
ountered in the proof. Without syntaxpthe ne
essity for rules su
h as
ro
k would make ACL2 mu
h more tedious touse.Although the example presented here uses a very simple synta
ti
 test inthe syntaxp hypothesis, this need not be the
ase in general. There are ACL2fun
tions, not presented here, to de
onstru
t a term and examine the resultingpie
es. Although rare, quite sophisti
ated syntaxp hypotheses are possible.Before
on
luding this se
tion, we wish to emphasize an important fa
t aboutsyntaxp hypotheses that is easily overlooked. As mentioned above, a syntaxphypothesis is logi
ally true, and is treated as su
h during the veri�
ation of therule
ontaining it. Consider the ruleRULE: exampleGIVEN integer(x)REWRITE f(x, y) TO g(y, x)in whi
h the integer(x) hypothesis is required for the rule to be
orre
t. Wewould not, then, be able to prove:RULE: synp-example-badGIVEN syntaxp(x == 0)REWRITE f(x, y) TO g(y, x)Even though we, as users, know that the syntaxp hypothesis requires x to bethe
onstant 0 (whi
h is an integer), ACL2 does not get to use this fa
t duringthe proof of synp-example-bad. Rather we must use:RULE: synp-example-goodGIVEN syntaxp(x == 0)integer(x)REWRITE f(x, y) TO g(y, x)ACL2 must impose this seemingly arbitrary restri
tion in order to maintainlogi
al soundness. Re
all that, logi
ally speaking, syntaxp always returns true;hen
e the hypothesis (integerp x) does not follow logi
ally from the syntaxphypothesis.3 Meta fun
tionsIn the previous se
tion we dis
ussed
ertain aspe
ts of the pro
ess of normalizingsums, and saw how syntaxp hypotheses
an be used to a
hieve a greater degree

of
ontrol than was possible without them. They allowed us to spe
ify a rulebased upon the ability to analyze the lexi
al stru
ture of an ACL2 expression.In this se
tion we present fa
ilities not only for examining a term, but also for
onstru
ting a new term, via so-
alled meta rules. These were �rst implementedin Nqthm, ACL2's prede
essor; see [1℄, and we refer the reader to that paper,or the \Essay on Corre
tness of Meta Reasoning" in the ACL2 sour
e
ode fora
areful des
ription. In a nutshell, meta rules install user-de�ned simpli�
ation
ode into the rewriter, where the user's proof obligation for those rules guar-antees that ea
h appli
ation of that
ode returns a term provably equal to itsinput. Here, we review the basi
s of meta rules before des
ribing their extensionin Se
tion 4. More details may also be found in the extensive do
umentationdistributed with ACL2, spe
i�
ally within the topi
 \meta".Consider the following example: arrange that for an equality between twosums,
an
el any addends that are
ommon to both sides of the equality. Forinstan
e, x + 3*y + z == a + b + y should be simpli�ed to:x + 2*y + z == a + b.If one knew ahead of time the maximum number of addends that
ould appearin a sum, one
ould write (a large number of) rules to handle all the potentialpermutations in whi
h
ommon addends
ould appear; but this will not work ingeneral and is potentially expensive in terms both of the user's labor to developthe set of rules and of ACL2's labor in sorting through su
h a number of rules,any parti
ular one of whi
h is unlikely to be needed.Instead, we will use ameta fun
tion. A meta fun
tion is a
ustom pie
e of
odethat transforms
ertain terms into equivalent ones. When this transformation isproved to be
orre
t via a meta rule, the meta fun
tion will be used to extendthe operations of ACL2's simpli�er.Here is pseudo-
ode for our meta fun
tion, whi
h
an
els
ommon summandsfrom both sides of an equality.FUNCTION:
an
el-plus-equal(term)1 if (fn-symb(term) == EQUAL2 && fn-symb(arg1(term)) == +3 && fn-symb(arg2(term)) == +) then4 {lhs = sum-fringe(arg1(term))5 rhs = sum-fringe(arg2(term))6 int = interse
t(lhs, rhs)7 if non-empty(int) then8 make-term(sum-tree(diff(lhs, int)),9 <,10 sum-tree(diff(rhs, int)))11 else term}12 else termAnd here is the asso
iated meta rule.RULE:
an
el-plus-equal-
orre
t

META-REWRITE term TO
an
el-plus-equal(term).Unlike the syntaxp example, whi
h merely performed a simple textual test on aterm,
an
el-plus-equal-
orre
t takes a term and
onstru
ts an equivalentone under programmati

ontrol.We now examine its a
tion on:3 + f(x) + g(x, y) == x + g(x, y) + h(y, x).The test of the if expression, lines 1{3, ask whether term is an equality be-tween two sums. If term were not,
an
el-plus-equal would return it un-
hanged | line 12. By returning a term un
hanged, a meta fun
tion signalsla
k of appli
ability, i.e., failure. But sin
e in the present
ase term is bound to3 + f(x) + g(x, y) == x + g(x, y) + h(y, x) and so is su
h an equality,ACL2 will exe
ute the true-bran
h of the if expression in lines 4{11. Lines 4and 5 assign to the variables lhs and rhs lists of the addends of the left-handside and right-hand side respe
tively. In line 6, the interse
tion of these twolists is assigned to int. If this interse
tion is empty, ACL2 evaluates line 11 andreturns term un
hanged, signaling la
k of appli
ability. Sin
e in our
ase theaddend g(x, y) is
ommon to both sides of the equality, int is non-empty andso ACL2
onstru
ts two new sums and a new equality in lines 8{10:3 + f(x) == x + h(y, x).The addends of these sums are the (bag-wise) di�eren
e of the two lists of ad-dends, lhs and rhs| {3, f(x), g(x, y)} and {x, g(x, y), h(y, x)}, withthe list int | {g(x, y)}.Thus, meta rules allow one to write a
ustom simpli�er for entire
lasses ofterms, rather than having to write rules for a myriad of sub
lasses. We are ableto do so be
ause an ACL2 term is merely a stru
ture
onsisting of a fun
tionsymbol and the fun
tion's arguments, and we
an de
onstru
t, examine, andre
onstru
t su
h stru
tures using ACL2 fun
tions.We now brie
y examine the \meaning" of a meta rule and tou
h upon how toprove its
orre
tness. A meta rule not only has an asso
iated meta fun
tion, butalso has an asso
iated evaluator that operates in an environment. An evaluatoris a fun
tion that
an evaluate terms by �rst looking in the environment forthe values of any variables present in the term and then evaluating the resultingground term. The meta rule then states that, using this evaluator, the evaluationof a manipulated term in the environment is equal to the evaluation of theoriginal term in the same environment.4 Extended Meta-fun
tionsSometime prior to ACL2 Version 2.6, one of the authors of this paper be
amedissatis�ed with some of the limitations inherent in meta fun
tions. In parti
ular,he wanted to write a rule similar to
an
el-plus-equal-
orre
t that would
an
el like fa
tors from either side of an inequality, but was unable to do so. The

diÆ
ulty stemmed from the fa
t that within ACL2's logi
, as opposed to stan-dard mathemati
s,
omplex numbers are linearly ordered using the di
tionaryorder on their real and imaginary parts respe
tively. Thus, for example, 0 < iand i < 1. It is therefore not true that for numbers x, y, and z:0 < x==> x*y < x*z == y < z.For a
ounterexample, let x and y be i, and z be 0. In
ontrast with a highs
hool mathemati
s exam, within ACL2, one
an perform su
h a simpli�
ationonly if one also knows that x is rational4. The
orre
t theorem in ACL2 isrational(x) &&0 < x==> x*y < x*z == y < z.In this se
tion, we des
ribe an extension to meta fun
tions that allows us toperform su
h simpli�
ations. This extension will allow us to gather information,for heuristi
 purposes only, that would not be otherwise available.A \plain" meta fun
tion takes one argument| the term under
onsideration.This is what we saw in the previous se
tion. An \extended" meta fun
tion takestwo additional arguments, mf
5 and state. These extra arguments give onea

ess to fun
tions that
an be used for heuristi
 purposes, with names of theform mf
-xxx. These fun
tions allow one to a

ess and examine ACL2's internaldata stru
tures as well as giving one the ability to
all a
ouple of the majorfun
tions of ACL2's rewriter.We will see below how to make use of the following fun
tion.FUNCTION: provably-pos-rat(x, mf
, state)mf
-rw(make-term(make-term(RATIONAL, x),&&,make-term(0, <, x))t t mf
 state)It asks whether ACL2
an rewrite an expression of the form rational(x) &&0 < x to true. We wish to emphasize here that the ability to
onstru
t andexamine ACL2 terms within ACL2's logi
 is fundamental to su
h
apabilities.Here is pseudo
ode for our meta fun
tion, whi
h
an
els a
ommon positiverational fa
tor (if any) from both sides of an inequality.FUNCTION:
an
el-times-<(term, mf
, state)1 if (fn-symb(term) == <2 && fn-symb(arg1(term)) == *3 && fn-symb(arg2(term)) == *) then4 There are no irrational numbers in ACL2.5 Mf
 stands for \Meta Fun
tion Context." The meta fun
tion
ontext is a large and
omplex data stru
ture that
ontains the
urrent dynami
 environment of ACL2'srewriter.

4 {lhs = produ
t-fringe (arg1(term))5 rhs = produ
t-fringe (arg2(term))6 int = interse
t(lhs, rhs)7 pos-rat = find-pos-rat(int, mf
, state)8 if non-empty(pos-rat) then9 make-term(IF,10 make-term(make-term(RATIONAL, pos-rat),11 &&12 make-term(0, <, pos-rat)),13 make-term(produ
t-tree(diff(lhs, pos-rat)),14 <,15 produ
t-tree(diff(rhs, pos-rat))),16 term)17 else term}18 else term)And here is the asso
iated meta rule.RULE:
an
el-times-<-
orre
tMETA-REWRITE term TO
an
el-times-<(term).The fun
tion above is similar to
an
el-plus-equal, but with three distin
-tions. First, in lines 2 and 3
an
el-times-< tests for the presen
e of produ
tsrather than sums and in lines 13 and 15 produ
es new produ
ts rather thansums. Se
ond, line 7 is new. Find-pos-rat takes three arguments | int (thelist of
ommon fa
tors), mf
, and state. Find-pos-rat steps through the ele-ments of int, sear
hing for one for whi
h provably-pos-rat(element, mf
,state) returns true. If it is able to �nd one, find-pos-rat returns a list
on-taining that positive, rational fa
tor. If it is unable to �nd one, it returns theempty list.Third, in lines 9{16
an
el-times-<
onstru
ts a more
omplex return valuethan just a simple equality between two sums or produ
ts. We must do so be-
ause, although we as users know that if pos-rat is non-empty it must
ontaina positive rational, ACL2 does not know this logi
ally. Just as any informationgathered by a syntaxp hypothesis
annot be used during veri�
ation of the rulewith that hypothesis, so any information gathered by an mf
-xxx fun
tion isnot available to ACL2 during a meta rules veri�
ation. ACL2 has no knowledgeabout the mf
-xxx fun
tions, other than that they are fun
tions.We now examine the a
tion of this rule in more detail, using3 * f(x) * g(x, y) < x * g(x, y) * h(y, x)as our example. We assume that in the present
ontext, g(x, y) is provablya positive rational. Things will pro
eed mu
h as in the previous example and,as des
ribed immediately above, find-pos-rat will return a list
ontaining thesingle term g(x, y), and this value will be assigned to the variable pos-rat.The test in line 8 is therefore true, and ACL2 will evaluate lines 9{16. The resultis

if (rational(g(x, y)) && 0 < g(x, y))then 3 * f(x) < x * h(y, x)else 3 * f(x) * g(x, y) < x * g(x, y) * h(y, x).During subsequent simpli�
ation of this expression, ACL2 will �rst rewritethe test of the if in order to determine whi
h bran
h to use. Sin
e (by
onstru
-tion) the test will rewrite to true, ACL2 will rewrite only the \then" sub-term,leading to the desired �nal result:3 * f(x) < x * h(y, x).Although this \extra" rewriting of the if expression's test might seem to be asour
e of ineÆ
ien
y, in pra
ti
e we have not found this to be true. Failure isthe norm and the vast majority of the time any parti
ular rule does not apply tothe
urrent term. Thus, only a small per
entage of the work is ever dupli
ated,and this only when progress is (supposedly) being made.5 Bind-freeThe
areful reader may have noti
ed that the meta rule,
an
el-plus-equal-
orre
t, presented in Se
tion 3 would not a
tually simplify the �rst, motivat-ing, example | the addends 3 * y and y are not equal, and so would not befound by merely taking the interse
tion of the two sets of addends. While this
ould be �xed by using something more sophisti
ated than interse
tion todetermine what to subtra
t from both sides, we instead present a solution usinga bind-free hypothesis.Bind-free hypotheses grew out of a dis
ussion between several of this paper'sauthors dissatis�ed with the diÆ
ulty of proving simple meta rules
orre
t. Ingeneral, this proof burden is equivalent to proving the total
orre
tness of a pie
eof software. Although theoreti
ally meta rules, plain or extended, are mu
h morepowerful than a rule using bind-free, this extra power is rarely needed. Givingup this extra power, when it is not needed,
an make it mu
h easier to writeand verify the appropriate rules. This ex
hange, in turn, en
ourages one to fo
usupon the larger pi
ture by proving the most general rules possible and therebyhelps one to avoid getting lost in the details.A bind-free hypothesis is similar to a syntaxp hypothesis in that its treatmentwhen verifying the rule in whi
h it appears di�ers from its treatment when thatrule is being applied to a term during rewriting. Both bind-free and syntaxphypotheses are treated as being logi
ally true during veri�
ation of a rule, andboth are evaluated during the rules appli
ation. As before this di�ering treatmentis sound, and for the same reasons.6A bind-free hypothesis di�ers from a syntaxp hypothesis as follows. A syntaxphypothesis evaluates to true or false, signaling su

ess or failure. A bind-freehypothesis either evaluates to the empty list or signals su

ess by returning a6 ACL2 a
tually implements both bind-free and syntaxp using a single primitive, synp,an implementation detail that is beyond the s
ope of this paper.

list of pairs binding the free variables of the rule, as illustrated by the followingexample.FUNCTION: find-mat
hing-addends (lhs rhs)1 if (fn-symb(lhs) == +2 && fn-symb(rhs) == +) then3 {
ommon-addends = find-
ommon(sum-fringe(lhs),4 sum-fringe(rhs))5 if
ommon-addends then6 list(pair(x,
ommon-addends))7 else empty-list}8 else empty-listRULE: simplify-equality-of-sumsGIVEN rational(rhs)rational(lhs)bind-free(find-mat
hing-addends(lhs, rhs))REWRITE lhs == rhs TO lhs - x == rhs - x.Note that it is the job of other rules, not shown here, to simplify the resultingdi�eren
es.Brie
y, this rule
an
els any
ommon addends by adding their inverse to bothsides of the equality. There are two things to note about this rule. First, notethat the variable x does not appear in the left-hand side of the
on
luding equal-ity of simplify-equality-of-sums. It is, therefore, a free variable. (As brie
ydes
ribed in the Introdu
tion, ACL2 mat
hes the left-hand side of a rule's
on-
luding equality with the term
urrently being rewritten, binding any variablesto their mat
hing sub-terms. Sin
e x does not appear in the left-hand side ofsimplify-equality-of-sums's
on
lusion, it is unbound or free. We will makethis more expli
it shortly.) ACL2 has several automati
 me
hanisms for
hoos-ing an instantiation of su
h variables, whi
h we do not dis
uss here. Rather, wedes
ribe how we use bind-free to programmati
ally determine the appropriatebinding.Se
ond, the
orre
tness of this rule does not depend upon the value that wesubtra
t from both sides. We are free to pi
k this value however we want.How is this rule applied to the following equality?x + 3*y + z == a + b + yAs hinted in the Introdu
tion, when ACL2 attempts to apply the rule simplify-equality-of-sums to the term under dis
ussion, it �rst forms a substitutionthat instantiates the left-hand side of the rule's
on
luding equality so that itis identi
al to the target term. This substitution has the following value in ourexample.((lhs == x + 3*y + z)(rhs == a + b + y))

ACL2 then attempts to relieve the hypotheses in the order they were given. Here,the �rst two hypotheses are regular ones, to be relieved by standard rewriting.Let us assume that in the
urrent
ontext these hypotheses rewrite to true; weexamine the �nal, bind-free, hypothesis.ACL2 evaluates find-mat
hing-addends(lhs, rhs) in an environment inwhi
h lhs and rhs are instantiated as determined by the substitution. In this
ase we evaluatefind-mat
hing-addends(x + 3*y + z, a + b + y).The test of the if expression (lines 1 and 2 above) asks whether lhs and rhsare sums. If they weren't the expression would evaluate to the empty list in line8, signaling failure or la
k of appli
ability. Sin
e they are sums, ACL2 evaluatesthe true bran
h of simplify-equality-of-sums in lines 3 { 7. Lines 3 and 4assign to the variable
ommon-addends a list of addends
ommon to both lhsand rhs. Find-
ommon is a mu
h more
omplex fun
tion than interse
tionand examines the addends in a more intelligent manner. We do not furtherdes
ribe this than to say that in the present
ase, find-
ommon returns y, the\mat
hing" part of lhs and rhs. The returned value of find-mat
hing-addendsis, therefore, list(pair(x, y)), informally written as (x == y), and this isthen used to extend the substitution:((lhs == x + 3*y + z)(rhs == a + b + y)(x == y)).This is used to substitute ba
k into the TO side of simplify-equality-of-sums's
on
luding rewrite, yielding the result:x + 3*y + z - y == a + b + y - y.Again, we have preemptively eliminated the need for a large
olle
tion of similarrules with one rule.This rule both was able to sear
h for mat
hing addends in a more sophis-ti
ated manner than in
an
el-plus-equal-
orre
t and was easier to prove.The authors of a meta rule might be relu
tant to use su
h a
omplex sear
hmethod, be
ause it
ould greatly
ompli
ate the proof of
orre
tness and thesimpler method was usually \good enough." A well-
onstru
ted bind-free rule,however, is often trivial to prove.6 Extended SyntaxpWe now return to syntaxp hypotheses, but in an extended form. Just as metarules
ome in two
avors, so do syntaxp hypotheses. In this se
tion, we des
ribetwo more mf
-xxx fun
tions and show how they
an be used with extendedsyntaxp hypotheses.(Re
all that a syntaxp hypothesis is treated as being logi
ally true when itis one of the hypotheses of the rule being proven
orre
t. It is only during a

rule's use, when the hypothesis must be relieved, that ACL2 will exe
ute thesefun
tions. As before, any information gathered is of heuristi
 use only | it
annot be used to justify the
orre
tness of a rule.){ mf
-
lause(mf
): returns the
urrent goal being proved. From the dis-tributed finite-set-theory books7 we take the following example:fun
tion: rewriting-
on
-lit(term, mf
, state)subterm-of(term, last(mf
-
lause(mf
)))This fun
tion asks whether the term now being rewritten is the
on
lusion ofthe
urrent goal. It has been found useful for
ertain expensive rules to a
tonly upon the
on
lusion of a goal. The heuristi
 thought behind this is thatoften the hypotheses of a goal merely set forth the
onditions under whi
h the
on
lusion is true. It is therefore reasonable to expend more e�ort rewritinga
on
lusion than a hypothesis. See the finite-set-theory/osets booksdistributed with ACL2 for examples of this.{ mf
-an
estors(mf
): returns the
urrent list of the negations of the ba
k-
haining hypotheses being pursued. The only use we envision for this fun
tionis in:fun
tion: rewriting-goal-literal(term, mf
, state)is-empty-list(mf
-an
estors(mf
))(Note that term and state are being ignored here.) This fun
tion askswhether we are rewriting a term from the
urrent goal | as opposed torewriting a hypothesis from a rewrite (or other) rule. This has been founduseful in su
h rules as the following.rule: floor-positivegiven: syntaxp(rewriting-goal-literal(x, mf
, state))rational(x)rational(y)rewrite: 0 < floor(x, y)to: (0 < y && y <= x) || (y < 0 && x <= y)By using rewriting-goal-literalwe avoid the expense of indu
ing a
ase-split for the two disjun
ts while ba
k
haining to relieve a rule's hypotheses(when it is unlikely to do any good).7 Extended Bind-freeBind-free hypotheses also
ome in an extended form. In this se
tion we illus-trate su
h hypotheses by presenting a rule for simplifying terms of the forminteger(<sum>) where <sum> is a sum. For example, if we
an show that y isan integer, we would like to simplify integer(x + y + z) to integer(x + z).7 Books are ACL2 input �les that
an be run through ACL2's
erti�
ation pro
ess.

FUNCTION: redu
e-integer-+-fn(sum, mf
, state)1 if fn-symb(sum) != + then2 empty-list3 else if provably-integer(arg1(sum), mf
, state) then4 list(pair(int, arg1(sum)))5 else if fn-symb(arg2(sum)) == + then6 redu
e-integer-+-fn(arg2(sum), mf
, state)7 else if provably-integer(arg2(sum), mf
, state) then8 list(pair(int, arg2(sum)))9 else empty-listRULE: redu
e-integer-+GIVEN bind-free(redu
e-integer-+-fn(sum, mf
, state))integer(int)REWRITE integer(sum) TO integer(sum - int)We emphasize here that although we (as users) know that the se
ond hy-pothesis, integer(int) must be true by the way that we sele
ted int, thisinformation is not available to ACL2. ACL2 must rederive this fa
t for its ownuse. Again, although this might seem a sour
e of ineÆ
ien
y, in pra
ti
e we havenot found this to be true.We now
onsider our example, integer(x + y + z), where y is provably aninteger, and des
ribe the a
tion of redu
e-integer-+-fn on this term. Firstnote that addition is a
tually a binary operation in ACL2; we are really lookingat the term integer(x + (y + z)). Redu
e-integer-+-fn re
urs on the ad-dends so sin
e y, by assumption, is provably an integer, redu
e-integer-+-fnreturns list(pair(int, y)). The right-hand side of the
on
luding equality ofredu
e-integer-+ is therefore rewritten to the appropriate instan
e of the terminteger((x + y + z) - y), whi
h will be simpli�ed by other rules to yield ourdesired result.8 Con
lusionIn this paper we have des
ribed three fa
ilities a�orded by ACL2 for varying lev-els of meta level
ontrol and reasoning. The weakest of these, syntaxp hypothe-ses, allow one to
ontrol the behavior of ordinary rewrite rules by restri
tingtheir operations based upon the synta
ti
 form of their instantiated variables. Aqui
k sear
h reveals that there are over 800 uses of syntaxp hypotheses amongmore than 150 of the proof s
ripts distributed with ACL2. Bind-free hypothe-ses, whi
h allow one to programmati
ally sele
t a binding for free variables, areslightly more powerful and there are more than 50 uses of this relatively newfa
ility in approximately 15 s
ripts. Finally, there are about 25 uses of meta rulesin 12 s
ripts8.8 It seems likely that all but a
ouple of these meta rules
ould, instead, be madebind-free rules. For example, the meta rule
an
el-plus-equal-
orre
t
ould be

The initial designs of these fa
ilities sprang from users' frustrations with thee�ort required to
arry out
ertain proofs whi
h required one to
ontinually pointout to ACL2 simple and seemingly \obvious" steps. The initial implementationswere then tested, generalized, and tested again. They were not pla
ed into themain development bran
h of ACL2's sour
e
ode until all were satis�ed thatthey were
orre
tly and eÆ
iently implemented, as easy to use as possible, andsuÆ
iently general to be broadly useful.As we have seen, these meta level fa
ilities allow one to spe
ify solutions toentire
lasses of problems, avoiding the need for a myriad of rules in their stead.This allows one to
on
entrate on the stru
ture of the desired proof, and to leavemany of the details to ACL2. See [7℄ for an example of this in the domain ofbags, or multisets.A
knowledgementsWe thank the referees, who provided signi�
ant useful feedba
k (after obvious
areful reading). We also thank the ACL2
ommunity for useful dis
ussions.Referen
es1. R. S. Boyer and J Moore. Metafun
tions: proving them
orre
t and using themeÆ
iently as proof pro
edures. The Corre
tness Problem in Computer S
ien
e,R. S. Boyer and J Moore, editors. A

edemi
 Press, 1981.2. M. J. C. Gordon and T. F. Melham. Introdu
tion to HOL: A Theorem ProvingEnvironment for Higher Order Logi
. Cambridge University Press, 1993.3. J. Harrison. Metatheory and Re
e
tion in Theorem Proving: A Survey and Cri-tique.4. M. Kaufmann, P. Manolios, and J Moore. Editors. Computer-Aided Reasoning:An Approa
h. Kluwer A
ademi
 Publishers, 2000.5. M. Kaufmann, P. Manolios, and J Moore. Editors. Computer-Aided Reasoning:ACL2 Case Studies. Kluwer A
ademi
 Publishers, 2000.6. M. Kaufmann and J Moore. ACL2: An Industrial Strength Version of Nqthm. Pro-
eedings of the Eleventh Annual Conferen
e on Computer Assuran
e (COMPASS-96), pp. 23-34, IEEE Computer So
iety Press, June 1996.7. Eri
 Smith, Serita Nelesen, David Greve, Matthew Wild-ing, and Raymond Ri
hards. An ACL2 Library for Bags(MultiSets). Fifth International ACL2 workshop, 2004.http://www.
s.utexas.edu/users/moore/a
l2/workshop-2004/index.html8. Markus Wenzel. Isar | a Generi
 Interpretive Approa
h to Readable Formal ProofDo
uments. Theorem Proving in Higher Order Logi
s, 12th International Confer-en
e, TPHOLs'99, LNCS 1690, Springer, 1999.repla
ed with the more general bind-free rule simplify-equality-of-sums. Thatthis is not the
ase is due to the fa
t that bind-free rules were not available at thetime of many of these meta rules'
reation.

