
Meta Reasoning in ACL2Warren A. Hunt, Jr., Matt Kaufmann, Robert Bellarmine Krug, J Moore, andEri Whitman SmithDepartment of Computer SienesUniversity of Texas at AustinAustin, TX 78712-1188, USAE-mail: hunt�s.utexas.edu, kaufmann�s.utexas.edu, rkrug�s.utexas.edu,moore�s.utexas.edu, ewsmith�stanford.eduAbstrat. The ACL2 system is based upon a �rst-order logi and imple-ments traditional �rst-order reasoning tehniques, notably (onditional)rewriting, as well as extensions inluding mathematial indution anda \funtional instantiation" apability for mimiking seond-order rea-soning. Additionally, one an engage in meta-reasoning | using ACL2to reason, and prove theorems, about ACL2's logi from within ACL2.One an then use these theorems to augment ACL2's proof engine withustom extensions. ACL2 also supports forms of meta-level ontrol of itsrewriter. Relatively reent additions of these forms of ontrol, as well asextensions to ACL2's long-standing meta-reasoning apability, allow agreater range of rules to be written than was possible before, allowingone to speify more omprehensive proof strategies.1 IntrodutionACL2 is a logi, a programming language, and a semi-automati theorem prover[6, 4, 5℄. This paper is about the meta reasoning failities of ACL2, the theoremprover. We give a brief overview of ACL2's operations, paying partiular atten-tion to ACL2's rule-based rewriter, whih is generally onsidered to be its mainproof proedure. We then present a sequene of inreasingly omplex problemsthat annot be solved with normal rewrite rules and show how they an be solvedusing ACL2's meta-reasoning failities. Although oasionally simpli�ed, all butone of these examples are based upon items from atual proof e�orts. One an�nd these as well as many additional examples in the proof sripts distributedwith ACL2 by searhing for the keywords syntaxp, meta, and bind-free.The failities presented in this paper orrespond to \omputational ree-tion" as desribed by Harrison [3℄. We do not, however, wish to argue with histhesis that there is often a \too-easy aeptane of reetion priniples as a pra-tial neessity." Rather, we argue that these failities, when arefully integratedinto a system suh as ACL2, an greatly enhane the user experiene. AlthoughACL2 does have a tati programming language | for its interative utility (theso-alled proof-heker) | experiene has shown that the tehniques desribedhere are often simpler and more pro�table to use.

The failities desribed in this paper fall into three ategories: meta funtions(dating bak to [1℄), syntaxp diretives, and bind-free diretives. In addition, eahof these three failities an be divided into a \plain" and an \extended" version.The plain version of meta funtions has been present in ACL2 from its ineption,and syntaxp was added not long thereafter (in the early 1990s). Extended metafuntions were added in Version 2.6 (2001). The bind-free diretive was addedto Version 2.7 (2002), in both its plain and extended versions. The extendedsyntaxp diretive was added at the same time.Syntaxp and bind-free might be appropriate within an LCF-style systemsuh as HOL [2℄. We do not intend to argue that point vigorously, although itseems that they ould serve to free users from the need to work in the tatimeta-language.1 We do believe that these failities bring many of the bene�tsof HOL's programmability to ACL2. Additionally, even experiened ACL2 usersmay �nd it simpler to add a syntaxp or bind-free diretive than to prove a metarule that installs a new simpli�ation proedure.We begin with a few words about the ACL2 language. The ACL2 languageis based upon a subset of Common Lisp. As suh, it uses a pre�x notation. Forexample, one might write an expression 3*f(x,y+3) in a traditional notation,or in the C programming language, whih would be written in Lisp notation as(* 3 (f x (+ y 3))). We should also mention that ACL2 terms are themselvesobjets, whih therefore an be onstruted and analyzed by ACL2. Without thisability, the features we desribe in this paper would not have been possible. Inthis paper, however, we stik with a traditional (or C language) notation forpedagogial purposes.We will also use funtion names that are self-explanatory. For example, theACL2 term (quotep x), whih we ould write as quotep(x), would be writtenin this paper as onstant(x) (so that we need not explain that quotep is the re-ognizer for onstant terms). We will also avoid Lisp's quote notation by writing,for example, fn-symb(x) == + to indiate that the top funtion symbol of theterm x is the symbol +, in plae of the ACL2 notation (equal (fn-symb x) '+).We therefore assume no familiarity with Lisp on the part of the reader, yet withthe omments above we also expet it to be readable by those familiar with Lispor ACL2.We now give our brief overview of ACL2. The user submits a purportedtheorem to ACL2, whih applies a series of proedures in an attempt to provethe theorem. These proedures inlude, among others, the following: simpli�a-tion that inludes rewriting and linear arithmeti; generalization; and indution.ACL2 is fully automati in the sense that this proess, one started, annot befurther guided.That said, however, ACL2 will rarely sueed at proving any but the simplestof theorems on its own. The user usually must assist ACL2 in �nding a proof,generally by attahing hints to a theorem or by proving additional rules. New1 We thank a referee for pointing out that Isabelle's Isar user interfae is an exampleof a \reent trend in some higher order logi theorem provers to shield users fromhaving to learn the tati meta-language."

rules will be added to ACL2's database and used in subsequent proof attempts.The judiious development of a library of rules an make ACL2 not only powerfulbut | in the words of a game review | strangely glee to play with.ACL2's rewriter uses onditional rewrite rules and proeeds in a left-to-right,inside-out manner, maintaining a ontext as it goes. This will be learer afteran example. When ACL2 is rewriting a goal of the form:<hyp 1> &&<hyp 2>==> <from> == <to>it ats as if it were rewriting the equivalent lause (i.e., disjuntion, representedhere using ||)not(<hyp 1>) || not(<hyp 2>) || (<from> == <to>)and attempts to rewrite, in (left-to-right) order, eah of the following to true:not(<hyp 1>), not(<hyp 2>), and (<from> == <to>). As ACL2 rewrites eahdisjunt above, it does so in a ontext in whih it assumes the falsity of theothers. Thus, when ACL2 rewrites not(<hyp 1>), it assumes both <hyp 2> and(<from> != <to>). Similarly, when it rewrites (<from> == <to>), it assumesrewritten forms of <hyp 1> and <hyp 2>. These assumptions are the ontext.Suppose ACL2 is rewriting a funtion appliation, say foo(<arg1>, <arg2>).In this ase, ACL2 will reursively rewrite (proeeding left to right) eah of<arg1> and <arg2>, yielding <arg1'> and <arg2'> and then rewrite the expres-sion foo(<arg1'>, <arg2'>). Note that this inside-out rewriting order mimisthat for evaluation | a funtion's arguments are evaluated before the funtionis applied to them2.Let us now examine the rewriter in more detail, and see how this last expres-sion, foo(<arg1'>, <arg2'>), may be rewritten. Assume that the onditionalrewrite ruleGIVEN p(x)q(y)REWRITE foo(x, y) TO bar(y, x)had been previously proved. The left-hand side of the above onlusion |foo(x, y)| an be mathed with our target term | foo(<arg1'>, <arg2'>)| by replaing the variables x with <arg1'> and y with <arg2'>. Instantiatingthe above theorem thus yields:2 And as for evaluation, the rewriter handles if-then-else terms in a \lazy" manner: inorder to rewrite the termif <test> then <true-branh> else <false-branh>ACL2 �rst rewrites the test, and if the result is true or false then ACL2 rewrites onlythe true branh or the false branh, respetively. Otherwise the resulting if termwill generally lead, ultimately, to a ase split.

GIVEN p(<arg1'>)q(<arg2'>)REWRITE foo(<arg1'>, <arg2'>) TO bar(<arg2'>, <arg1'>).If ACL2 an relieve the hypotheses | reursively rewrite them to true | it willreplae the expression foo(<arg1'>, <arg2'>) with bar(<arg2'>, <arg1'>).Conditional rewriting, as illustrated above, is quite restritive. This paperpresents tehniques that allow a muh greater range of replaements to be spe-i�ed | they allow one to speify solutions to lasses of problems and to ex-periment speulatively with several rewriting strategies, seleting among thesebased upon the predetermined outome of these strategies. Note, in partiular,that we are not laiming that these failities allow us to prove things we ouldnot, in priniple, before. Rather, we developed these failities to help the userto prove theorems more easily and naturally, by removing muh of the tediumof repeatedly arrying out simple and \obvious" steps.2 SyntaxpWhen reasoning about arithmeti expressions, it is usual to have some rules likethe following to assist with normalizing sums:RULE: assoiativity-of-+REWRITE (x + y) + z TO x + (y + z)RULE: ommutativity-of-+REWRITE y + x TO x + yRULE: ommutativity-2-of-+REWRITE y + (x + z) TO x + (y + z)Although it may appear that the seond and third rules ould eah loop orbe applied repeatedly, they permute the individual summands into a pre-de�nedterm-order.3 Rules that merely permute their elements without introduing anynew funtion symbols, suh as the aforementioned two rules, are reognized byACL2 as potentially looping. It will apply suh rules only when doing so willmove a smaller term to the left of a larger one. Thus, for instane, ACL2 willuse ommutativity-of-+ to rewrite x + 3, y + x, and (y + z) + x to 3 + x,x + y, and x + (y + z) respetively, but will not apply it to any of these latterexpressions.Note that although there was no meta-level reasoning used to justify theserules, and although there were no meta-level heuristis expliitly given by theuser, the behavior of ommutativity-of-+ and ommutativity-2-of-+ are re-strited based upon the syntati form of the instantiations of the variables x,y, and z.3 The details of this term-order are irrelevant to the present paper; but, rudely, it isa lexiographi order based upon the number of variables, the number of funtionsymbols, and an alphabeti order.

Let us now onsider the term x + (3 + 4). Reall that ACL2 rewrites inside-out. Thus, ACL2 will �rst rewrite the two arguments, x and (3 + 4). The �rst ofthese is a variable, and so rewrites to itself. The seond of these is a ground termand, sine ACL2 implements an exeutable logi, this term will get evaluatedto produe 7. Finally, ACL2 will use ommutativity-of-+ to rewrite x + 7 to7 + x.But what about 3 + (4 + x)? Ideally, this would rewrite to the same thing,but there is nothing the above rules an do with this. If we ould only get the3 and 4 together, things would proeed as for x + (3 + 4). The following rulewill do this for us:RULE: fold-onsts-in-+GIVEN syntaxp(onstant())syntaxp(onstant(d))REWRITE + (d + x) TO (+ d) + x.This rule is just the reverse of assoiativity-of-+, with the addition of twosyntaxp hypotheses. Without these extra hypotheses, this rule would loop withassoiativity-of-+.How do these syntaxp hypotheses work? Logially, a syntaxp expression eval-uates to true. The above rule is, therefore, logially equivalent toGIVEN ttREWRITE + (d + x) TO (+ d) + xorREWRITE + (d + x) TO (+ d) + xand this is the meaning of syntaxp when one is proving the orretness of a rule.(Note that t denotes true.)However, when attempting to apply suh a rule, the test inside the syntaxpexpression is treated as a meta-level statement about the proposed instantiationof the rule's variables, and that instantiated statement must evaluate to true toestablish the syntaxp hypothesis. Note, in partiular, that the statement mustevaluate to true, rather than be proved true as for a regular hypothesis. Thus,just as term-order is automatially used as a syntati restrition on the oper-ation of ommutativity-of-+ and ommutativity-2-of-+, so we have plaeda syntati restrition on the behavior of fold-onsts-in-+| the variables and d must be mathed with onstants.Here, we are onsidering the appliation of fold-onsts-in-+ to the term3 + (4 + x). The variable of the rule is mathed with 3, d with 4, and xwith x. Sine 3 and 4 are, indeed, onstants, 3 + (4 + x) will be rewritten to(3 + 4) + x. This last term will then be rewritten in an inside-out manner,with the �nal result being the desired 7 + x.We have thus used syntaxp to assist in speifying a strategy for simplifyingsums involving onstants. Fold-onsts-in-+merely plaes the onstants into a

position in whih ACL2 an �nish the job using pre-existing abilities | in thisase evaluation of onstant sums. Without suh a rule we would have had towrite a rule suh as:RULE: rokREWRITE 3 + (4 + x) TO 7 + xfor eah ombination of onstants enountered in the proof. Without syntaxpthe neessity for rules suh as rok would make ACL2 muh more tedious touse.Although the example presented here uses a very simple syntati test inthe syntaxp hypothesis, this need not be the ase in general. There are ACL2funtions, not presented here, to deonstrut a term and examine the resultingpiees. Although rare, quite sophistiated syntaxp hypotheses are possible.Before onluding this setion, we wish to emphasize an important fat aboutsyntaxp hypotheses that is easily overlooked. As mentioned above, a syntaxphypothesis is logially true, and is treated as suh during the veri�ation of therule ontaining it. Consider the ruleRULE: exampleGIVEN integer(x)REWRITE f(x, y) TO g(y, x)in whih the integer(x) hypothesis is required for the rule to be orret. Wewould not, then, be able to prove:RULE: synp-example-badGIVEN syntaxp(x == 0)REWRITE f(x, y) TO g(y, x)Even though we, as users, know that the syntaxp hypothesis requires x to bethe onstant 0 (whih is an integer), ACL2 does not get to use this fat duringthe proof of synp-example-bad. Rather we must use:RULE: synp-example-goodGIVEN syntaxp(x == 0)integer(x)REWRITE f(x, y) TO g(y, x)ACL2 must impose this seemingly arbitrary restrition in order to maintainlogial soundness. Reall that, logially speaking, syntaxp always returns true;hene the hypothesis (integerp x) does not follow logially from the syntaxphypothesis.3 Meta funtionsIn the previous setion we disussed ertain aspets of the proess of normalizingsums, and saw how syntaxp hypotheses an be used to ahieve a greater degree

of ontrol than was possible without them. They allowed us to speify a rulebased upon the ability to analyze the lexial struture of an ACL2 expression.In this setion we present failities not only for examining a term, but also foronstruting a new term, via so-alled meta rules. These were �rst implementedin Nqthm, ACL2's predeessor; see [1℄, and we refer the reader to that paper,or the \Essay on Corretness of Meta Reasoning" in the ACL2 soure ode fora areful desription. In a nutshell, meta rules install user-de�ned simpli�ationode into the rewriter, where the user's proof obligation for those rules guar-antees that eah appliation of that ode returns a term provably equal to itsinput. Here, we review the basis of meta rules before desribing their extensionin Setion 4. More details may also be found in the extensive doumentationdistributed with ACL2, spei�ally within the topi \meta".Consider the following example: arrange that for an equality between twosums, anel any addends that are ommon to both sides of the equality. Forinstane, x + 3*y + z == a + b + y should be simpli�ed to:x + 2*y + z == a + b.If one knew ahead of time the maximum number of addends that ould appearin a sum, one ould write (a large number of) rules to handle all the potentialpermutations in whih ommon addends ould appear; but this will not work ingeneral and is potentially expensive in terms both of the user's labor to developthe set of rules and of ACL2's labor in sorting through suh a number of rules,any partiular one of whih is unlikely to be needed.Instead, we will use ameta funtion. A meta funtion is a ustom piee of odethat transforms ertain terms into equivalent ones. When this transformation isproved to be orret via a meta rule, the meta funtion will be used to extendthe operations of ACL2's simpli�er.Here is pseudo-ode for our meta funtion, whih anels ommon summandsfrom both sides of an equality.FUNCTION: anel-plus-equal(term)1 if (fn-symb(term) == EQUAL2 && fn-symb(arg1(term)) == +3 && fn-symb(arg2(term)) == +) then4 {lhs = sum-fringe(arg1(term))5 rhs = sum-fringe(arg2(term))6 int = interset(lhs, rhs)7 if non-empty(int) then8 make-term(sum-tree(diff(lhs, int)),9 <,10 sum-tree(diff(rhs, int)))11 else term}12 else termAnd here is the assoiated meta rule.RULE: anel-plus-equal-orret

META-REWRITE term TO anel-plus-equal(term).Unlike the syntaxp example, whih merely performed a simple textual test on aterm, anel-plus-equal-orret takes a term and onstruts an equivalentone under programmati ontrol.We now examine its ation on:3 + f(x) + g(x, y) == x + g(x, y) + h(y, x).The test of the if expression, lines 1{3, ask whether term is an equality be-tween two sums. If term were not, anel-plus-equal would return it un-hanged | line 12. By returning a term unhanged, a meta funtion signalslak of appliability, i.e., failure. But sine in the present ase term is bound to3 + f(x) + g(x, y) == x + g(x, y) + h(y, x) and so is suh an equality,ACL2 will exeute the true-branh of the if expression in lines 4{11. Lines 4and 5 assign to the variables lhs and rhs lists of the addends of the left-handside and right-hand side respetively. In line 6, the intersetion of these twolists is assigned to int. If this intersetion is empty, ACL2 evaluates line 11 andreturns term unhanged, signaling lak of appliability. Sine in our ase theaddend g(x, y) is ommon to both sides of the equality, int is non-empty andso ACL2 onstruts two new sums and a new equality in lines 8{10:3 + f(x) == x + h(y, x).The addends of these sums are the (bag-wise) di�erene of the two lists of ad-dends, lhs and rhs| {3, f(x), g(x, y)} and {x, g(x, y), h(y, x)}, withthe list int | {g(x, y)}.Thus, meta rules allow one to write a ustom simpli�er for entire lasses ofterms, rather than having to write rules for a myriad of sublasses. We are ableto do so beause an ACL2 term is merely a struture onsisting of a funtionsymbol and the funtion's arguments, and we an deonstrut, examine, andreonstrut suh strutures using ACL2 funtions.We now briey examine the \meaning" of a meta rule and touh upon how toprove its orretness. A meta rule not only has an assoiated meta funtion, butalso has an assoiated evaluator that operates in an environment. An evaluatoris a funtion that an evaluate terms by �rst looking in the environment forthe values of any variables present in the term and then evaluating the resultingground term. The meta rule then states that, using this evaluator, the evaluationof a manipulated term in the environment is equal to the evaluation of theoriginal term in the same environment.4 Extended Meta-funtionsSometime prior to ACL2 Version 2.6, one of the authors of this paper beamedissatis�ed with some of the limitations inherent in meta funtions. In partiular,he wanted to write a rule similar to anel-plus-equal-orret that wouldanel like fators from either side of an inequality, but was unable to do so. The

diÆulty stemmed from the fat that within ACL2's logi, as opposed to stan-dard mathematis, omplex numbers are linearly ordered using the ditionaryorder on their real and imaginary parts respetively. Thus, for example, 0 < iand i < 1. It is therefore not true that for numbers x, y, and z:0 < x==> x*y < x*z == y < z.For a ounterexample, let x and y be i, and z be 0. In ontrast with a highshool mathematis exam, within ACL2, one an perform suh a simpli�ationonly if one also knows that x is rational4. The orret theorem in ACL2 isrational(x) &&0 < x==> x*y < x*z == y < z.In this setion, we desribe an extension to meta funtions that allows us toperform suh simpli�ations. This extension will allow us to gather information,for heuristi purposes only, that would not be otherwise available.A \plain" meta funtion takes one argument| the term under onsideration.This is what we saw in the previous setion. An \extended" meta funtion takestwo additional arguments, mf5 and state. These extra arguments give oneaess to funtions that an be used for heuristi purposes, with names of theform mf-xxx. These funtions allow one to aess and examine ACL2's internaldata strutures as well as giving one the ability to all a ouple of the majorfuntions of ACL2's rewriter.We will see below how to make use of the following funtion.FUNCTION: provably-pos-rat(x, mf, state)mf-rw(make-term(make-term(RATIONAL, x),&&,make-term(0, <, x))t t mf state)It asks whether ACL2 an rewrite an expression of the form rational(x) &&0 < x to true. We wish to emphasize here that the ability to onstrut andexamine ACL2 terms within ACL2's logi is fundamental to suh apabilities.Here is pseudoode for our meta funtion, whih anels a ommon positiverational fator (if any) from both sides of an inequality.FUNCTION: anel-times-<(term, mf, state)1 if (fn-symb(term) == <2 && fn-symb(arg1(term)) == *3 && fn-symb(arg2(term)) == *) then4 There are no irrational numbers in ACL2.5 Mf stands for \Meta Funtion Context." The meta funtion ontext is a large andomplex data struture that ontains the urrent dynami environment of ACL2'srewriter.

4 {lhs = produt-fringe (arg1(term))5 rhs = produt-fringe (arg2(term))6 int = interset(lhs, rhs)7 pos-rat = find-pos-rat(int, mf, state)8 if non-empty(pos-rat) then9 make-term(IF,10 make-term(make-term(RATIONAL, pos-rat),11 &&12 make-term(0, <, pos-rat)),13 make-term(produt-tree(diff(lhs, pos-rat)),14 <,15 produt-tree(diff(rhs, pos-rat))),16 term)17 else term}18 else term)And here is the assoiated meta rule.RULE: anel-times-<-orretMETA-REWRITE term TO anel-times-<(term).The funtion above is similar to anel-plus-equal, but with three distin-tions. First, in lines 2 and 3 anel-times-< tests for the presene of produtsrather than sums and in lines 13 and 15 produes new produts rather thansums. Seond, line 7 is new. Find-pos-rat takes three arguments | int (thelist of ommon fators), mf, and state. Find-pos-rat steps through the ele-ments of int, searhing for one for whih provably-pos-rat(element, mf,state) returns true. If it is able to �nd one, find-pos-rat returns a list on-taining that positive, rational fator. If it is unable to �nd one, it returns theempty list.Third, in lines 9{16 anel-times-< onstruts a more omplex return valuethan just a simple equality between two sums or produts. We must do so be-ause, although we as users know that if pos-rat is non-empty it must ontaina positive rational, ACL2 does not know this logially. Just as any informationgathered by a syntaxp hypothesis annot be used during veri�ation of the rulewith that hypothesis, so any information gathered by an mf-xxx funtion isnot available to ACL2 during a meta rules veri�ation. ACL2 has no knowledgeabout the mf-xxx funtions, other than that they are funtions.We now examine the ation of this rule in more detail, using3 * f(x) * g(x, y) < x * g(x, y) * h(y, x)as our example. We assume that in the present ontext, g(x, y) is provablya positive rational. Things will proeed muh as in the previous example and,as desribed immediately above, find-pos-rat will return a list ontaining thesingle term g(x, y), and this value will be assigned to the variable pos-rat.The test in line 8 is therefore true, and ACL2 will evaluate lines 9{16. The resultis

if (rational(g(x, y)) && 0 < g(x, y))then 3 * f(x) < x * h(y, x)else 3 * f(x) * g(x, y) < x * g(x, y) * h(y, x).During subsequent simpli�ation of this expression, ACL2 will �rst rewritethe test of the if in order to determine whih branh to use. Sine (by onstru-tion) the test will rewrite to true, ACL2 will rewrite only the \then" sub-term,leading to the desired �nal result:3 * f(x) < x * h(y, x).Although this \extra" rewriting of the if expression's test might seem to be asoure of ineÆieny, in pratie we have not found this to be true. Failure isthe norm and the vast majority of the time any partiular rule does not apply tothe urrent term. Thus, only a small perentage of the work is ever dupliated,and this only when progress is (supposedly) being made.5 Bind-freeThe areful reader may have notied that the meta rule, anel-plus-equal-orret, presented in Setion 3 would not atually simplify the �rst, motivat-ing, example | the addends 3 * y and y are not equal, and so would not befound by merely taking the intersetion of the two sets of addends. While thisould be �xed by using something more sophistiated than intersetion todetermine what to subtrat from both sides, we instead present a solution usinga bind-free hypothesis.Bind-free hypotheses grew out of a disussion between several of this paper'sauthors dissatis�ed with the diÆulty of proving simple meta rules orret. Ingeneral, this proof burden is equivalent to proving the total orretness of a pieeof software. Although theoretially meta rules, plain or extended, are muh morepowerful than a rule using bind-free, this extra power is rarely needed. Givingup this extra power, when it is not needed, an make it muh easier to writeand verify the appropriate rules. This exhange, in turn, enourages one to fousupon the larger piture by proving the most general rules possible and therebyhelps one to avoid getting lost in the details.A bind-free hypothesis is similar to a syntaxp hypothesis in that its treatmentwhen verifying the rule in whih it appears di�ers from its treatment when thatrule is being applied to a term during rewriting. Both bind-free and syntaxphypotheses are treated as being logially true during veri�ation of a rule, andboth are evaluated during the rules appliation. As before this di�ering treatmentis sound, and for the same reasons.6A bind-free hypothesis di�ers from a syntaxp hypothesis as follows. A syntaxphypothesis evaluates to true or false, signaling suess or failure. A bind-freehypothesis either evaluates to the empty list or signals suess by returning a6 ACL2 atually implements both bind-free and syntaxp using a single primitive, synp,an implementation detail that is beyond the sope of this paper.

list of pairs binding the free variables of the rule, as illustrated by the followingexample.FUNCTION: find-mathing-addends (lhs rhs)1 if (fn-symb(lhs) == +2 && fn-symb(rhs) == +) then3 {ommon-addends = find-ommon(sum-fringe(lhs),4 sum-fringe(rhs))5 if ommon-addends then6 list(pair(x, ommon-addends))7 else empty-list}8 else empty-listRULE: simplify-equality-of-sumsGIVEN rational(rhs)rational(lhs)bind-free(find-mathing-addends(lhs, rhs))REWRITE lhs == rhs TO lhs - x == rhs - x.Note that it is the job of other rules, not shown here, to simplify the resultingdi�erenes.Briey, this rule anels any ommon addends by adding their inverse to bothsides of the equality. There are two things to note about this rule. First, notethat the variable x does not appear in the left-hand side of the onluding equal-ity of simplify-equality-of-sums. It is, therefore, a free variable. (As brieydesribed in the Introdution, ACL2 mathes the left-hand side of a rule's on-luding equality with the term urrently being rewritten, binding any variablesto their mathing sub-terms. Sine x does not appear in the left-hand side ofsimplify-equality-of-sums's onlusion, it is unbound or free. We will makethis more expliit shortly.) ACL2 has several automati mehanisms for hoos-ing an instantiation of suh variables, whih we do not disuss here. Rather, wedesribe how we use bind-free to programmatially determine the appropriatebinding.Seond, the orretness of this rule does not depend upon the value that wesubtrat from both sides. We are free to pik this value however we want.How is this rule applied to the following equality?x + 3*y + z == a + b + yAs hinted in the Introdution, when ACL2 attempts to apply the rule simplify-equality-of-sums to the term under disussion, it �rst forms a substitutionthat instantiates the left-hand side of the rule's onluding equality so that itis idential to the target term. This substitution has the following value in ourexample.((lhs == x + 3*y + z)(rhs == a + b + y))

ACL2 then attempts to relieve the hypotheses in the order they were given. Here,the �rst two hypotheses are regular ones, to be relieved by standard rewriting.Let us assume that in the urrent ontext these hypotheses rewrite to true; weexamine the �nal, bind-free, hypothesis.ACL2 evaluates find-mathing-addends(lhs, rhs) in an environment inwhih lhs and rhs are instantiated as determined by the substitution. In thisase we evaluatefind-mathing-addends(x + 3*y + z, a + b + y).The test of the if expression (lines 1 and 2 above) asks whether lhs and rhsare sums. If they weren't the expression would evaluate to the empty list in line8, signaling failure or lak of appliability. Sine they are sums, ACL2 evaluatesthe true branh of simplify-equality-of-sums in lines 3 { 7. Lines 3 and 4assign to the variable ommon-addends a list of addends ommon to both lhsand rhs. Find-ommon is a muh more omplex funtion than intersetionand examines the addends in a more intelligent manner. We do not furtherdesribe this than to say that in the present ase, find-ommon returns y, the\mathing" part of lhs and rhs. The returned value of find-mathing-addendsis, therefore, list(pair(x, y)), informally written as (x == y), and this isthen used to extend the substitution:((lhs == x + 3*y + z)(rhs == a + b + y)(x == y)).This is used to substitute bak into the TO side of simplify-equality-of-sums'sonluding rewrite, yielding the result:x + 3*y + z - y == a + b + y - y.Again, we have preemptively eliminated the need for a large olletion of similarrules with one rule.This rule both was able to searh for mathing addends in a more sophis-tiated manner than in anel-plus-equal-orret and was easier to prove.The authors of a meta rule might be relutant to use suh a omplex searhmethod, beause it ould greatly ompliate the proof of orretness and thesimpler method was usually \good enough." A well-onstruted bind-free rule,however, is often trivial to prove.6 Extended SyntaxpWe now return to syntaxp hypotheses, but in an extended form. Just as metarules ome in two avors, so do syntaxp hypotheses. In this setion, we desribetwo more mf-xxx funtions and show how they an be used with extendedsyntaxp hypotheses.(Reall that a syntaxp hypothesis is treated as being logially true when itis one of the hypotheses of the rule being proven orret. It is only during a

rule's use, when the hypothesis must be relieved, that ACL2 will exeute thesefuntions. As before, any information gathered is of heuristi use only | itannot be used to justify the orretness of a rule.){ mf-lause(mf): returns the urrent goal being proved. From the dis-tributed finite-set-theory books7 we take the following example:funtion: rewriting-on-lit(term, mf, state)subterm-of(term, last(mf-lause(mf)))This funtion asks whether the term now being rewritten is the onlusion ofthe urrent goal. It has been found useful for ertain expensive rules to atonly upon the onlusion of a goal. The heuristi thought behind this is thatoften the hypotheses of a goal merely set forth the onditions under whih theonlusion is true. It is therefore reasonable to expend more e�ort rewritinga onlusion than a hypothesis. See the finite-set-theory/osets booksdistributed with ACL2 for examples of this.{ mf-anestors(mf): returns the urrent list of the negations of the bak-haining hypotheses being pursued. The only use we envision for this funtionis in:funtion: rewriting-goal-literal(term, mf, state)is-empty-list(mf-anestors(mf))(Note that term and state are being ignored here.) This funtion askswhether we are rewriting a term from the urrent goal | as opposed torewriting a hypothesis from a rewrite (or other) rule. This has been founduseful in suh rules as the following.rule: floor-positivegiven: syntaxp(rewriting-goal-literal(x, mf, state))rational(x)rational(y)rewrite: 0 < floor(x, y)to: (0 < y && y <= x) || (y < 0 && x <= y)By using rewriting-goal-literalwe avoid the expense of induing a ase-split for the two disjunts while bakhaining to relieve a rule's hypotheses(when it is unlikely to do any good).7 Extended Bind-freeBind-free hypotheses also ome in an extended form. In this setion we illus-trate suh hypotheses by presenting a rule for simplifying terms of the forminteger(<sum>) where <sum> is a sum. For example, if we an show that y isan integer, we would like to simplify integer(x + y + z) to integer(x + z).7 Books are ACL2 input �les that an be run through ACL2's erti�ation proess.

FUNCTION: redue-integer-+-fn(sum, mf, state)1 if fn-symb(sum) != + then2 empty-list3 else if provably-integer(arg1(sum), mf, state) then4 list(pair(int, arg1(sum)))5 else if fn-symb(arg2(sum)) == + then6 redue-integer-+-fn(arg2(sum), mf, state)7 else if provably-integer(arg2(sum), mf, state) then8 list(pair(int, arg2(sum)))9 else empty-listRULE: redue-integer-+GIVEN bind-free(redue-integer-+-fn(sum, mf, state))integer(int)REWRITE integer(sum) TO integer(sum - int)We emphasize here that although we (as users) know that the seond hy-pothesis, integer(int) must be true by the way that we seleted int, thisinformation is not available to ACL2. ACL2 must rederive this fat for its ownuse. Again, although this might seem a soure of ineÆieny, in pratie we havenot found this to be true.We now onsider our example, integer(x + y + z), where y is provably aninteger, and desribe the ation of redue-integer-+-fn on this term. Firstnote that addition is atually a binary operation in ACL2; we are really lookingat the term integer(x + (y + z)). Redue-integer-+-fn reurs on the ad-dends so sine y, by assumption, is provably an integer, redue-integer-+-fnreturns list(pair(int, y)). The right-hand side of the onluding equality ofredue-integer-+ is therefore rewritten to the appropriate instane of the terminteger((x + y + z) - y), whih will be simpli�ed by other rules to yield ourdesired result.8 ConlusionIn this paper we have desribed three failities a�orded by ACL2 for varying lev-els of meta level ontrol and reasoning. The weakest of these, syntaxp hypothe-ses, allow one to ontrol the behavior of ordinary rewrite rules by restritingtheir operations based upon the syntati form of their instantiated variables. Aquik searh reveals that there are over 800 uses of syntaxp hypotheses amongmore than 150 of the proof sripts distributed with ACL2. Bind-free hypothe-ses, whih allow one to programmatially selet a binding for free variables, areslightly more powerful and there are more than 50 uses of this relatively newfaility in approximately 15 sripts. Finally, there are about 25 uses of meta rulesin 12 sripts8.8 It seems likely that all but a ouple of these meta rules ould, instead, be madebind-free rules. For example, the meta rule anel-plus-equal-orret ould be

The initial designs of these failities sprang from users' frustrations with thee�ort required to arry out ertain proofs whih required one to ontinually pointout to ACL2 simple and seemingly \obvious" steps. The initial implementationswere then tested, generalized, and tested again. They were not plaed into themain development branh of ACL2's soure ode until all were satis�ed thatthey were orretly and eÆiently implemented, as easy to use as possible, andsuÆiently general to be broadly useful.As we have seen, these meta level failities allow one to speify solutions toentire lasses of problems, avoiding the need for a myriad of rules in their stead.This allows one to onentrate on the struture of the desired proof, and to leavemany of the details to ACL2. See [7℄ for an example of this in the domain ofbags, or multisets.AknowledgementsWe thank the referees, who provided signi�ant useful feedbak (after obviousareful reading). We also thank the ACL2 ommunity for useful disussions.Referenes1. R. S. Boyer and J Moore. Metafuntions: proving them orret and using themeÆiently as proof proedures. The Corretness Problem in Computer Siene,R. S. Boyer and J Moore, editors. Aedemi Press, 1981.2. M. J. C. Gordon and T. F. Melham. Introdution to HOL: A Theorem ProvingEnvironment for Higher Order Logi. Cambridge University Press, 1993.3. J. Harrison. Metatheory and Reetion in Theorem Proving: A Survey and Cri-tique.4. M. Kaufmann, P. Manolios, and J Moore. Editors. Computer-Aided Reasoning:An Approah. Kluwer Aademi Publishers, 2000.5. M. Kaufmann, P. Manolios, and J Moore. Editors. Computer-Aided Reasoning:ACL2 Case Studies. Kluwer Aademi Publishers, 2000.6. M. Kaufmann and J Moore. ACL2: An Industrial Strength Version of Nqthm. Pro-eedings of the Eleventh Annual Conferene on Computer Assurane (COMPASS-96), pp. 23-34, IEEE Computer Soiety Press, June 1996.7. Eri Smith, Serita Nelesen, David Greve, Matthew Wild-ing, and Raymond Rihards. An ACL2 Library for Bags(MultiSets). Fifth International ACL2 workshop, 2004.http://www.s.utexas.edu/users/moore/al2/workshop-2004/index.html8. Markus Wenzel. Isar | a Generi Interpretive Approah to Readable Formal ProofDouments. Theorem Proving in Higher Order Logis, 12th International Confer-ene, TPHOLs'99, LNCS 1690, Springer, 1999.replaed with the more general bind-free rule simplify-equality-of-sums. Thatthis is not the ase is due to the fat that bind-free rules were not available at thetime of many of these meta rules' reation.

