
Noname manuscript No.
(will be inserted by the editor)

Milestones from The Pure Lisp Theorem Prover to ACL2

Draft 4 – 5 March, 2019

J Strother Moore

the date of receipt and acceptance should be inserted later

Abstract We discuss the evolutionary path from the Edinburgh Pure Lisp
Theorem Prover of the early 1970s to today’s ACL2. Among the milestones
are the adoption of a first-order subset of a programming language as a logic;
the analysis of recursive definitions to guess appropriate mathematical induc-
tion schemes; the use of simplification in inductive proofs; the incorporation of
rewrite rules derived from user-suggested lemmas; the generalization of that
idea to allow the user to affect other proof techniques soundly; the recogni-
tion that evaluation efficiency is paramount so that formal models can serve
as prototypes and the logic can be used to reprogram the system; use of the
system to prove extensions correct; the incorporation of decision procedures;
the provision of hierarchically structured libraries of previously certified re-
sults to configure the prover; the provision of system programming features to
allow verification tools to be built and verified within the system; the release of
many verified collections of lemmas supporting floating point, programming
languages, and hardware platforms; a verified “bit-bashing” tool exploiting
verified BDD and checked external SAT procedures; and the provision of cer-
tain higher-order features within the first-order setting. As will become ap-
parent, some of these milestones were suggested or even prototyped by users.
Some additional non-technical aspects of the project are also critical. Among
these are a devotion to soundness, good documentation, freely available source
code, production of a system usable by industry, responsiveness to user needs,
and a dedicated, passionate, and brilliant user community.

Keywords theorem proving, hardware, software, verification, functional
programming, Lisp, induction, rewriting, reflection, decision procedures

Department of Computer Science
University of Texas at Austin
E-mail: moore@cs.utexas.edu

2 J S. Moore

1 About ACL2

This paper is about the evolution of the Edinburgh Pure Lisp Theorem Prover
(PLTP) into today’s ACL2. PLTP is an extremely simple prover for recursive
functions and inductive data types, supporting Pure Lisp as its logic.1 It was
developed by Robert S. Boyer and me between 1971 and 1973. It was the first
of its kind. ACL2, which stands for A Computational Logic for Applicative
Common Lisp, is an “industrial strength” prover in routine use in industry. It
was initially designed by Boyer and me in 1989, but for the past 26 years has
been the still-evolving product of Matt Kaufmann and me. To justify talking
about the journey to ACL2, let me first explain our destination.

ACL2 is a theorem prover for reasoning about recursive functions and in-
ductively constructed objects. Its logic is an extension of an applicative (func-
tional) subset of ANSI standard Common Lisp [55]. A user of ACL2 can proto-
type a digital artifact like a circuit design or an algorithm in an ANSI standard
programming language, efficiently run the formal model on concrete data, and
verify properties by reasoning mechanically and directly about the prototype.
Mathematical induction is common because most models involve recursive
functions over inductively constructed domains. It is distributed without cost
under a very lenient 3-clause BSD license and in source code form, with ex-
tensive documentation and a massive library of reusable certified results.

Among industrial artifacts whose properties have been verified with ACL2
are a Motorola digital signal processor [18], the floating point arithmetic in the
Advanced Micro Devices (AMD) Athlon [51], the Rockwell Collins AAMP7G
cryptographic chip (providing the basis of an NSA MILS certification) [24],
critical security related properties of the J2ME JVM [38], many components of
the Centaur Nano media unit [28], and some x86 machine code programs [23].
The last illustrates an important feature of ACL2: despite being a logic with
good mechanical proof support it is a programming language that executes
efficiently. The x86 model describes both the system- and user-levels of the
architecture and has been used to prove some machine code programs correct.
But it is also a useful simulator, running user-level machine code at 3.3 million
instructions per second and system level code (where page tables complicate
execution) at 912,000 instructions per second.

Increasingly the most impressive accomplishments of ACL2 are being car-
ried out by industrial users, often working on proprietary designs. These users
are often able only to share the basic mathematical infrastructure they have
built, by contributing certified books of definitions and lemmas to the repos-
itory. For example, David Russinoff has done floating point proofs in ACL2
for AMD, Intel and ARM using a comprehensive floating point library, named
“rtl/rtl11” which he has shared with the community. Furthermore, he has writ-
ten a conventional but highly detailed mathematics monograph on the results
he makes available [52].2

1 I write in the present tense, even about provers that are no longer in use, because I
regard them as mathematical artifacts and algorithms, not just running code.

2 See Section 8 for details on how to access shared results in ACL2.

Milestones from The Pure Lisp Theorem Prover to ACL2 3

But most ACL2 proofs today are carried out in industry and do not result
in publications. For example, Centaur Technology, Inc., a subsidiary of VIA,
designs high performance, low-cost x86 compatible microprocessors. Centaur
runs thousands of ACL2 proof scripts nightly to check tens of thousands of
properties of its evolving design (“bugs introduced today are detected tonight
and fixed tomorrow”). By the standards of formal logic, these designs are huge.
The VIA Nano floating-point adder is actually composed of four adders so that
the unit can simultaneously add four pairs of single-precision numbers, two
pairs of double-precision numbers, or one pair of extended-precision numbers.
The unit can complete four floating-point additions in two steps (clock cycles),
and it is pipelined so it can produce four results every clock cycle. The unit’s
description involves 33,700 lines of Verilog in 680 modules; its implementation
involves 432,322 transistors. The floating-point adder is part of a larger media
unit that has 1074 inputs, including 26 clock inputs, and 374 output signals.
The unit performs over 100 other operations – and many (> 1000) inputs have
to be set properly to force it to perform the additions to be verified.

Much of the ACL2 infrastructure Centaur has produced [54] is available in
the Community Books including, for example, a Verilog to ACL2 translator,
but individual theorems about Centaur designs are not generally published. By
sharing the infrastructure, Centaur has allowed other people and organizations,
such as Oracle, to build on it.

So how did we get here? It is not unreasonable to think of ACL2 as just
the latest version of PLTP! But in any long journey there are milestones and
in this paper I lay out the ones I consider most important.

2 The Relevant Provers

There are four main provers in this evolutionary sequence: PLTP, “Thm,”
which is what I shall call the prover described in the 1979 book A Computa-
tional Logic [8], Nqthm, and ACL2. But it is wrong to think of any of these
provers as having been stable. Each was under constant development and it is
difficult to say when, for example, PLTP became Thm or Thm became Nqthm.
But roughly speaking, PLTP was in active use for about 5 years, from 1972
to 1976. Thm was used about that long too. Nqthm was the first to have a
user community outside of theorem proving researchers and it was in active
use from the early-1980s until the mid-1990s. Because of the user community,
we maintained and even used Nqthm ourselves for about 5 years after ACL2
had become our main focus. ACL2 was started in August, 1989, and is still in
active use these 30 years later, far longer than its predecessors. But it too has
been under constant development: forty two versions have been released since
1996, about one every 6 months. These different versions are not mere updates
to fix bugs and cope with platform changes but often include major new logi-
cal, proof, or programming features. Broadly speaking these versions of ACL2
have been “backwards compatible” although sometimes script changes were
required to get “old” theorems to be proved anew. The major impetus for the

4 J S. Moore

constant development of ACL2 and, counter-intuitively, its relative stability
compared to its predecessors, has been the dependence of industrial users on
the tool and the constantly escalating challenges of the problems they try to
tackle with ACL2.

No one but the authors (Boyer and Moore for PLTP, Thm, and Nqthm, and
Boyer, Kaufmann and Moore for ACL2) modifies the code for these provers,
although the systems are distributed in source code form. Users can and do
make suggestions, find bugs, and even contribute prototypes of improvements.

None of our provers are foundational: they do not produce formal proofs.
Instead they do computations that we believe guarantee that a formal proof
exists. The easiest to understand example is the contrast between a founda-
tional prover that proves tautologies by constructing a proof in terms of modus
ponens and other propositional rules versus one that uses, say, a decision pro-
cedure like BDDs or SAT.

Our provers have all had soundness bugs from time to time, mainly because
of programming errors but occasionally because of flawed logical thinking on
our parts. But such bugs are relatively rare, generally quite difficult to exploit,
and are taken very seriously by users and the implementors. We announce them
and fix them as soon as possible.

All four provers use some version of applicative (functional) Lisp as the
logic. All are untyped in the sense that Lisp is untyped: the syntax imposes
no type constraints on functions and their results, but each Lisp provides
several types of objects. The syntax is free of quantifiers. All the Lisps are
formalized in first-order logic with induction. Functions in the logics can be
run on concrete input, an especially useful feature when the functions model
a complicated computational artifact because models have dual use as both
prototypes and formal objects about which properties can be proved.

The expressive weakness of the logics actually plays a role in the success
of the provers. To prove ∀n∃x : ψ(n, x) the user must define a function, f , to
construct a suitable x from n and then prove ψ(n, f(n)). The definition of f
gives the provers a big hint. As Grant Passmore has said [private communica-
tion], “some provers extract programs from proofs, but ACL2 extracts proofs
from programs.”

All are an ad hoc mix of proof procedures governed by heuristics. Com-
pleteness is of little concern; the theories are undecidable. We have always
prized efficient automation, especially for theorems humans find “obvious.”

For the purposes of this paper I tend to use ACL2’s Common Lisp notation,
which I assume readers will understand or figure out from the narrative.

3 Organization

Section 1 gives some information about ACL2 to try to justify the reader’s
investment in learning about its evolution. Section 2 identifies the four provers
discussed here and summarizes their commonalities. Section 4 sets the scene
for program verification and theorem proving research in the late 1960s.

Milestones from The Pure Lisp Theorem Prover to ACL2 5

Section 5 describes our starting point, the Edinburgh Pure Lisp Theorem
Prover, PLTP. In this and each subsequent section I discuss the logic, the
prover, some landmark theorems, and the code base. Section 6 describes the
evolution from PLTP to Thm. Section 7 describes the evolution to the Nqthm
prover in the 1980s. Section 8 describes ACL2. The description includes the
same subsections mentioned earlier plus a description of “programming” fea-
tures. Because ACL2 is a “living” system that is extensively documented, this
section has been condensed by the frequent reference to specific online doc-
umentation topics the reader may freely browse. Section 9 sums up and in
Section 10 I try to describe the scale of my debt to my colleagues.

4 The Milieu

In 1963, John McCarthy published “A Basis for a Mathematical Theory of
Computation” [41], in which he used Lisp to specify and prove some program
properties, sometimes by modeling the programs’ behavior with functions. In
1967, Robert Floyd published “Assigning Meaning to Programs,” which de-
scribed the inductive assertion style of program verification. In 1969, James
C. King’s PhD dissertation, A Program Verifier [36], was published, showing
a verification condition generator connected to an ad hoc prover for arith-
metic. (Arithmetic provers of the time suffered from their inability to handle
arithmetic functions not built-in, e.g., mod and gcd, often needed in specifica-
tions.) Also in 1969, Tony Hoare published his seminal “An Axiomatic Basis
for Computer Programming.” Thus, by the end of the 1960s, the formal veri-
fication of computer programs was an established research area. But the work
was focused mainly on program semantics, i.e., how to transform a formally
annotated program into formulas that, if theorems, would establish that the
program met its specification. It was left to the theorem proving researchers
to find a way to prove these formulas.

Meanwhile, research on heuristically based theorem proving was shaken by
Hao Wang’s 1960 paper “Toward Mechanical Mathematics” [57] that showed
a decision procedure that had proved “all [propositional] theorems, totaling
near 400, of Principia Mathematica.” In 1965, Alan Robinson published the
seminal “A Machine-Oriented Logic Based on the Resolution Principle,” [50]
in which he introduced the notion of the most general unifier and a complete
uniform proof procedure for first-order predicate calculus. By the end of the
1960s, almost all theorem proving research – upon which the success of pro-
gram verification depended – was focused on uniform proof procedures and
resolution in particular.

One notable exception was Woody Bledsoe at the University of Texas at
Austin, who in the late 1960s explored interactive heuristic provers [2] as well
as resolution. His 1971 paper “Splitting and Reduction Heuristics in Automatic
Theorem Proving” [1] described a heuristically-based set theory prover that
would do simple inductions on natural numbers if the theorem was of the form
∀n ∈ N

6 J S. Moore

Turning to the more personal, in September, 1970, having completed a
bachelors degree in mathematics at MIT, I enrolled in the PhD program at the
University of Edinburgh in the Department of Machine Intelligence.3 Initially
my adviser was Donald Michie but as I got more interested in theorem proving
I switched advisers to Rod Burstall. As an undergraduate I had supported
myself as a programmer4 and I continued to do so in Edinburgh. I got a job
programming for Bob Kowalski in the Metamathematics Unit with the task
of implementing an SL Resolution prover [37].

Simultaneously, Bob Boyer was finishing his PhD at the University of Texas
at Austin, working under Bledsoe. In fact, they were both at MIT, where
Bledsoe spent a sabbatical. Boyer’s dissertation, which was completed during
my first year at Edinburgh, was on Locking Resolution [14]. But Boyer also
worked with Bledsoe on his non-resolution prover. In September, 1971, Boyer
came to the Metamathematics Unit for post-doctoral research into resolution.
We shared an office because we were both Americans (indeed, Texans) and
kept the office warmer than others.

The programming environment was, to say the least, challenging by today’s
standard. We coded in POP-2, a imperative Lisp-like programming language
with an Algol-like syntax developed at the University of Edinburgh by Robin
Popplestone and Rod Burstall. POP-2 ran on an ICL 4130 processor with 64K
bytes of 2 microsecond memory shared between 8 interactive jobs controlled
by teletype input from the users. File input and output was by paper tape and
line printer.

Memory limitations made the SL prover quite limited, and my attempts
to save space by representing clauses in a compressed string format slowed
it down. Boyer and I soon discovered a structure shared representation of
clauses that made it more practical [5] and which also tended to highlight
the similarities between linear resolution proofs and conventional stack-based
implementations of subroutine calls – a serendipitous observation reinforcing
the emerging idea of “programming in predicate calculus.”

Given the milieu, as well as our abiding interest in programming, we tended
to focus our theorem proving challenges on proving properties of programs.
We started using the SL prover to interpret programs in a predicate calculus
programming language of my design called Baroque (after a peculiar variant
of chess taught to us by Steve Crocker) and to prove theorems about them.5

3 The Machine Intelligence Department was co-located at Hope Park Square with the
Metamathematics Unit, and both became founding members of Edinburgh’s School of Ar-
tificial Intelligence in 1970.

4 I started coding in FORTRAN in 1964, learned Lisp from Minsky at MIT, and worked
successively in many different languages in the Laser Research Group (solving differential
equations), IBM Systems (page fault simulation), TRW (debugging the Apollo onboard
software controlling Lunar Orbit Insertion), and State Street Bank and Trust (mutual funds).

5 Also during our time in Edinburgh we developed a text editor, called the 77-editor
[4], named for the disk track it was on. The 77-editor was a command line editor with
POP-2 as the command language. Commands were based loosely on MIT’s Teco. But the
77-editor, which was used in the School of AI in Edinburgh for about 10 years, had a really
important feature: the text to be edited was represented in a data structure that kept most

Milestones from The Pure Lisp Theorem Prover to ACL2 7

Here is a Baroque program for computing the length of a list taken from
page 71 of my dissertation [42].

LEN1: (LENGTH NIL) -> 0;

LEN2: (LENGTH (CONS X Y)) -> Z

WHERE

(LENGTH Y) -> U;

(ADD U 1) -> Z;

END;

We formalized a simple Pure Lisp subset in Baroque so that LENGTH could
be defined with a three-place if-then-else we called COND:

LENGTH: (LENGTH X) -> U

WHERE

(COND X

(ADD1 (LENGTH (CDR X)))

0) -> U;

END;

Our SL prover could prove such theorems as “there is a list whose LENGTH
is 2.” But we could not prove that (LENGTH (APPEND A B)) is the sum of
the LENGTHs of A and B. That proof requires induction. This led us, by early
1972, to begin constructing a prover that could prove such theorems. Follow-
ing McCarthy’s lead, we adopted Pure Lisp as our logic. Following Bledsoe’s,
we studied the way we proved simple theorems about Lisp and just tried to
implement it.

5 PLTP

5.1 Logic

We adopted the simplest version of Lisp that would allow us to experiment with
proofs by induction. We formalized it in untyped first-order logic with the usual
rules, e.g., modus ponens, instantiation, etc., plus induction, because that was
both familiar and adequate. Five function symbols are axiomatized in PLTP:
IF, EQUAL, CONS, CAR, and CDR.6 (CAR (CONS X Y)) is axiomatized to be X and
(CAR NIL) is NIL; CDR is treated similarly. There is one constant symbol, NIL.

of the document on disk and which had a very small memory footprint. The representation
facilitated undoing and allowed for meta-data associated with changes. I explained our data
structure to Charles Simonyi when I moved to Xerox Park and it was used by him in his
implementation of the Bravo text editor ([26], p. 199). I maintained an Interlisp package
implementing it so Charles could experiment and request new features long after I left PARC
in 1976 [44]. Subsequently, Charles used the representation in Microsoft Word and it is still
in use in Word today [private communication].

6 In my dissertation, which was written in the summer of 1973, the function I here call
“IF” was named “COND,” but it was just a 3-place if-then-else. By October, 1973, we had
changed the name “COND” to “IF,” as evidenced by the file named REWRITE in Listing A of
the PLTP Archive discussed below.

8 J S. Moore

T was just an abbreviation for (CONS NIL NIL). PLTP allows user-defined
recursive functions. Propositional connectives AND, OR, NOT and IMPLIES are
just functions defined in terms of IF. Natural numbers are represented as lists
of NILs, which may be abbreviated with numerals. The arithmetic functions
are defined recursively a la Peano.

5.2 Prover

We aimed for complete automation. No user guidance was permitted and only
the axioms and function definitions were available. This meant that the system
had to be able to do several nested inductions to carry out many proofs.

The basic proof strategy of PLTP is as follows. First, simplification is
tried. Simplification in PLTP consists of symbolic evaluation (rewriting with
axioms, including recursive definitions, with heuristics to stop recursions), nor-
malization of IF-expressions, and reduction (eliminating branches containing
contradictory tests). The primary heuristic for stopping recursion is to reject
the expansion of a function call if it introduces, in the simplified recursive
calls, CAR/CDR expressions of variables.

If simplification does not prove the formula, equality hypotheses (EQUAL
tests in IFs) are used heuristically to replace one term by another in the true
branch of the IF. Heuristics control this substitution and often discard the
equality after “using” it, generalizing the goal.

Finally, explicit generalization of common subterms is tried, replacing cer-
tain subterms by new variables. The new variables are constrained by addi-
tional type hypotheses added to the conjecture.

Those “type hypotheses” are derived automatically by inspection of the
term being replaced and are expressed in terms of new predicates introduced
by that inspection. The predicates attempt to capture the “output type” of
the function symbol of the term being generalized. The most common such
invention is “this term always produces a number” but can, for example, “in-
vent” the concept of “even number” to describe the output of a function that
doubles its input.

The last proof technique tried is induction. By this point in the process the
conjecture has been maximally simplified, any previous induction hypotheses
have been used, and (perhaps) a sufficiently general goal has been produced.

The induction heuristic first runs the symbolic Lisp evaluator to record (in
a data structure called “the bomb list”) recursive calls on CAR and CDR com-
ponents of variables in the conjecture. These are recursions that “bomb out”
because they introduce talk of new components. Each such call “suggests”
an induction designed to “catch” the recursion and specify, via the induction
hypothesis, the recursive results. For example if the bomb list contains a re-
cursion on (CDR (CDR X)) then the following induction scheme is suggested,
where (ψ X) is the conjecture to be proved:

(AND (ψ NIL)

(ψ (CONS X1 NIL))

Milestones from The Pure Lisp Theorem Prover to ACL2 9

(IMPLIES (ψ X) (ψ (CONS X2 (CONS X3 X)))))

so that the recursive call in the conclusion of the inductive step can be sim-
plified in terms of X2, X3, and X, without introducing CAR/CDR terms.

If several suggestions share variables and treat shared variables compatibly
they are merged. Surviving suggestions are rated by evaluating the conjec-
ture on symbolic data computed from each induction hypothesis to see which
“catches” the most recursions. Ties are broken by favoring induction on vari-
ables not yet inducted upon. Then the base case(s) and induction step are
conjoined into a single formula as above and the whole process starts over
with simplification.

The entire subgoal structure of the proof is preserved in a single IF-
expression produced by expanding the propositional connectives by symbolic
evaluation. All the heuristics were designed to support inductive proofs. For
example, evaluation stops recursive expansion because of the need to introduce
new CAR/CDR terms, but induction uses evaluation to put sufficient structure
into the induction conclusion to allow terms to expand and be “caught” by the
induction hypothesis. The heuristic use of EQUAL was designed to use induction
hypotheses that are equalities, substituting into the induction conclusion so
as to eliminate the side of the equality “caught” by the induction and thus to
re-express the goal entirely in terms of the side that was not. Generalization
similarly eliminates terms shared between the induction hypothesis and the
induction conclusion, i.e., the terms “caught” by the induction. Our aim was
that PLTP express each new goal in terms suitable for a different induction.

The symbolic evaluator is, of course, capable of fully evaluating a ground
term and so it was possible to run our Lisp subset on simple examples.

5.3 Landmark Theorems

The landmark theorems first proved fully automatically by PLTP include var-
ious simple arithmetic identities, the associativity of list concatenation, the
fact that the reverse of the reverse of a list is the original list, and the cor-
rectness of insertion sort (i.e., that sort produces an ordered result containing
the same number of occurrences of every element). The apparently simple fact
that Peano multiplication is associative requires three inductions and “discov-
ers” (via heuristic equality substitution and generalization) that multiplication
distributes over addition and that addition is associative.

Below is PLTP’s output on the conjecture that insertion SORT produces
ORDERED output. SORT uses ADDTOLIS to add a new element to a list and uses
LTE (“less than or equal”) to compare elements.

In order to show exactly what PLTP did in this proof, I display its actual
output from July, 1973, below. COND is used where we would subsequently use
IF. Square brackets are used to delimit terms where we now use parentheses.7

7 We apparently switched back and forth between square brackets and parentheses.
Boyer’s pretty printer memo (see the PLTP archive mentioned below), with code dating

10 J S. Moore

Everywhere else in this article I use ACL2 notation for all the provers even
though each supported a different version of Lisp.

THEOREM TO BE PROVED:

[ORDERED [SORT A]]

MUST TRY INDUCTION.

INDUCT ON A.

THE THEOREM TO BE PROVED IS NOW:

[AND [ORDERED [SORT NIL]]

[IMPLIES [ORDERED [SORT A]] [ORDERED [SORT [CONS A1 A]]]]]

WHICH IS EQUIVALENT TO:

[COND [ORDERED [SORT A]] [ORDERED [ADDTOLIS A1 [SORT A]]] T]

GENERALIZE COMMON SUBTERMS BY REPLACING [SORT A] BY GENRL1.

THE GENERALIZED TERM IS:

[COND [ORDERED GENRL1] [ORDERED [ADDTOLIS A1 GENRL1]] T]

MUST TRY INDUCTION.

(SPECIAL CASE REQUIRED)

INDUCT ON GENRL1.

THE THEOREM TO BE PROVED IS NOW:

[AND

[COND [ORDERED NIL] [ORDERED [ADDTOLIS A1 NIL]] T]

[AND

[COND [ORDERED [CONS GENRL11 NIL]]

. [ORDERED [ADDTOLIS A1 [CONS GENRL11 NIL]]]

. T]

[IMPLIES [COND [ORDERED [CONS GENRL12 GENRL1]]

[ORDERED [ADDTOLIS A1 [CONS GENRL12 GENRL1]]]

T]

[COND [ORDERED [CONS GENRL11 [CONS GENRL12 GENRL1]]]

[ORDERED [ADDTOLIS A1 [CONS GENRL11 [CONS GENRL12 GENRL1]]]]

T]]]]

WHICH IS EQUIVALENT TO:

[COND [LTE A1 GENRL11] T [LTE GENRL11 A1]]

MUST TRY INDUCTION.

INDUCT ON GENRL11 AND A1.

THE THEOREM TO BE PROVED IS NOW:

[AND [AND [COND [LTE A1 NIL] T [LTE NIL A1]]

[COND [LTE NIL GENRL11] T [LTE GENRL11 NIL]]]

[IMPLIES [COND [LTE A1 GENRL11] T [LTE GENRL11 A1]]

from April, 1973, shows “a typical formula from our theorem prover” printed with paren-
theses. But the July, 1973, proof output used square brackets and then my September, 1973,
dissertation used parentheses.

Milestones from The Pure Lisp Theorem Prover to ACL2 11

[COND [LTE [CONS A11 A1] [CONS GENRL111 GENRL11]]

T

[LTE [CONS GENRL111 GENRL11] [CONS A11 A1]]]]]

WHICH IS EQUIVALENT TO:

T

FUNCTION DEFINITIONS:

[SORT [LAMBDA [X] [COND X [ADDTOLIS [CAR X] [SORT [CDR X]]] NIL]]]

[ORDERED

[LAMBDA

[X]

[COND

X

[COND [CDR X] [COND [LTE [CAR X] [CAR [CDR X]]] [ORDERED [CDR X]] NIL] T]

T]]]

[LTE [LAMBDA [X Y] [COND X [COND Y [LTE [CDR X] [CDR Y]] NIL] T]]]

[ADDTOLIS

[LAMBDA

[X Y]

[COND Y

[COND [LTE X [CAR Y]] [CONS X Y] [CONS [CAR Y] [ADDTOLIS X [CDR Y]]]]

[CONS X NIL]]]]

[IMPLIES [LAMBDA [X Y] [COND X [COND Y T NIL] T]]]

[AND [LAMBDA [X Y] [COND X [COND Y T NIL] NIL]]]

GENERALIZATIONS:

GENRL1 = [SORT A]

PROFILE: [/ [A] , / E N R / E N R G S1 [GENRL1] , / E N R / E N R / E N R / E N

R / E N R [GENRL11 A1] , / E N R / E N R .]

TIME: 57.06 SECS.

Note that three inductions are done and two interesting lemmas are dis-
covered: ADDTOLIS preserves ORDERED and LTE is a connex relation. The proof
succeeds when the goal reduces to T above. The prover then lists the rel-
evant function definitions and generalizations done. The profile is a debug-
ging tool, describing the sequence of proof techniques used, e.g., Evaluation,
Normalization, etc., and which variables were inducted upon. We could actu-
ally input a partial profile and stop the prover at that point to inspect the
state.

We maintained a regression suite, called the “proveall,” and re-ran PLTP
on the entire suite whenever we changed the code. This was in response to
our experience with other provers (ours and others’): changes in the search
strategy could give us bragging rights to some “new” theorem without us
being aware that the prover could no longer prove an “old” one we were still
bragging about!

12 J S. Moore

5.4 The Code

The compiled POP-2 for the theorem prover occupied 15,000 24-bit words on
the ICL 4130. The typical successful theorem in the proveall suite took 8-10
seconds of CPU time on a machine that took 400 microseconds to do a cons.
The hardest theorems, those about SORT, took 40-150 seconds.

By the way, the name “PLTP” does not appear in our early papers or
code. We tended to call it “the theorem prover” and when more precision was
needed we called it “the Edinburgh Pure Lisp theorem prover.”

PLTP was described in my dissertation [42] in 1973. The dissertation also
lists 47 definitions and 67 theorems in its proveall regression suite. Virtually all
of the theorems had never been proved automatically before because virtually
all of them require induction. PLTP was presented at IJCAI in 1973 and a
longer version of that same paper was published as “Proving Theorems about
LISP Functions” [6] in 1975.

When John McCarthy saw PLTP his comment to me was “What took so
long?” It was 12 years after “A Basis for a Mathematical Theory of Compu-
tation” [41].

There is to my knowledge no working implementation of POP-2 today and
so the original PLTP source code cannot be run. But Grant Passmore has
reconstructed PLTP in OCAML from my dissertation and I have coded PLTP
in ACL2 working from old line printer listings from 1973.

The PLTP Archive contains both of the reconstructions; it may be found at
http://www.cs.utexas.edu/users/moore/best-ideas/pltp/index.html.
Also there you’ll find a discussion of the bugs found during a close code in-
spection after 40 years of theorem proving experience. More importantly for
historians, it includes scanned copies of all our line printer listings from 1973,
including the original POP-2 source code for PLTP, the proveall files, and
PLTP’s proof output. Also in the archive are copies of the POP-2 reference
manuals for the ICL 4130.

Despite its simplicity, PLTP convinced us that Lisp was quite expressive as
a logic, that the duality between recursion and induction could be exploited
to automate the selection of frequently appropriate induction schemes, and
that our heuristics for controlling the proof process to exploit induction were
effective.

6 “Thm”

Boyer and I left Edinburgh in December, 1973, and returned to the United
States (Boyer to SRI, me to Xerox PARC, though I joined him at SRI in 1976).
We re-implemented PLTP in Interlisp and continued working on it. Having
proved to ourselves that the basic approach was viable we were interested in
tackling more practical verification problems. For example, I verified a binary
addition algorithm with PLTP in 1975 [43] and by the late 1970s we would be

Milestones from The Pure Lisp Theorem Prover to ACL2 13

trying to model the BDX930 flight control computer [15]. Such goals required
a richer logic and better automation.

By 1979 PLTP had evolved into the the prover described in the book A
Computational Logic [8]. We still called it “the theorem prover” but because
it resided on a directory named thm I will call it “Thm” here.

I describe the changes in the logic and the prover below. No publications
are cited because the logic, the prover, and its proveall regression suite are
contained in the book cited above [8]. Indeed, within a decade of the publica-
tion of the book, Boyer and I received word from perhaps half-a-dozen people
that they had re-implemented Thm from it and that it had passed its regres-
sion. Sadly, we have not posted a copy of the Interlisp code for Thm, though
we have line printer listings of the code, the proveall regression suite, and the
output on the proveall. The best reference for Thm is A Computational Logic
[8].

6.1 Logic

Like PLTP’s, Thm’s logic is a homegrown version of Lisp formalized in an
untyped first-order logic of total recursive functions with induction, but we
changed it significantly to make it more like a conventional programming lan-
guage – the idea that numbers were lists of NILs was perfectly logical but
jarring – with more flexible data types.

Thm has two distinct primitive constants, (TRUE) and (FALSE), abbrevi-
ated T and F. F replaced PLTP’s NIL in the role of “false.” Otherwise, IF,
EQUAL and the logical connectives are as in PLTP.

Thm allows the user to introduce new data types with the “Shell Princi-
ple” but the language remains untyped in the sense that well-formed formulas
impose no restrictions on the arguments to functions.

There are three built-in applications of the Shell Principle to construct
the natural numbers, the literal atoms or symbols (including NIL), and conses.
Abbreviations are introduced to allow the conventional notation for constants.
The user can invoke the Shell Principle to add other types. shell accessors or
“destructors” like SUB1, CAR and CDR, are axiomatized by the Shell Principle
to return some specified default value, e.g., 0 for numbers, NIL for lists, when
presented with input of the “wrong” type.

The function LESSP (“less than”) on the naturals is defined recursively
but built into the system because it is known to be well-founded. Each shell
introduces a new well-founded relation. Lexicographic combinations of well-
founded relations are also known to be well-founded. We were aware that we
could formalize the ordinals up to ǫ0 but chose not to at that time [8], p. 181.

The Definitional Principle allows arbitrary recursion provided Thm can
prove there is a measure of the formals and a well-founded relation such that
the measure decreases in every recursive call. In contrast, PLTP has no defini-
tional principle. PLTP just adds purported definitions as axioms at the user’s

14 J S. Moore

risk of unsoundness. Thm’s Definitional Principle guarantees conservative ex-
tension of the theory. Thm does not admit mutual recursion.

The Induction Principle allows inductions to be similarly justified by a
measure and well-founded relation.

It is instructive to compare the most elementary inductions of PLTP and
Thm. Consider the function APPEND, whose Thm definition is

(DEFUN APPEND (X Y)

(IF (CONSP X)

(CONS (CAR X) (APPEND (CDR X) Y))

Y))

and whose PLTP definition is similar except for the idiom used to test whether
X is empty. The induction scheme for (ψ X Y) suggested to PLTP by (APPEND

X Y) is

(AND (ψ NIL)

(IMPLIES (ψ X Y) (ψ (CONS X1 X) Y)))

but the induction suggested to Thm is

(AND (IMPLIES (NOT (CONSP X)) (ψ X Y))

(IMPLIES (AND (CONSP X)

(ψ (CDR X) Y))

(ψ X Y)))

The main advantage of the Thm-style scheme is that the induction hypotheses
could be expressed in terms of “destructors” (like CDR) that need not just be
structural components of the objects being inducted upon.

For example, using the Thm Definitional Principle we can define (GCD X

Y) to recur by subtracting the smaller argument from the larger after proving
that the result is smaller. Then an induction for (GCD X Y) can, under an
appropriate case analysis, assume the conjecture for (- X Y) or (- Y X) as
needed. PLTP cannot express this induction because the difference between the
two variables is not a fixed structural component of either. Similarly, Thm can
deal with functions like the applicative quick sort which recurs on computed
lists that are not structural components, and with functions that count up
towards some limit. Thm can also deal with functions that accumulate results
into a “sink,” which require inductive hypotheses in which some variables are
replaced by arbitrarily bigger terms.

6.2 Prover

The Thm prover is obviously related to PLTP but considerably more sophis-
ticated. Perhaps the most far reaching change from PLTP to Thm is the
provision for user-supplied lemmas. But to explain the design we must first
discuss other changes.

Milestones from The Pure Lisp Theorem Prover to ACL2 15

6.2.1 Clauses

We abandoned the simple idea of representing all the subgoals in a single IF

expression and adopted clauses to represent the different branches of a goal.
Instead of tackling (IF p (IF q r s) u) as one goal, Thm breaks it into

three clauses, implicitly conjoined, {(NOT p) (NOT q) r}, {(NOT p) q s} and {p
u}, representing (IMPLIES (AND p q) r), (IMPLIES (AND p (NOT q)) s) and
(IMPLIES (NOT p) u). This allows the various proof techniques to work on
different conjuncts independently.

All the goal clauses are kept in a “pool” and each must be proved for the
overall proof to succeed. We generalized the control architecture of the prover
into what we called “the waterfall.” A clause is picked from the pool, undergoes
the cascade of proof processes – which might split the clause into new subgoals
by the introduction of IF terms, and each new subgoal is dropped into the pool
to start the process over. If a clause survives unchanged through the cascade,
induction is tried and the base cases and induction steps are dropped into the
pool.

6.2.2 Type-sets

To support reasoning about the several data types allowed by the Shell Princi-
ple we introduced the notion of “type-set” which, abstractly, is the set of shells
to which the value of a term might belong and which is represented concretely
by a bit mask manipulated by logical operations. For example, when assum-
ing (EQUAL a b) true Thm computes the type sets of a and b and intersects
them to get some new type-set ts; if ts is empty, the equality cannot be true;
otherwise Thm asserts that (EQUAL a b) had the type-set of T but also that
both a and b have type-set ts.

6.2.3 Simplification

We combined PLTP’s three processes of evaluation, normalization, and reduc-
tion into a single process called simplification that operates on clauses. Using
axioms and rewrite rules derived from lemmas (below) the simplifier rewrites
each literal of the clause in turn, assuming the negations of the other literals.
When a literal rewrites to an expression containing an IF, the branches are
split out and spliced into the clause, producing several clauses. Assumptions
are stored in a “type alist” that pairs terms with their types expressed as
type-sets.

6.2.4 Definition-time Analysis

To support both the Definitional Principle and the Induction Principle, and in
a radical and important break from PLTP, we introduced extensive processing
of new definitions. The processing identifies the formal parameters controlling
the recursion (i.e., those measured) and builds an “induction machine” that

16 J S. Moore

succinctly describes the induction schema suggested by the function and its
justification. This eliminates the “bomb list” and allows more sophisticated
induction analysis and selection. Unlike even ACL2, Nqthm automatically
considered all non-trivial lexicographic combinations of measures suggested
by lemmas.

We refined our heuristics to take account of the controllers of a function so
as not to be fooled by “sinks” or other formals that change in recursion but
were not germane to termination. Expansion is allowed if the controllers get
simpler or already occur in the formula, even if other arguments do not.

The induction heuristics were improved, taking account of controllers to
more carefully control merging, introducing a notion that one scheme subsumes
another and a notion that one scheme “flaws” another, and consideration of
measures in final selection. These notions eliminate many occasions in which
PLTP chooses arbitrarily between schemes that it considers equally plausible.

6.2.5 Destructor Elimination

We added a new proof process called “destructor elimination” that is tried
after a clause is fully simplified.

For example, if X is known to be a cons and the conjecture mentions (CAR
X) and/or (CDR X), destructor elimination replaces X by (CONS A B), for new
variables A and B. Thus, (CAR X) becomes A, (CDR X) becomes B and other
occurrences of X become (CONS A B) which is easier to exploit.

For the CONS shell, the logical justification of this replacement is just the
axiom (IMPLIES (CONSP X) (EQUAL (CONS (CAR X) (CDR X)) X)): use the
axiom to replace certain Xs by (CONS (CAR X) (CDR X)) and then generalize
(CAR X) to A and (CDR X) to B.

This simple idea is very helpful in dealing with QUOTIENT and REMAINDER

where the inductively proved lemma

(IMPLIES (AND (NUMBERP N)

(NUMBERP M)

(NOT (EQUAL M 0)))

(EQUAL (+ (REMAINDER N M) (* M (QUOTIENT N M))) N))

can subsequently be used to transform (ψ N (REMAINDER N M) (QUOTIENT

N M)) into (ψ (+ R (* M Q)) R Q). Other lemmas can be used to bound R

below M.

6.2.6 Elimination of Irrelevance

We added a new proof process, just before induction, called “elimination of
irrelevance.” Because clauses allow separate branches to be dealt with sepa-
rately it is sometimes the case that clauses contain cliques of isolated falsifiable
literals that can just be dropped, making subsequent induction choices more
appropriate.

Milestones from The Pure Lisp Theorem Prover to ACL2 17

6.2.7 Lemmas

The most far-reaching change was the allowance for user-supplied lemmas.
The idea is that the user should be able to “configure” the prover for a proof
in a given domain by formulating lemmas that are used automatically, after
the lemma is proved by the system. This kept the prover solely responsible for
soundness while letting the user contribute creative insights.

When the user suggests a lemma to prove, he or she also tags it with any
of four tags indicating whether the lemma is to be used as a rewrite rule, a
destructor elimination rule, a generalization rule, or an induction rule.

Most lemmas are tagged as rewrite rules. A lemma of the form

(IMPLIES (AND h1 . . . hk) (EQUAL lhs rhs))

tagged as a rewrite rule has the following operational meaning: If the simplifier
encounters a target term matching lhs under the substitution σ (i.e., the target
term is lhs/σ) and the hypotheses governing the occurrence of the target imply
the hi/σ, then replace the target by rhs/σ. Rewriting is used recursively to
establish the hi/σ.

If the conclusion is (IFF lhs rhs) the same behavior is implemented but
only in argument positions for which propositional equivalence is sufficient. If
the conclusion is any other term, it is treated as though it were a propositional
equivalence to T.

This allows the user to “program” the simplifier and required us to invent
various heuristics for stopping backchaining, looping rewrites, and dealing with
“free variables” in the hi, i.e., variables not bound in σ.

The other three tags are relatively simple: Destructor elimination rules are
illustrated above. Generalization rules are used to add restrictions on new vari-
ables entering the conjecture by generalization or elimination. Induction rules
(which should have been called “measure and well-founded relation rules”) are
searched when a new definition is admitted to try to find a measure and well-
founded relation justifying the recursion (and thus the suggested) induction.

Because of lemmas, Thm is an “interactive automatic theorem prover”
whose behavior is fully automatic once a proof begins, but whose behavior
can be influenced by the user. It puts creative burdens on the user, usually
exercised in response to a failed proof attempt by the system. “What fact do
I know that it doesn’t?” “How can the fact be expressed generally enough to
be proved?” “How can the fact be expressed so as to be used effectively?”
But it relieves the user of directing low-level inference steps. This started the
development of what later became known (facetiously) as “The Method” for
discovering lemmas that involves the user and the prover in a synergistic dialog
in which neither party understands exactly what the other is doing.

18 J S. Moore

6.3 Landmark Theorems

Appendix A of [8] lists 404 definitions and theorems in the regression suite.
The suite includes basically all of the theorems in PLTP’s regression, but now
restated into Thm’s logical setting.

The most significant “new” theorems are discussed in Chapters IV, XVII,
XVIII, and XIX: the soundness and completeness of a propositional tautology
checker, correctness of a simple optimizing expression compiler, the correctness
of the Boyer-Moore fast string searching algorithm, and the uniqueness of
prime factorizations.

All four of these examples are noteworthy.

The first begins to hint at the idea of using verified Lisp programs to extend
the capabilities of the prover.

The compiler proof was our first foray into the formalization of the fetch-
execute cycle of a state machine. The machine was thought of as simple cal-
culator – it has no branch or conditional instructions – so a program is just
a linear sequence of instructions comparable to the button-pushes a human
might use to compute an arithmetic expression. But its definition involves
a “big switch” to decode the instruction. Running a program generated by
compiling a “large” expression was relatively slow since the only way to run
our Pure Lisp was to simplify a ground term. One must also recall that even
constants were represented as ground function applications. The number 3

really was represented internally as (ADD1 (ADD1 (ADD1 (ZERO)))). Trying
to compute, say, 232, easily expressed as the ground term (EXPT 2 32), was
impractical.

The fast string searching proof was a demonstration that Thm, and Lisp as
a specification language and logic, could be used with conventional program
semantics methods. Boyer and I invented the string searching algorithm in
1975 (the submission date of “A Fast String Searching Algorithm” [7] is shown
as June, 1975). For A Computational Logic we chose to verify a simplified
version of that algorithm via the inductive assertion method. We generated
verification conditions in the Thm logic (by hand) and proved them with
Thm. The proofs, of course, involve induction because they deal with such
“unfamiliar” numerical concepts as the position of one string (list of character
codes) in another, the position of the last occurrence of a character in a string,
the distance between two occurrences, etc. These concepts are “unfamiliar” in
the sense that they are not likely to be built into a pre-existing arithmetic
prover. But they are easily defined recursively, and the basic properties of
these concepts require induction to prove.

As we wrote,

Since mathematical induction is a fundamental rule of inference for the
objects about which computer programmers think (e.g., integers, se-
quences, trees), it is surprising that anyone would implement a theorem-
prover for program verification that could not make inductive argu-
ments. — [8], p. xii.

Milestones from The Pure Lisp Theorem Prover to ACL2 19

Finally, the existence and uniqueness of prime factorizations was our deep-
est foray into elementary number theory at the time.

The principal difficulty behind the proof is that Euclid’s greatest com-
mon divisor function (GCD) plays an important role, even though it is
not involved in the statement of the theorem. A beautiful but surprising
fact (that multiplication distributes over GCD) is used; the more obvious
fact that the GCD of two numbers divides both of them is also used. No
other theorem yet proved by the theorem prover employs as a lemma
a surprising fact about a function not involved in the statement of the
theorem. — [8], p. 309

This example thus highlights two important features of the design of Thm.
The first is that having a conservative Definitional Principle is crucial. If a
formula does not involve a given function symbol but can be be proved after
introducing the function with a conservative Definitional Principle, then the
formula is a theorem of the original theory. Definitions, such as GCD and, for
that matter, of the position of the last occurrence of c in str, are critical to
inductive proofs of their respective goal theorems.8

The second important feature is the value of having a human in the loop.
GCD and its properties were stated as lemmas by us, but verified by the prover
and used (as we anticipated) in the deeper proof.

Thm’s main positive contributions to our thinking were (a) the value of
a Definitional Principle so closely coupled with an Induction Principle, (b)
the effectiveness of definition-time analysis and data base organization, and,
mainly, (c) the incredible power achieved by bringing a human into the loop
without asking him or her to direct individual proof steps.

One negative observation we made of our prime factorization proof was
how hard it is to prove facts about arithmetic if rewriting is the only available
technique.

Our focus on trying to model languages and computing devices in the most
realistic way possible exposed weaknesses of Thm, perhaps best summed up
by Donald MacKenzie.

In Boyer and Moore’s emerging view, program verification, as it was
practiced in the 1970s, had almost a theological quality in its abstrac-
tion from the machines on which programs ran. Dominant approaches,
they suggested, implicitly assumed that it was a “god” rather than a
physical machine, “that actually steps through one’s programs.” Boyer
and Moore concluded that to verify SIFT [Software Implemented Fault
Tolerance, a major SRI project], it was necessary to construct a math-
ematical model of what BDX930 machine code instructions did. They
sought to encode in the logic used in their theorem prover a function
that described the changes in the state of the BDX930 effected by each

8 To demonstrate conservativity, Ken Kunen proved the prime factorization theorem with-
out introducing GCD; see [13], Nqthm example file 52, p. 430.

20 J S. Moore

instruction. The formula for the function covered thirty pages9, even
though it was described not in the most primitive terms possible but
in terms of functions such as 8-bit (binary digit) addition. The formula
was so large that it could not be processed by their theorem prover. —
[39] p. 240

7 Nqthm

In 1981, Boyer and I left SRI and moved to the Computer Science Department
of the University of Texas at Austin. We were located in the UT Tower in
Don Good’s verification group, and we started teaching for the first time. Of
particular note was a graduate course of our invention called Recursion and
Induction through which we met many amazing students, many of whom would
become master-level users of our provers. We continued to evolve our prover,
focused on more efficient representation of constants like 232 or the assembly
code program in some machine, support for arithmetic reasoning, and ways to
extend the prover without having to change the code base.

Seven years after moving to UT we published A Computational Logic Hand-
book (first edition) [11] which described the prover that became known as
Nqthm.10 A second edition of the book came out in 1998 [13]. The Preface to
the First Edition ([13], p. xv) contains an interesting recounting of what we
thought in 1988 were the major changes from Thm to Nqthm. The list below
is more complete and benefits from hindsight.

7.1 Logic

Nqthm’s logic is a homegrown Lisp formalized in untyped, first-order logic
of total recursive functions with induction quite similar to Thm’s. But the
differences are important. We introduced a new abbreviation convention to
allow efficient representation of constants, formalized the ordinals below ǫ0 to
allow a wider variety of definitions and inductions, and axiomatized a partial
recursive interpreter to allow bounded quantifiers and support reflection.

9 See [15].
10 Before ACL2, Boyer and I did not name our provers – or our other ideas like the “text
editor” and “the fast string searching algorithm.” We referred to whichever prover we were
working on as “the theorem prover.” This way of speaking made more sense when we were
the only people using the tool. Of course, code resides on directories and the directories
had names. In Edinburgh, there were no directories as such, just numbered disk tracks, and
PLTP resided across several. When “the text editor” was used by others it was called by its
track number, 77. But at PARC and SRI the prover resided on named directories and these
tended to change as the code morphed. But at one point the directory was thm and that
forked qthm to experiment with a quantified version, supporting bounded quantification.
But we abandoned qthm and forked again, to nqthm, “new qthm,” to experiment with the
interpreter described below. Colleagues and students started calling the theorem prover
“Nqthm.”

Milestones from The Pure Lisp Theorem Prover to ACL2 21

7.1.1 A New Abbreviation Convention (and Term Representation)

We extended the abbreviation conventions with Lisp’s QUOTE notation to make
it possible to write arbitrary constants in the logic. In Thm, 3 is just an
abbreviation for (ADD1 (ADD1 (ADD1 (ZERO)))) and is represented that way
as a formal term. But in Nqthm, 3 still abbreviates that same nest of ADD1
terms but is internally represented as the quotation of Interlisp integer 3, i.e.,
(QUOTE 3), which, in Lisp, may be written ’3. All constants were marked with
QUOTE. The LITATOM (symbol) constant whose name is ABC is formally the term
(PACK (CONS 65 (CONS 66 (CONS 67 0)))), where PACK is the constructor
for the LITATOM shell, and 65, 66, and 67 are the ASCII codes for A, B, and C.
But Nqthm represents that term as the quotation of the Interlisp symbol of
the same name, ’ABC. Similar remarks hold for list constants.

This allows Nqthm to represent relatively large constant objects efficiently,
recognize them easily, and compute on them. But an important side-effect, in-
deed, the motivation behind this abbreviation convention and change in inter-
nal representation, was that every formal term in the logic had a corresponding
constant in the logic obtained by writing the term inside a QUOTE expression.
We call this formal object the “quotation” of the term. For example, the quota-
tion of the term (EQUAL (REV (REV X)) X) is ’(EQUAL (REV (REV X)) X),
which is a list of length 3 whose CAR is the LITATOM ’EQUAL, etc. From the
perspective of the logic, this is not a change in the axioms or rules of inference,
but just a new abbreviation convention for constants.

7.1.2 Ordinals

We formalized the ordinals up to ǫ0 = ωω
ω
...

following Gentzen’s [22] treatment
of Cantor normal form, except using lists and natural numbers.

Table 1 shows some ordinals and their representation in Nqthm.

(ORDINALP X) is recursively defined to be T or F depending on whether
X is an ordinal, and (ORD-LESSP X Y) is defined to be T or F according to
whether the ordinal X is smaller than the ordinal Y. ORD-LESSP was assumed
to be well-founded.11

The Definitional and Induction Principles are like Thm’s except they re-
quire the measure to return an ORDINALP and they replace Thm’s limited
selection of well-founded relations with ORD-LESSP.

Therefore, Nqthm can induct up to ǫ0. As noted in [11] p. 42, “Gentzen’s
proof of the consistency of elementary number theory uses induction up to ǫ0.
Thus, by Gödel’s incompleteness theorem, we know that induction up to ǫ0
cannot be justified in elementary number theory.”

11 This assumption is backed by a careful hand-proof presented in a comment at the bottom
of the source file basis.lisp in the Nqthm sources described below.

22 J S. Moore

Ordinal Nqthm object

0 0

1 1

2 2

.

ω (1 . 0)

ω + 1 (1 . 1)

ω + 2 (1 . 2)

.

ω × 2 = ω + ω (1 1 . 0)

(ω × 2) + 1 (1 1 . 1)

.

ω × 3 = ω + (ω × 2) (1 1 1 . 0)

(ω × 3) + 1 (1 1 1 . 1)

.

ω
2 (2 . 0)

.

ω
2 + (ω × 4) + 3 (2 1 1 1 1 . 3)

.

ω
3 (3 . 0)

.

ω
ω ((1 . 0) . 0)

.

ω
ω + ω

99 + (ω × 4) + 3 ((1 . 0) 99 1 1 1 1 . 3)

.

ω
(ω2) ((2 . 0) . 0)

.

ω
(ωω) (((1 . 0) . 0) . 0)

.

Table 1 Some Ordinals in Nqthm

7.1.3 An Interpreter

We added an interpreter for partial recursive functions called V&C$. The name
stood for “value and cost.” (V&C$ X A) took the quotation of a term and
an alist (list of pairs) binding symbols to values and either returned a pair
consisting of the value of the term under the alist and the natural number
“cost” of computing it or returned F indicating that no cost is sufficient. V&C$
is itself a partial recursive function and thus an anomaly in Nqthm.

EVAL$ is defined just to be the CAR of the value and cost, or F.
With V&C$ Nqthm could allow the definition of partial recursive func-

tions and allow proofs that some were non-terminating. More practically,
V&C$ allows the user to define bounded generalized quantifiers like the func-
tion SIGMA that sums the value of a (quoted) expression as a given (quoted)
variable ranges over a given list. E.g., (SIGMA ’I ’(1 2 3) ’(TIMES I I))

= (12 + 22 + 32) = 14.
But the main use of V&C$ (actually, of EVAL$) was to support what is now

called “reflection” and what Nqthm and ACL2 call “metafunctions”: functions
that operate on the quotations of terms and are proved to preserve the meaning
(EVAL$) of the term, thus allowing the extension of the prover with verified

Milestones from The Pure Lisp Theorem Prover to ACL2 23

simplifiers, etc. No change in the logic, beyond the provision of EVAL$, is
necessary to justify the use of verified metafunctions in a first order setting.

The crucial property of EVAL$ for these purposes is that for a certain class
of terms and variable bindings, the EVAL$ of the quotation of a term in the
class is equal to the term. We discuss metafunctions further below when we
describe changes to the prover.

Despite our pride in having come up with a way to add soundly a partial
recursive universal interpreter to a first-order logic of otherwise total recursive
functions, I will not present more details of V&C$ here. For a detailed discussion
of V&C$ and some theorems about partial recursive functions and bounded
quantifiers proved with it, see [3]. When we moved from Nqthm to ACL2 we
abandoned V&C$ in favor of a simpler way to justify metafunctions, one not
requiring the admittance to the logic of a partial recursive universal interpreter.

7.2 Prover

The main improvements to Thm’s proof techniques were the elaboration of the
interpretation of rewrite rules, the integration of a linear arithmetic decision
procedure, the support for metafunctions, provision for user-supplied explicit
hints, a derived rule of inference called “functional instantiation,” a Skolem-
izer providing first-order quantification, and support for faster execution on
ground terms. All but the last were aimed at giving the user more control
while maintaining (or, in the case of linear arithmetic, increasing) the degree
of automation.

7.2.1 Rewrite Rules

To Thm, the operational meaning of a lemma tagged “rewrite” is always as a
conditional rewrite rule. But Nqthm inspects the shape of the rule and gives
certain shapes different meanings. One special shape is a rule that can be used
to infer the type-set of a term, another shape identifies a predicate as just a
conjunction or disjunction of types and improves the types computed when the
predicate is assumed true or false by the simplifier, and the last special shape
indicates the lemma can be used by the linear arithmetic decision procedure,
which we discuss further below. All other shapes are used as conditional rewrite
rules.

7.2.2 Linear Arithmetic

In the late 1970s, when Boyer and I were at still at SRI, we began considering
ways to exploit decision procedures for linear inequalities. Our SRI colleague,
Rob Shostak, was thinking about such decision procedures [53] and our nearby
Stanford colleague, Greg Nelson, was thinking about combining decision pro-
cedures [47]. So this was “in the air.” But our problem was different because
we were trying to integrate a decision procedure into a heuristic prover for a

24 J S. Moore

much richer theory than just the arithmetic of addition, subtraction, constants,
variables, and inequality relations.

As was made clear in our work on the prime factorization theorem, handling
all arithmetic solely with conditional rewrite rules is tedious. Consider the
transitivity of less-than (in ACL2 notation).

(IMPLIES (AND (< X Y)

(< Y Z))

(< X Z))

This is a fundamental tool in arithmetic and yet when used as a conditional
rewrite rule it means “if you’re trying to prove an instance of (< X Z) – i.e.,
any inequality – find a Y that allows you to prove (< X Y) and (< Y Z). This
gives rise to an enormous search space, unless the “find a Y” step is limited
to, say, terms already in the formula, which weakens the utility of transitivity
and requires the user to formulate ad hoc lemmas to suggest the right Y.

But, as we wrote in the 1988 paper describing the integration

We discuss the problem of incorporating into a heuristic theorem
prover a decision procedure for a fragment of the logic. An obvious goal
when incorporating such a procedure is to reduce the search space ex-
plored by the heuristic component of the system, as would be achieved
by eliminating from the systems’s data base some explicitly stated ax-
ioms. For example, if a decision procedure for linear inequalities is
added, one would hope to eliminate the explicit consideration of the
transitivity axioms. However, the decision procedure must then be used
in all the ways the eliminated axioms might have been. The difficulty of
achieving this degree of integration is more dependent upon the com-
plexity of the heuristic component than upon that of the decision pro-
cedure. The view of the decision procedure as a ‘black box’ is frequently
destroyed by the need to pass large amounts of search strategic informa-
tion back and forth between the two components. Finally, the efficiency
of the decision procedure may be virtually irrelevant; the efficiency of
the final system may depend most heavily on how easy it is to commu-
nicate between the two components. — [12] p. 83

It took us four years of experimenting before we settled on the final in-
tegration. We selected a rather old fashioned decision procedure for linear
inequalities over the rationals [27] based on cross-multiplying and adding in-
equalities to eliminate variables. We gave up completeness on the integers
since one can use induction when that is a problem. The decision procedure
is relatively inefficient but operates on formulas rather than, say, graphs, so
that communication between the prover and the procedure does not require a
radical change of representation.

Communication happens in both directions: when the rewriter needs to
establish an inequality it uses the linear procedure, and when the linear proce-
dure needs to relieve the hypotheses of a “linear lemma” it uses the rewriter.
And example linear lemma might say that (LASTPOS CHAR STR), which is just

Milestones from The Pure Lisp Theorem Prover to ACL2 25

a “variable” in the linear procedure, is less than (LENGTH STR), if STR is a
string and CHAR occurs anywhere in it. The linear procedure calls the rewriter
to establish the hypotheses.

The lemma suggested above is an example of a lemma that if tagged with
the rewrite tag is actually built into the linear procedure.

Our paper on how to integrate a decision procedure into a heuristic prover
[12] recounts the various approaches we tried and how we were gradually driven
to a tight integration. It took several more years to find a venue for that paper
because it did not introduce a new decision procedure but I have been told by
several theorem proving researchers that it was helpful. The experience also
led us to write

The difference between a black box and an integrated decision pro-
cedure is a lot of work. It is probably the case that much hard work on
any given black box will be scrapped when the box is torn apart and
reassembled inside a larger system. Indeed, we believe that the work
on many procedures is simply irrelevant to the goal of constructing
useful mechanical theorem provers since the use of a faster procedure
will not necessarily speed up the overall system. We believe that the
development of useful procedures for program verification must take
into consideration the problems of connecting those procedures to more
powerful theorem provers. — [12] p. 123

I still hold this position, but I am encouraged by the modern work on
combining decision procedures, SMT, predicate abstraction, and other meth-
ods of exploiting decision procedures. Furthermore, it must be said that the
integration of linear arithmetic, hard though it was, was worth it because it
reduces the burden on the user and opens the door to much more interesting
arithmetic proofs.

7.2.3 Metafunctions

“Metafunction” was our name for a function that takes as input the quotation
of a term and is verified to return the quotation of an equivalent term. The
relation between the input and output is that their EVAL$s are the same. When
a theorem of that shape is proved and has been tagged META, Nqthm builds
the function into its rewriter.

The first metafunction we defined and verified was named CANCEL. It op-
erated on (the quotations of) terms of the form (EQUAL lhs rhs). The idea
was to cancel common addends on either side of the equation. This is hard to
do with rewrite rules. For example, the rewrite rule concluding with

(IFF (EQUAL (+ X Y) (+ X Z))

(EQUAL Y Z))

could not be used to cancel the A2 from both sides of (EQUAL (+ A1 (+ A2

B)) (+ A2 (+ C D))) and no fixed set of our rules would handle all possible
combinations.

26 J S. Moore

But CANCEL worked on (the quotation of) (EQUAL lhs rhs) by computing
the list of addends in lhs and rhs, intersecting them, deleting the intersection
from each list, reassembling +-expressions from the new lists and embedding
them in an EQUAL expression.

Given that CANCEL is proved correct, meaning that the EVAL$ of (CANCEL
X) is the EVAL$ of X, and the theorem that a term is equal to the EVAL$ of its
quotation (under a suitable alist), the use of CANCEL to replace, say (EQUAL (+

A1 (+ A2 B)) (+ A2 (+ C D))) by (EQUAL (+ A1 B) (+ C D)) requires no
further meta-logical reasoning:

(EQUAL (+ A1 (+ A2 B)) (+ A2 (+ C D)))

= {EVAL$ of quotations}

(EVAL$ ’(EQUAL (+ A1 (+ A2 B)) (+ A2 (+ C D))) (LIST (CONS ’A1 A1)

...)))

= {CANCEL correct}

(EVAL$ (CANCEL ’(EQUAL (+ A1 (+ A2 B)) (+ A2 (+ C D))))

(LIST (CONS ’A1 A1) ...))

= {def CANCEL}

(EVAL$ ’(EQUAL (+ A1 B) (+ C D)) (LIST (CONS ’A1 A1) ...))

= {EVAL$ of quotations}

(EQUAL (+ A1 B) (+ C D))

Furthermore, it is very fast and efficient provided functions in the logic, like
CANCEL, can be computed efficiently. The speed with which Nqthm can go from
a term to its quotation (basically a no-op because they are both represented
by the same Lisp object except for the QUOTE) is one key to the efficiency of
metafunctions. Indeed, it is impractical to represent the quotation of a typical
term as an object in Thm’s ground-term representation.

Metafunctions are quite useful in proofs about models of von Neumann
computing machines because much time is spent in normalizing the arithmetic
expressions denoting addresses and comparing such normalized addresses to
see if a “write” interferes with a “read.” They became a staple of the Nqthm
and, especially, the ACL2 repertoire of proof techniques.

Our first metafunction, CANCEL, was proved correct by Thm in October,
1978, long before Thm had the machinery to use it. The original metafunction
paper (SRI CSL Memo 180, December, 1979) was the basis of a 30-hour semi-
nar series as part of IBM Belgium’s establishment of the chaire internationale
d’informatique in Liege, Belgium, in February, 1980 [9]. As presented at Liege,
EVAL$ was not involved; we used a simpler function called MEANING. EVAL$ and
V&C$ were not introduced until the mid-1980s [3].

The closest work related to metafunctions contemporary with ours is that
of Weyhrauch [58]. However, his notion of reflection requires formalizing the
proof theory to state the correctness. Furthermore, to get efficiency Weyhrauch
suggests the perilous act of unverified “semantic attachment” of programs to
“metafunctions.”

Milestones from The Pure Lisp Theorem Prover to ACL2 27

7.2.4 Explicit Hints

Nqthm allows the user to provide hints to the prover. Hints specify the subgoal
to which they are to be applied and are acted upon when that subgoal arises.
Nqthm’s hints are

– USE: add to the hypotheses of the subgoal specified instances of specified
lemmas, basically implementing the advice “this subgoal follows by these
(usually creative) instances of already proved facts”

– EXPAND: forcibly expand specified function calls, overriding the system’s
heuristics

– ENABLE and DISABLE: turn on or off specified lemmas; disabled lemmas are
not automatically applied, allowing the user to enforce or break abstraction
boundaries

– HANDS-OFF: do not rewrite these terms
– INDUCT: induct as suggested by this term, rather than as suggested by the

goal
– DO-NOT-INDUCT: do not use induction, i.e., fail if the prover does not prove

this goal without induction
– DO-NOT-GENERALIZE: do not generalize common subterms

In August, 1986, Matt Kaufmann joined the UT verification group. At the
time his background included research in mathematical logic and programming
languages. Within about a year he implemented a proof checker interface for
Nqthm called PC-Nqthm [32]. While not technically a “hint” it allowed inter-
active proof checking via a goal manager, akin to those in LCF-style provers.

7.2.5 Functional Instantiation

We added the ability to introduce an undefined function symbol that is con-
strained to have certain properties, provided one proves that there exists a
function with those properties. E.g., one might introduce an undefined rela-
tion known to be connex. One might then define a sort routine that uses this
relation and prove that it produces an ordered permutation of its input. But
then one might then want to instantiate the sort routine and its correctness
theorem to get a function that sorts using alphabetic ordering. Functional in-
stantiation [17] is a derived rule of inference that lets the user do this, provided
(roughly speaking) the concrete functions substituted for the constrained ones
satisfy the constraints on the undefined function. The facility is described in
second edition of the Handbook [13].

The provision for constrained functions and the ability to exploit lemmas
about them without having to re-construct every step, is very useful because in
modeling complex machines one often finds state components that are modified
in ways that are unimportant. With functional instantiation the user can model
a “generic” machine, prove it correct, and then derive a concrete instance of
it that can be executed and is known to be correct.

28 J S. Moore

7.2.6 Defn-sk

In 1992, Kaufmann developed a Skolemizer for Nqthm [33] to support first
order quantification without changing the syntax of Nqthm. Defn-sk allows
the user to introduce of a function whose body contains outermost universal
or existential quantifiers. It is axiomatized so that, in the case of an existential
quantifier, if the function returns true then a “witness” function introduced
with it returns an object satisfying the body of the quantified expression. The
universal case is symmetric. Of course, these functions cannot be executed
but their introductions are conservative. We included defn-sk in the second
edition of the Handbook.

7.2.7 Executable Counterparts aka *1* Functions

Evaluation of ground terms was increasingly important in Nqthm because

– Ground terms arise in proofs, for example, when establishing that a certain
initial machine state can be obtained by running the machine model a
certain number of steps.

– Ground terms are used to test models and conjectures before trying to
prove properties or to let the user find a counterexample to a formula he
or she mistakenly thinks is a theorem but is having trouble proving.

– Ground terms arise every time a metafunction is applied.

To support the faster execution of functions in the logic, we compiled a
version of each Nqthm function (including those introduced by the user). The
problem is that some Nqthm functions behave differently than their Lisp coun-
terparts. For example, while (CAR 7) in the Nqthm logic is NIL, (CAR 7) in
Interlisp causes an error. So Nqthm includes a Lisp definition of a new function,
*1*CAR, that agrees with the axioms. (*1*CAR 7) is NIL.

When the user defines FOO, Nqthm introduces an Interlisp function with
the name *1*FOO. A logical term with function symbol FOO in which all the
arguments are QUOTEd can be reduced to the constant described by the Nqthm
axioms by running *1*FOO in the underlying Interlisp.

The generation of these *1* definitions was straightforward: essentially we
just renamed every function symbol appearing the logical definition to its *1*
counterpart. However, the *1* of shell accessors like SUB1, CAR, and CDR were
defined in the Nqthm sources to test at runtime the types of the arguments
and default them to the values used in the logic.

7.3 Landmark Theorems

An annotated bibliography of interesting theorems proved with Nqthm may
be found on pages 5–13 of the second edition of A Computational Logic Hand-
book [13]. Proper citations are provided there. Among the important “new”
theorems proved with Nqthm were the invertibility of the RSA encryption al-
gorithm, the unsolvability of the halting problem for Pure Lisp, a variety of

Milestones from The Pure Lisp Theorem Prover to ACL2 29

theorems about FORTRAN 77 programs verified with a FORTRAN 77 verifi-
cation condition generator [10], the correctness of the FM8501, FM8502, and
FM9001 microprocessor designs (Warren Hunt), the correctness of the Piton
assembler/linker/loader that connected Hunt’s microprocessors to higher level
software in the CLI Verified Stack (Bill Bevier, Art Flatau, Warren Hunt, Matt
Kaufmann, J Moore, Bill Young, Matt Wilding), Godel’s incompleteness the-
orem (Shankar), Gauss’ law of quadratic reciprocity (“the jewel of elementary
number theory”) (David Russinoff), Wilson’s theorem (David Russinoff), the
bi-phase mark asynchronous communications protocol, the verification of the
Berkeley C String Library on an Nqthm model of the Motorola MC68020
(Yuan Yu), and the Paris-Harrington Ramsey Theorem (Ken Kunen).

Of particular note for the next evolutionary step in the development of the
prover are the theorems about machine models. All of our models are oper-
ational ones, describing how to transform an input state to an output state,
where states are just lists or other shell structures full of numbers or symbolic
instructions and data. The FM9001 was a gate level description of a simple
but full-function 32-bit microprocessor that was actually fabricated. The CLI
Verified Stack was a hardware/software stack on FM9001 that included an
assembler/linker/loader, two compilers, a simple operating system, and some
application programs, all of which were proved correct with Nqthm.12 Further-
more, the correctness theorems were logically composed. For example, Nqthm
proved that a simple game playing program (written and proved with respect
to the semantics of its high-level language) never loses. If that program is then
compiled, assembled, linked, and loaded as a binary image on the FM9001
and then run, the FM9001 would never lose. Finally, consider the model of
the MC68020. It consists of about 600 Nqthm functions spanning about 80
pages. An example program proved correct is a slightly modified version of
the C code for Hoare’s in situ quick sort. It was proved correct by using the
Gnu C compiler, gcc, to produce binary code for the MC68020 and verifying
the execution of that code.

Now contemplate trying to do that in Thm with its purely logical repre-
sentation of constants. Recall the BDX930 project! In fact, contemplate the
demands of simply running these logical functions on logical objects represent-
ing their binary images. However, despite Nqthm’s success at managing these
proofs, these projects were pushing it to the limits of its capacity.

7.4 Code

When we arrived at UT, the theorem prover we brought with us was coded in
Interlisp. Of course, by the time we arrived at UT, Thm had already begun to
morph into Nqthm with the addition of metafunctions (and the concomitant

12 Actually, the Stack was first built and verified for Hunt’s earlier FM8502, which was
never fabricated. When Hunt and Brock verified the FM9001, which was fabricated, the
assembler/linker/loader for the earlier stack was re-targeted to FM9001 and verified; the
rest of the stack then built without change.

30 J S. Moore

QUOTE notation) and the beginnings of experiments with linear arithmetic.13

In 1983-84, we translated it into Maclisp for a DEC-2060 and a Honeywell
Multics, and later into Zetalisp for a Symbolics 3600. Eventually, we re-coded
it again into Common Lisp.

The Common Lisp source code for Nqthm is available at https://www.

cs.utexas.edu/ftp/boyer/nqthm/ along with its extensive regression suite
that includes the landmark theorems. See [13], p. 423, for an annotated list of
the examples in the regression suite.

A comment in the source file basis.lisp reads “As of February, 1984,
this system contained about 15,500 lines of which about 2000 were comments
and 1700 were blank – leaving about 12,000 lines of ‘code’. There were about
550,000 characters in toto, which compiles into about 400,000 bytes of compiled
code in Maclisp for the 2060 but only about 260,000 bytes in Zetalisp on a
3600.”

8 ACL2

Before continuing with the technical details it is important to note a change
of scene in our story. Between 1985 and 1989, the verification group in the UT
Tower decided to move off campus and start a company whose mission was
to spread verification technology. That company was Computational Logic,
Inc. or CLI. The entire group moved as UT research contracts expired and
CLI acquired new contracts. Our business plan was simply to contract our
time and Nqthm expertise to verify hardware and software for government
and industry. Along the way, of course, we would continue to develop the tool
and distribute it without cost. Boyer and I were, at first, on leave without pay
from UT to work at CLI, but in 1989 I resigned my professorship to devote
full time to my projects at CLI. Boyer returned to UT but consulted at CLI.
We both hired and supervised graduate students from UT to do their research
at CLI.

As noted above, Nqthm was being used on problems vastly bigger than
Boyer and I had imagined back in Edinburgh. Nqthm functions ran too slowly
to allow extensive testing of big models, especially compared to the execu-
tion speeds available in well-declared Common Lisp. To take advantage of
that speed, we decided to adopt an applicative subset of Common Lisp [55],
a modern dialect of Lisp that would soon have an ANSI standard, as our
logic. In August, 1989, we stopped developing Nqthm and started a com-
pletely new prover. We named that prover ACL2 for A Computational Logic
for Applicative Common Lisp. We axiomatized a significant applicative subset
of Common Lisp and proceeded to “re-code” Nqthm for that logic. Further-
more we confined our implementation language to the new logic itself as much

13 The Interlisp source code and regression suite of an intermediate prover
between Thm and Nqthm, is available at https://drive.google.com/open?id=

0B2yFYLn0Spf1WHFXVDRfZkk1Ukk. It is dated 19 July, 1982. Unlike Thm, it contains some
linear arithmetic support and metafunctions, but not V&C.

Milestones from The Pure Lisp Theorem Prover to ACL2 31

as possible. Several times we had to extend the subset of Common Lisp because
of features we needed in the prover.

A comment in the ACL2 source code reads “Matt Kaufmann officially
joined the project in August, 1993. He had previously generated a large number
of comments, engaged in a number of design discussions, and written some
code. Bob Boyer requested that he be removed as a co-author of ACL2 in
April, 1995, because, in his view, he has worked so much less on the project
in the last few years than Kaufmann and Moore.” Matt and I have developed
and maintained ACL2 for the past 25 years.14

Since this paper is about the technical evolution from PLTP to the indus-
trially useful ACL2, I will not recount further the CLI experience except to
say that is was without doubt the most pleasant place I have ever worked.
The dedication of the people there was instrumental in the industrial suc-
cess of ACL2. The paper “Industrial Hardware and Software Verification with
ACL2” [56] tells how ACL2 became industrially relevant and the story is as
much one of “soft power,” i.e., passion and dedication in a diverse group of
people, as of the technical power of the tool. To encourage the reader who
wants a complete picture, I simply list the sections of that paper “The Origin
Story,”, “Initial Industrial Demonstrations,” “Dispersion” (of the technical
community to various companies using ACL2), “Integrating ACL2 into the
Microprocessor Design Workflow,” “ACL2 at Centaur Today” (a case study
of one company), “Other Ongoing Industrial Projects,” “Strengths and Weak-
nesses of ACL2 from an Industrial Perspective,” “Prover Development and
Maintenance,” and “Lessons.” If I had unlimited space here and copyright
ownership of [56] I would include that paper verbatim!

Before discussing the evolution from Nqthm to ACL2 several points must
be emphasized.

First, comprehensive user-level documentation for ACL2 is available on-
line. I will take advantage of that in describing ACL2 and how it changed
from Nqthm. When I write “[:DOC x]” here I am referring to the online
documentation. Go to the ACL2 home page [31] in your browser, click on
The User’s Manuals link, then click on the ACL2+Books Manual link and
type x into the Jump to box.

Second, despite its age (30 years have elapsed since we started it) it is
still “living” code; it is changing. Forty two older versions (dating back to
Version 1.9 released in Fall, 1996) are available in source code form at the
ACL2 home page. Complete self-contained documentation for a release is part
of each release. The documentation noted above is for the current release,
Version 8.1, released in September, 2018.

Third, while the documentation for each release is stand-alone, each release
has a note explaining the major changes since the previous release. See [:DOC
release-notes]. For Version 8.1 that note is [:DOC note-8-1]. It lists about 80

14 Kaufmann left CLI in August, 1995, and subsequently worked at Motorola, EDS, and
AMD where he gained much experience with hardware design and simulation-based veri-
fication but continued to be a co-author of ACL2. He rejoined the UT Computer Science
department in 2005.

32 J S. Moore

changes ranging from fixes to two soundness bugs in Version 8.0 to new proof
techniques and features. It is simply impossible – and would be redundant
with available online resources – to list the thousands of changes to ACL2
made in the past 30 years.

Fourth, some important features of ACL2 are in certified files written by
users. In ACL2, a “book” is a certified file of definitions, theorems, and other
events extending the logic and configuring the prover. The ACL2 Community
Books reside on GitHub15 and are contributed, documented, and maintained
by the ACL2 user community. As of January, 2019, there were 6,949 books
in the repository containing over a hundred thousand theorems across a wide
variety of domains. The Community Books also constitute the ACL2 regression
suite. Before any release the new version must be able to successfully process
every book in the repository. The online documentation mentioned above also
includes the documentation of many books, thanks to tools written by Jared
Davis.

Fifth, a huge amount of work has been devoted to engineering ACL2 for
speed and capacity. For example, extending the bit-masks used for type-sets
to represent the fact that the typed term might return 1 took many hours
of work, but was of huge benefit to industrial users concerned with gate-level
models. Similarly, months were spent arranging for ACL2 to load books faster
by loading their previously compiled files first, but this cannot be done naively,
e.g., ACL2 will reject the subsequent logical definition if it finds the name has
a compiled definition in Lisp. Such changes are not contributions to theorem
proving, but are absolutely necessary to produce a prover of use to industry.
I do not focus on them below.

Finally, despite its size, ACL2’s regression suite does not include many of
the landmark theorems cited for Nqthm, theorems like Gödel’s incompleteness
theorem and the CLI Verified Stack, that I wish I could list in ACL2’s reper-
toire. But ACL2’s logic is not just a minor modification of Nqthm’s and the
heuristics in the provers are often different. This raises an obvious challenge
to our claims of ACL2’s power and flexibility: why not build an ACL2 book
that makes ACL2 into Nqthm, able to process all the files in Nqthm’s regres-
sion? In fact, I spent several months trying to do that with an early version of
ACL2 and gave up; it is one thing to design an ACL2 script to prove a theorem
proved by another prover but it is quite a different thing to configure a prover
to follow another prover’s script to prove a theorem stated in a different logic.
But mainly I stopped because the ACL2 community had industrial challenges
to face. Perhaps when I don’t have much else to do I’ll reconsider this project.

15 The top of the directory structure is https://github.com/acl2/acl2. A particular file
(book) may be found by clicking your way down the directory hierarchy. For example, to
find books/projects/codewalker/ start on the GitHub page above and click on books, then
projects, etc.

Milestones from The Pure Lisp Theorem Prover to ACL2 33

8.1 Logic

The syntax of Common Lisp is much richer than that of Nqthm. For ex-
ample, Common Lisp provides a powerful abbreviation facility in macros, the
definition of “symbol packages” and the selection of a “current package,” func-
tions that return “multiple values,” etc. ACL2 supports these embellishments.
Symbol packages fundamentally changed the axiomatization of symbols; it was
quite challenging to axiomatize a useful applicative version of packages, but
they give users namespace separation with limited, controlled sharing. An-
other surprisingly difficult task was the logical implementation of Common
Lisp’s multiple value return mechanism that was consistent with the axioms,
portable across many implementations of Common Lisp, and suitably efficient.
But efficient support for multiple value returns is one of the reasons ACL2 per-
forms well; it allows an ACL2 function to compute several different results in
one sweep without using the heap.

ACL2’s logic is an untyped, first order logic of total recursive functions. We
axiomatized a large part of the applicative subset of Common Lisp as described
in Common Lisp the Language, Second Edition [55] and then extended it with
some functions that make applicative programming in the language more effi-
cient while preserving the axiomatic semantics.

ACL2 supports five broad data types: character objects, strings, symbols,
numbers, and pairs (hence lists and trees). It does not support Nqthm’s shells.
The symbol NIL plays the role of the false truth value as well as the empty
list. The ACL2 numbers include positive and negative integers, rationals, and
complex numbers with rational components. ACL2 does not provide the float-
ing point numbers of Common Lisp, but there are many ACL2 books that
do.16

Common Lisp is syntactically untyped and so is ACL2. However, like its
predecessors, ACL2’s axioms “complete” the primitives on inappropriate ar-
guments. For example, (CAR 7) in ACL2 is axiomatized to be NIL but causes a
runtime error in Common Lisp. This discrepancy between ACL2 and Common
Lisp complicates the question of whether an ACL2 function runs correctly in
Common Lisp. We address this when we discuss the prover.

About 200 Common Lisp primitives are axiomatized.
We then extend this subset of Common Lisp with some “new” functions

(i.e., ones not in Common Lisp) to facilitate programming and support theo-
rem proving.

– a single-threaded state object giving the user access to the file system and
other system resources; by “single-threaded” we mean that any function
that changes a field in the object must return the object, thus allowing
updates to be implemented destructively. [:DOC state].

– a facility allowing the user to introduce other single-threaded objects to-
gether with a facility to set up “abstract” views of such objects. [:DOC

16 E.g., [:DOC rtl]. An extension of ACL2 by Ruben Gamboa called ACL2(r) supports the
reals via non-standard analysis [:DOC real].

34 J S. Moore

stobj, defstobj, defabsstobj], allowing the maintenance of complicated in-
variants.

– input/output facilities [:DOC io]
– applicative property lists [:DOC getprop, putprop]
– applicative arrays, logically modeled as lists but backed by Common Lisp

arrays [:DOC arrays]
– theory scoping, allowing one to export definitions and theorems from cer-

tain temporary conservative extensions of the current theory. [:DOC en-
capsulate, local].

– defchoose, a Skolem witnessing function, allowing the definition of defun-sk
as a macro to provide first-order quantification within the quantifier-free
syntax of ACL2. [:DOC defchoose, defun-sk].

– an “evaluation theory” which is an extension of the theory in which proofs
are done. Ground terms typed at the top-level of the ACL2 read-eval-print
loop are evaluated in the evaluation theory. The evaluation theory can be
extended by attaching concrete functions to constrained ones, provided the
concrete functions satisfy the appropriate constraints. This allows models
containing constrained functions to be run. [:DOC defattach].

– limited second-order functionality allowing certain symbols and lambda
expressions to be passed as “functions” and applied. This in turn supports
a subset of the Common Lisp loop iterative construct [35].

A total of 1,168 functions are axiomatized in the initial state of ACL2 Ver-
sion 8.1. A total of 452 functions, macros, and constants are documented in
[:DOC ACL2-built-ins] but there are many other logically axiomatized func-
tions that serve as “helpers,” system functions, etc. Obviously, there is a lot
more functionality than summarized here.

The Nqthm function V&C$ was not included in ACL2. We recognized that
we could justify metafunctions in terms of functional instantiation (again a de-
rived rule of inference) and that with defun-sk we could introduce machinery
to conveniently carry out some tasks formerly done with V&C$.

Like Nqthm, ACL2 formalizes the ordinals up to ǫ0 (but with a more ef-
ficient representation [40]) and the Definitional and Induction Principles are
the same. In addition, ACL2 allows mutually recursive definitions but, even
though they are logically justified by well-founded relations as for singly recur-
sive functions, calls of mutually recursive functions do not suggest inductions
to the prover.17

8.2 Prover

In the early 1990s the ACL2 prover was essentially just a reimplementation of
Nqthm’s. But much additional functionality was added over time, including

17 A user-written Community Book provides convenient support for proving inductive
theorems about mutually recursive functions [:DOC make-flag].

Milestones from The Pure Lisp Theorem Prover to ACL2 35

– certified books allow the user to configure the system with definitions and
lemmas (and thus rules) imported from different projects, including those
from the ACL2 Community Books repository [:DOC books]. This is in
contrast to Nqthm where every proof script has to list and prove every
lemma.

– lists of rule names, called “theories,” allow the user to enable and dis-
able collections of rules [:DOC theory-functions, theory-invariant, theory-
management].

– rewriting can be done with user-defined equivalence and congruence rela-
tions, not just equality and propositional equivalence [:DOC equivalence,
congruence, refinement].18

– the linear arithmetic procedure is extended from just the naturals to the
integers and rationals, and can also deal with some non-linear terms, i.e.,
products, although of course this is just heuristic [:DOC non-linear]. Robert
Krug was instrumental in prototyping support for non-linear.

– to avoid more expensive rewriting and backchaining, a preprocessor is in
the waterfall, before simplification, to catch “simple” cases like tautologies,
subsumption by certain previously proved lemmas, theorems about “type-
like” monadic predicates, and consequences of limited linear arithmetic
[:DOC built-in-clause, introduction-to-the-tau-system].

– metafunctions are improved in a number of ways. They can compute hy-
potheses governing their correctness, hypotheses that must be proved upon
application of the metafunction [:DOC meta]. They can be made faster by
proving well-formedness of their output [:DOC well-formedness-guarantee].
They can be more powerful by accessing the theorem prover’s internal state
and the context of the term being rewritten [:DOC meta-extract].

– a facility akin to metafunctions, called “clause processors” is available al-
lowing the user to write and verify functions that operate at the clausal
level instead of the term level and can essentially serve as new processes in
the waterfall [:DOC clause-processor].

– conditional rewrite rules can be better controlled. One facility allows the
user to attach a syntactic predicate or “pragma” to a rule that must ap-
prove any application [:DOC syntaxp]. Another facility allows a hypothesis
to be marked as “forced” meaning that it may be assumed true and if the
entire proof succeeds then the full power of the theorem prover (instead of
just rewriting) is brought to bear on the forced hypotheses, [:DOC force,
case-split].

– forward chaining is available, allowing the assumptions available during
rewriting to be extended [:DOC forward-chaining].

– several new ways of interpreting previously proved lemmas are available,
giving the user better control at building in new information, [:DOC rule-
classes].

18 The original work on automated equivalential rewriting in this setting was done in
1988 as an experimental patch to Nqthm by Bishop Brock, then a student in Bob Boyers
theorem proving class. The work was implemented in ACL2 in the early 1990s and has been
generalized and improved over the years by Kaufmann and me.

36 J S. Moore

– many new hints are available [:DOC hints]. One particularly powerful new
facility allows the user to provide a function that computes an appropriate
hint for a goal [:DOC computed-hints]. A facility within computed hints
allows a hint to introduce a disjunctive split so that the full power of the
prover is brought to bear on each of several ways to prove a clause. Another
hint allows one to prove a subgoal with explicit low-level commands formu-
lated in an interactive proof-builder for ACL2 that gives the user complete
control with both low level logical inference steps and ACL2 tools like the
simplifier [:DOC proof-builder].

– many tools are available for helping “debug” both definitions and failed
proof attempts. Critical subgoals of failed proofs, called checkpoints, are
displayed so the user focuses on [:DOC the-method]; most other output can
be shut off or abbreviated [:DOC set-gag-mode]. Rewrite and other rules
can be monitored and can cause interactive breaks when they are used
[:DOCmonitor, forward-chaining-reports]. [:DOC accumulated-persistence]
indicates which rules are being heavily used and whether they are produc-
tive. Functions can be traced [:DOC trace]. Large formulae can be abbre-
viated [:DOC evisc-tuple, set-iprint].

– input to ACL2 is restricted to certain predefined forms such as definitions
and theorems. However, ACL2 users often generate and submit such forms
programmatically based on the current environment. A utility, make-event,
allows the user to define new forms, taking advantage of ACL2’s computa-
tional power. See [:DOC make-event].

8.3 Programming

One reason ACL2 has been successful in industry is that it is an efficient
programming language (that can be verified with powerful mechanical aids).
The idea that ACL2 is both a logic and a programming language imposes some
requirements not imposed on Common Lisp. That has caused the addition of
many features for either speeding up execution or making proofs simpler.

The main such features are the formalization of Common Lisp’s implicit
type system and support for Common Lisp’s DECLARE facility. Declarations
allow the Common Lisp compilers to generate extraordinarily efficient code. In
the logical setting of ACL2, declarations generate proof obligations that must
be dispatched to eliminate runtime tests. We actually spent years integrating
DECLARE into ACL2.

In the spirit of Nqthm, ACL2 completes the Common Lisp standard [55] by
defining functions where the standard leaves them unspecified. Axiomatically,
(CAR 7) is NIL even though it causes unspecified errors in Common Lisp. Sim-
ilarly, in ACL2, EQ (Lisp’s pointer identity) is defined to be EQUAL (structural
equality). This makes proofs about these functions uncomplicated but means
they have properties beyond those specified in the standard. By generating
“*1* functions” comparable to Nqthm’s, ACL2 functions can be run accord-
ing to the axioms. But CAR and EQ carry “guards” formalizing conditions that

Milestones from The Pure Lisp Theorem Prover to ACL2 37

ensure that raw Common Lisp behaves as described by our axioms. CAR must
be applied to a cons pair or to NIL, and at least one argument to EQ must be
a symbol. If ACL2 proves the guard conjectures of a definition19 then runtime
errors cannot arise. To evaluate a call of a guard-verified function, ACL2 can
avoid the slower *1* version and run the unfettered Common Lisp version just
as the user typed it, including any declarations. This gives the user access to
compiler optimizations, at the price of proof obligations above and beyond
functional correctness. This can increase the speed by a factor of 10 or more.

ACL2 also provides a number of other ways to improve execution efficiency
including a way to provide an easy-to-reason-about logical definition and an
efficiently executable one – provided the two can be proved equivalent [:DOC
mbe]. Functions can be memoized so that prior computations are not repeated
[:DOC memoize]. Profiling facilities are provided to allow the user to find out
where a formal model is spending its time [:DOC profile].

A major contribution was made by Bob Boyer and Warren Hunt in the
early 2000s when they built a prototype of ACL2 providing “hash cons,” which
uniquely represents cons trees by sharing structure with previously allocated
trees [:DOC hons] [16]. It is upon hash cons that memoization and applicative
hash tables [:DOC fast-alists] are built and that in turn has allowed many
applications to have the speed and capacity to be useful. After years of testing
and use at Centaur, with code improvements by Jared Davis and Sol Swords,
Boyer and Hunt turned their hash cons implementation over to Kaufmann and
me for incorporation into the official sources.

Another source of ACL2’s flexibility in building verification tools is the
notion of “trust tags.” Using trust tags [:DOC defttag] a user – generally a
“super user” – can take responsibility for ACL2’s soundness and modify or
extend the source code in unverified ways. These changes can be packaged
into books that other users can use after acknowledging reliance on the trust
tag and thus on the super user. Via trust tags industrial users have hooked
ACL2 to other tools in the design workflow, including SAT and SMT solvers.

Other verification environments have been built on top of ACL2. One no-
table one is the “ACL2 Sedan” theorem prover (ACL2s) which includes an
Eclipse plug-in and provides a modern integrated development environment,
supports several modes of interaction, provides a powerful termination analy-
sis engine, includes a rich support for “types” and seamlessly integrates semi-
automated bug-finding methods with interactive theorem proving [19].

I suspect that about half of our time on ACL2 has been devoted to sup-
porting efficient execution of ACL2 functions and a convenient systems pro-
gramming environment in which to develop trusted tools.

19 ACL2’s guard conjectures are akin to PVS’ type correctness conditions (“TCCs”) [48].
In both systems the prover is used as a type checker. A great deal of work went into the
final design of ACL2’s guards. The most basic question was “Are a function’s guard part of
its definitional equation or are the extra-logical?” We chose the latter to keep proofs simple.
See [29].

38 J S. Moore

8.4 Landmark Theorems

I listed in Section 1 some landmark theorems proved by ACL2. Some other
theorems, dating from before 2000, are explained in the book Computer-Aided
Reasoning: ACL2 Case Studies [30]. See also [56] and various links on the
ACL2 home page [31], especially Publications, Workshops, and UT Seminar
links.

But there are other kinds of important uses of ACL2 today.

One consequence of fast execution is that ACL2 models have dual use: they
can be used as prototypes of an intended design and as formal specifications
about which properties can be mechanically proved. For example, when AMD
developed their RTL-to-ACL2 translator they ran 80 million floating point test
cases through the ACL2 model of Athlon’s FMUL and their own RTL simulator.
However, the subsequent proof attempt exposed bugs not covered by the test
suite. These bugs were fixed before the Athlon was fabricated. The same kind
of dual use has been seen at Centaur and other hardware design groups.

Another consequence of fast execution and formal semantics is that use-
ful verification tools can be built with ACL2, verified by ACL2, and then
used independently of ACL2. The first example of this was in 1994, when
Bishop Brock (with help from Warren Hunt, Kaufmann, and me) used ACL2
in 1993–94 to model and verify properties of a Motorola digital signal process-
ing microcode engine. To prove that the engine implemented the microcode
semantics Brock had to define a predicate recognizing hazard-free microcode
sequences. Using that as a precondition he proved the engine correct. There-
after, Motorola engineers ran the predicate to check microcode programs with-
out necessarily realizing that the predicate had been mechanically verified to
guarantee faithful execution of the microcode semantics.

Verification tools based on ACL2 (or parts thereof) have been built and
have been used by groups at Intel and NXP, without users necessarily knowing
ACL2 was involved. The Imandra prover, by Aesthetic Integration, Ltd., was
closely modeled on ACL2 and is in use to verify financial algorithms [49]
for compliance with relevant laws; ACL2 is used as an independent check on
Imandra proofs.

Among the verified verification tools built with ACL2 include a meta-
function for bounding intervals containing a machine address [46]; an efficient
representation of symbolic states [45]; an integration of testing and theorem
proving [20]; a tool for doing ACL2 termination analysis based on the Commu-
nity Book repository [34]; a “bit-blaster” for proving finitely bounded ACL2
theorems with a verified BDD implementation or a SAT solver (whose claims
can be checked by a verified ACL2 SAT proof-checker) [:DOC GL]. The ACL2
SAT proof-checker is now used routinely to check the claims of all participants
in SAT competitions [25,21]. Centaur runs its regressions at least nightly and
has the ACL2 SAT proof-checker enabled once per week. ACL2(p) is an exten-
sion of ACL2 supporting parallelism in both proof and programming [:DOC
parallelism].

Milestones from The Pure Lisp Theorem Prover to ACL2 39

8.5 Code

The ACL2 home page [31] explains how to obtain and install the source code
and documentation. The code is distributed without cost under a 3-clause
BSD license. The ACL2 Community Books (as well as a copy of source files)
may be obtained from GitHub as explained on the ACL2 home page.

The source code runs on five different implementations of Common Lisp,
one of which must be installed before ACL2 can be built on your machine.
We have found that the variety of Lisps is useful for catching ACL2 bugs, and
also serves to give users choices as various Lisps evolve or are superseded.

ACL2 has about 6 MB of source code plus about 5 MB of comments. In
addition, there is about 6 MB of user-level documentation (not counting doc-
umentation for Community Books). For anybody studying how ACL2 works,
design decisions, false starts, etc., the comments in ACL2 are well worth study-
ing, especially the ones titled “Essay on . . .” covering about hundred topics.
A developer’s guide is available for experienced users wanting to better under-
stand maintenance and development issues [:DOC developers-guide].

Approximately 90% of ACL2’s source code is written in the ACL2 pro-
gramming language. The remaining 10% is written in “raw” Common Lisp
and mainly implements the features that we had to add to the applicative
subset of Common Lisp to make it a convenient and efficient functional pro-
gramming language.

9 Summary

If you walk at 3 miles/hour for 8 hours per day, 6 days a week, for two years –
which is about the duration of an average research grant – you travel 14,976
miles or about 60% of the circumference of the Earth. If you walk for 48 years,
you cover 359,424 miles, about one and a half times the distance to the Moon.
The difference between PLTP and ACL2 is largely due to the fact that PLTP
was a 2 year project and ACL2 has been a life’s work.

10 Acknowledgments

I thank Bob Boyer, Matt Kaufmann, and Grant Passmore for their careful
readings of early versions of this manuscript; all remaining mistakes are mine.

See [:DOC acknowledgements] for a list of important sponsors and contrib-
utors to the ACL2 project. I also thank the various readers of this history for
their helpful reminders and corrections.

Bob Boyer and Matt Kaufmann are as much a part of this story as I am.
I am incredibly lucky to have found two such research partners and I am
deeply grateful to both of them. The users of Nqthm and ACL2, especially
the students who joined us in the UT Tower in the 1980s deserve a great deal
of thanks too. They pushed Nqthm to its limits. Many of those students then

40 J S. Moore

moved to CLI with us and switched to ACL2 and have proceeded to push it,
repeatedly, to its limits. ACL2 would not exist had it not been for these people.
I am humbled and deeply grateful for their passion, patience, and persistence.

References

1. W. W. Bledsoe. Splitting and reduction heuristics in automatic theorem proving. Ar-
tificial Intelligence, 2:55–77, 1971.

2. W. W. Bledsoe and Peter Bruell. A man-machine theorem-proving system. Artificial
Intelligence, 5:51–72, 1974.

3. R. Boyer and J S. Moore. The addition of bounded quantification and partial functions
to a computational logic and its theorem prover. Journal of Automated Reasoning,
4(2):117–172, 1988.

4. R. S. Boyer, D. J. M. Davies, and J S. Moore. The 77-editor. Technical Report 62,
Department of Computational Logic, University of Edinburgh, 1973.

5. R. S. Boyer and J S. Moore. The sharing of structure in theorem-proving programs. In
Machine Intelligence 7, pages 101–116. Edinburgh University Press, 1972.

6. R. S. Boyer and J S. Moore. Proving theorems about pure lisp functions. JACM,
22(1):129–144, 1975.

7. R. S. Boyer and J S. Moore. A fast string searching algorithm. Comm. ACM, 20(10):762–
772, 1977.

8. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

9. R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and using them
efficiently as new proof procedures. In The Correctness Problem in Computer Science.
Academic Press, London, 1981.

10. R. S. Boyer and J S. Moore. A verification condition generator for FORTRAN. In
The Correctness Problem in Computer Science, pages 9–101, London, 1981. Academic
Press.

11. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, New
York, 1988.

12. R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic theorem
provers: A case study of linear arithmetic. In Machine Intelligence 11, pages 83–124.
Oxford University Press, 1988.

13. R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition. Aca-
demic Press, New York, 1997.

14. Robert S. Boyer. Locking: A Restriction of Resolution. Department of Mathematics,
University of Texas at Austin, 1971.

15. Robert S. Boyer and J S. Moore. On why it is impossible to prove that the BDX930
dispatcher implements a time-sharing system. In Investigation, Development, and Eval-
uation of Performance Proving for Fault-Tolerant Computer Final Report, covering the
period September 1978 to June 1982, page Sections 14 and 15. Computer Science Lab-
oratory, SRI International, Menlo Park, CA, July 1982.

16. Robert S. Boyer and Jr. Warren A. Hunt. Function memoization and unique object
representation for ACL2 functions. In ACL2 ’06: Proceedings of the sixth international
workshop on the ACL2 theorem prover and its applications, pages 81–89, New York,
NY, USA, 2006. ACM.

17. R.S. Boyer, D.M. Goldschlag, M. Kaufmann, and J S. Moore. Functional instantiation
in first-order logic. In V. Lifschitz, editor, Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, pages 7–26. Academic
Press, 1991.

18. B. Brock and W. A. Hunt, Jr. Formal analysis of the motorola CAP DSP. In Industrial-
Strength Formal Methods, pages 81–115. Springer-Verlag, 1999.

19. Harsh R. Chamarthi, Peter Dillinger, Pangiotis Manolios, and Daron Vroon. The acl2
sedan. Technical report, Northeastern University, Boston, 2019.

Milestones from The Pure Lisp Theorem Prover to ACL2 41

20. Harsh R. Chamarthis, Peter C. Dillinger, Matt Kaufmann, and Panagiotis Manolios.
Integrating testing and interactive theorem proving. In 10th International Workshop
on the ACL2 Theorem Prover and its Applications, volume 70, pages 4–19. Electronic
Proceedings in Theoretical Computer Science, 2011.

21. Lúıs Cruz-Filipe, Marijn Heule, Warren Hunt, Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified rat verification. In 26th International Conference on Auto-
mated Deduction (CADE 26), pages 220–236. Springer, 2017.

22. G. Gentzen. New version of the consistency proof for elementary number theory. In
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 132–213. North-
Holland Publishing Company, Amsterdam, 1969.

23. Shilpi Goel, Jr. Warren A. Hunt, and Matt Kaufmann. Engineering a Formal, Exe-
cutable x86 ISA Simulator for Software Verification, pages 173–209. Springer, 2017.

24. David S. Hardin, Eric W. Smith, and William D. Young. A robust machine code
proof framework for highly secure applications. In ACL2 ’06: Proceedings of the sixth
international workshop on the ACL2 theorem prover and its applications, pages 11–20,
New York, NY, USA, 2006. ACM.

25. Marijn Heule, Jr. Warren Hunt, Matt Kaufmann, and Nathan Wetzler. Efficient, verified
checking of propositional proofs. In Interactive Theorem Proving (ITP) 2017, volume
LNCS 10499, pages 269–284. Springer, 2017.

26. Michael Hiltzik. Dealers of Lightning: Xerox PARC and the Dawn of the Computer
Age. Harper Collins, 1999.

27. L. Hodes. Solving problems by formula manipulation. In Proceedings of the Second
International Joint Conference on Artificial Intelligence, pages 553–559. British Com-
puter Society, 1971.

28. Warren Hunt, Jr. Verifying VIA nano microprocessor components. In Roderick Bloem
and Natasha Sharygina, editors, FMCAD ’10: Proceedings of the Formal Methods in
Computer-Aided Design, pages 3–10. ACM/IEEE, 2010.

29. M. Kaufman and J S. Moore. Design goals for ACL2. Technical Report CLI Tech
Report 101, Computational Logic, Inc., August 1994. See http://www.cs.utexas.edu/

users/moore/publications/km94.pdf.
30. M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning: ACL2

Case Studies. Kluwer Academic Press, Boston, MA., 2000.
31. M. Kaufmann and J S. Moore. The ACL2 home page. In http: // www. cs. utexas.

edu/ users/moore/ acl2/ . Dept. of Computer Sciences, University of Texas at Austin,
2018.

32. Matt Kaufmann. An interactive enhancement to the boyer-moore theorem prover. In
Proc. 9th Intl. Conf. on Automated Deduction (CADE-9), volume LNCS 310, pages
735–736. Springer-Verlag, 1988.

33. Matt Kaufmann. An extension to the boyer-moore theorem prover to support first-order
quantification. Journal of Automated Reasoning, 9(3):355–372, 1992.

34. Matt Kaufmann. Defunt: A tool for automating termination proofs by using the com-
munity books (extended abstract). In 15th International Workshop on the ACL2 The-
orem Prover and its Applications, volume 280, pages 161–163. Electronic Proceedings
in Theoretical Computer Science, 2018.

35. Matt Kaufmann and J S. Moore. Limited second-order functionality in a first-order
setting. Journal of Automated Reasoning, 2018.

36. J. C. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
37. Robert Kowalksi and Donald Kuehner. Linear resolution with selection function. Arti-

ficial Intelligence, 2:227–260, 1971.
38. Hanbing Liu. Formal Specification and Verification of a JVM and its Bytecode Verifier.

PhD thesis, University of Texas at Austin, 2006.
39. Donald MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT Press, 2001.
40. Panagiotis Manolios and Daron Vroon. Algorithms for ordinal arithmetic. Lecture Notes

in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2741:243–
257, 10 2003.

41. J. McCarthy. A basis for a mathematical theory of computation. In Computer Pro-
gramming and Formal Systems. North-Holland Publishing Company, Amsterdam, The
Netherlands, 1963.

42 J S. Moore

42. J S. Moore. Computational logic: Structure sharing and proof of program properties.
Ph.D. dissertation, University of Edinburgh, 1973. See http://www.era.lib.ed.ac.uk/
handle/1842/2245.

43. J S. Moore. Automatic proof of the correctness of a binary addition algorithm. ACM
SIGARG Newsletter, pages 13–14, 1975.

44. J S. Moore. Text editing primitives – the TXDT package. Technical Report CSL-
81-2 (see http://www.cs.utexas.edu/users/moore/publications/txdt-package.pdf),
Xerox PARC, 1981.

45. J S. Moore. Stateman: Using metafunctions to manage large terms representing machine
states. In ACL2 Workshop 2015, volume 192, pages 93–109. EPTCS, 2015.

46. J S. Moore. Computing verified machine address bounds during symbolic exploration
of code. In Provably Correct Systems, pages 151–172, 2017.

47. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages, 1:245–257, 1979.

48. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In D. Kapur,
editor, 11th International Conference on Automated Deduction (CADE), pages 748–
752, Heidelberg, June 1992. Lecture Notes in Artificial Intelligence, Vol 607, Springer-
Verlag.

49. Grant O. Passmore and Dennis Ignatovich. Formal verification of financial algorithms.
In Conference on Automated Deduction (CADE 26), volume 10395. Springer LNCS,
2017.

50. John Alan Robinson. A machine-oriented logic based on the resolution principle. JACM,
12(1):23–41, January 1965.

51. David M. Russinoff. A case study in formal verification of register-transfer logic with
acl2: The floating point adder of the amd athlon tm processor. In Formal Methods in
Computer-Aided Design (FMCAD 2000), volume LNCS 1954. Springer, 2000.

52. David M. Russinoff. Formal Verification of Floating-Point Hardware Design: A Math-
ematical Approach. Springer, 2019.

53. R. Shostak. A practical decision procedure for arithmetic with function symbols. JACM,
26:351–360, 1979.

54. Anna Slobodova, Jared Davis, Sol Swords, and Jr. Warren Hunt. A flexible formal
verification framework for industrial scale validation. In Satnam Singh, editor, 9th
IEEE/ACM International Conference on Formal Methods and Models for Codesign
(MEMOCODE), pages 89–97. IEEE, 2011.

55. G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press, 30 North
Avenue, Burlington, MA. 01803, 1990.

56. Jr. W. A. Hunt, M. Kaufmann, J S. Moore, and A. Slobodova. Industrial hardware and
software verification with ACL2. In Verified Trustworthy Software Systems, volume
375. The Royal Society, 2017 (to appear). (Article Number 20150399).

57. Hao Wang. Toward mechanical mathematics. IBM Journal of Research and Develop-
ment, 4(1):2–22, January 1960.

58. R. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence Journal, 13(1):133–170, 1980.

