Rewriting for Symbolic Execution of State
Machine Models

J Strother Moore*

Department of Computer Sciences, University of Texas at Austin,
Taylor Hall 2.124, Austin, Texas 78712
moore@cs.utexas.edu telephone: 512 471 9568
WWW home page: http://www.cs.utexas.edu/users/moore

Abstract. We describe an algorithm for simplifying a class of symbolic
expressions that arises in the symbolic execution of formal state machine
models. These expressions are compositions of state access and change
functions and if-then-else expressions, laced together with local variable
bindings (e.g., lambda applications). The algorithm may be used in a
stand-alone way, but is designed to be part of a larger system employ-
ing a mix of other strategies. The algorithm generalizes to a rewriting
algorithm that can be characterized as outside-in or lazy, with respect
both to variable instantiation and equality replacement. The algorithm
exploits memoization or caching.

Keywords: hardware modeling, verification, microprocessor simulation,
theorem proving, pipelined machine

1 Relevance to Processor Modeling

A common application of such mechanized theorem provers as ACL2 [13], HOL
[8] and PVS [17] is the modeling and analysis of microprocessors and other state
machines [3,6,11,12,14-16, 18, 9].

The ACL2 theorem prover [13, 12] is particularly suited to processor modeling
because it supports an efficient functional programming language based on Com-
mon Lisp [19]. Hence, operational models formalized in ACL2 can be executed
as processor simulators. This is not a speculative assertion. Rockwell Collins has
constructed microarchitectural executable formal models of some of its custom
microprocessors in ACL2 [20]. The models have been integrated into a standard
execution environment, replacing preexisting simulators written in more com-
mon programming languages such as C. The ACL2 models run at roughly the
same speed as the original models. (How this is possible will become clear be-
low). Reasoning about state machines requires symbolic simplification of terms
representing states. Straightforward simplification algorithms can cause unnec-
essary exponential blowups in the size of the expression. This paper presents an
algorithm for avoiding many of those explosions.

* This work was supported in part by Advanced Technology Center, Rockwell Collins,
Inc., Cedar Rapids, Iowa.

2 The Problem

We present an algorithm for simplifying expressions that arise from the symbolic
manipulation of formally described state machines. We use ACL2 term notation
(i-e., Lisp notation). But the algorithm is of general interest in any formal setting
where (a) terms are used to represent states, (b) “access” and “change” functions
are provided, and (c) variable binding is present (e.g., Lisp let expressions,
lambda applications, or, more generally, the application of defined functions).
Our algorithm also deals with if-then-else constructs.

For example, a state, s, might have three components, named a, b, and c.
We write (a s) to access the a component of s and (update-a x s) to create
a new state like s but with x as its a component.

Of special interest are nests of updates. A simple example is shown below.

(let ((s (update-a (new-a x s) s))) 5 [*1]
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))
s)))

Each successive let changes the assignment of the variable s. So the s in the
new-b expression refers to the state obtained by updating the a slot of the
“original” (free) s.

Logically speaking, (let ((vy a1) ... (v, ap)) b) isequal to the instance
of b obtained by simultaneously replacing all free occurrences of each v; by the
corresponding a;. It is often read “let v, be a1, .. ., and v, be a,, in b,” or perhaps
more suggestively as “b, where v; is a1, ..., and v, is a,.”

In ACL2, let expressions are syntactic sugar for certain lambda applica-
tions. Roughly speaking, (let ((v; a1) ... (v, ay)) b) isjust ((lambda (v

. vy) b) a1 ... ay). We say “roughly speaking” because in ACL2 when we
translate lets into lambda applications we make sure that every free variable
of b is captured by the formal variables of the lambda (by adding extra formals
and the corresponding actuals, as needed).

Replacing the 1ets in an expression by the corresponding lambda applications
and performing beta reduction (i.e., expanding the lambdas away) may yield an
exponentially larger term, because of variable duplication. This happens in [*1].

We use let nests to describe state transformations as sequences of assign-
ments to the components of the state. Formal models so expressed can be exe-
cuted efficiently. The variable symbol s in [*1] is used in a “single-threaded”
[6] way so that during execution on concrete data the original state may be de-
structively modified to create the new one. This efficiency is crucial to the use
of the model as a simulator.

Now imagine defining a series of functions, e.g., phasel, phase2, ..., in terms
of expressions like [*1] and using them as the “updaters” in some let expres-
sion that produces a state. Realistic models involve many layers of definitions,
culminating in some top-level state transition expression, e.g., (machine x s).

We will present an algorithm for simplifying such expressions as (b (machine
x s)) with less computation than may at first appear necessary. One could do

this by expanding away the lets, beta reducing all the lambdas and expanding
all the (non-recursively) defined function applications, and then applying the
obvious accessor/update rewrite rules, possibly in a “lazy” or outside-in way.
However, the reader is urged to dismiss the thought that complete beta reduc-
tion (or the equivalent expansion of all non-recursively defined function defini-
tions) is practical. Consider a C simulator for a system of interest and count
the number of assignment statements: that is about the number of let bindings
in the executable formal version of that model. Researchers at Rockwell Collins
report [private communication]

The typical complexity of high-level language models of these machine
architectures has a depth around 300 assignment statements. That is, the
execution of the simulator for one microcycle can involve the execution
of about 300 state updates, which means that the translated-into-ACL2
model is a nest of state updates about 300 levels deep. Each “level” of
the update nest typically contains at least two instances of state: the
state being updated and a value being inserted typically expressed as a
function of the state being updated.

If state is used twice at every level, the full beta reduction of such a term would
contain on the order of 23%° occurrences of the updaters. From such consider-
ations we conclude that it is impractical to contemplate full beta reduction of
such models. We thus focus on simplification in the presence of such bindings.

3 Some Tests

Before presenting our algorithm we will present a simple test suite for it and show
some performance data to motivate the rest of the paper. The simple test here
is available at http://www.cs.utexas.edu/users/moore/publications/nu--
rewriter.

In our simple test suite, we first declare a state object s, with two fields,
a and b, accessed by functions of those names and updated by update-a and
update-b. We next declare three uninterpreted function symbols, vO, v1 and v2.
Then we define phasel to do six successive updates on s, changing the a field to
contain a new value computed conditionally as a function of the current a field
using the three uninterpreted functions.

(defun phasel (s)
(let ((s (update-a
(if (w01 (as)) (vi11 (as)) (v2 1 (a s)))
s)))
(let ((s (update-a
(if (v0 2 (a s)) (v1 2 (a s)) (v2 2 (a s8)))
s)))

Our first example, named b-phasel, is the theorem that phasel does not change
the contents of the b field: (equal (b (phasel s)) (b s)).

The second theorem, b-phasel-phasel, just composes phasel with itself,
(equal (b (phasel (phasel s))) (b s)), and could be proved trivially from
b-phasel except that we prevent such a proof by disabling b-phasel.

The third theorem, a-phasel, describes the value of the a field after phasel.

We then complicate the test by defining two more phases. PhaseO copies
the a field into the b field. Phase2 copies the b field into the a field. We define
machine to do phase0, then two phasel steps, and then phase2.

The fourth theorem, a-machine, shows that machine does not change the a
field, (equal (a (machine s)) (a s)). The fifth, b-machine, shows that the
final b field is the initial a field, (equal (b (machine s)) (a s)).

Each theorem can be proved by rewriting alone. We prove each with ACL2
Version 2.6 (the first to include our algorithm) in each of two configurations.
In “standard ACL2,” the algorithm is disabled; in “v-ACL2,” the algorithm is
enabled. All of the tests were conducted running under Allegro Common Lisp
on a 731 MHz dual-processor Pentium III. Time is measured in seconds. The
results are shown in Figure 1.

Theorem standard ACL2 v-ACL2
b-phasel 0.48 0.01
b-phasel-phasel 128.76 0.01
a-phasel 0.41 0.04
a-machine 139.39 0.02
b-machine 143.91 0.02

Fig. 1. Seconds to Prove Theorems on 731 MHz Pentium III

Note the growth in standard ACL2’s times from b-phasel to b-phasel--
phasel. Comparing the old rewriter’s performance with that of the new one
on industrial data is essentially impossible because the old rewriter exhausts
resources before completing interesting problems of the kind handled routinely by
the improved system. (Adding one more phase1 step to b-phasel-phasel causes
standard ACL2 to exhaust memory after six hours of computation; v-ACL2 does
“b-phase1®” in 0.11, b-phase1? in 6.46, and b-phase1® in 412 seconds.)

The terms arising in typical machine models are not as regular as those
in this test suite. Our algorithm does not distinguish “control” from “data,”
require the identification of “phases,” or limit itself to single-threaded states. In
addition, typical industrial machine states have hundreds of components. Some
of those components are atomic (e.g., contain booleans, integers, etc.) others may
themselves be structured as records or arrays. ACL2 supports states containing
arrays and the simplification algorithm we have implemented does also. But in
this paper we confine our attention to “flat” states.

4 Terminology

We now prepare to describe our algorithm precisely, starting with the terminol-
ogy and conventions we use. In ACL2, let expressions are just syntactic sugar
for lambda applications. Lambda expressions are handled just like other function
applications. Each 1ambda expression has a list of formal variables and a term for
a body. All free variables in the body are among the formals. Functions may only
be applied to the correct number of actuals. The function application (f a; ...
a,) is equal to its beta reduction, the result of instantiating the body of f with
the substitution replacing v; by a;. We use the verbs “to open” or “to expand”
to describe the replacement of a function application by its beta reduction. If f
is a lambda expression or f is a function symbol and that symbol is not used as
a function symbol in the body of f, we say f is non-recursive. Henceforth, we
do not talk formally about lets but about non-recursive function applications.

In ACL2 the state accessor and updater functions are logically defined in
terms of a “universal” accessor nth and a “universal” updater, update-nth,
where (nth i s) extracts the i** element of the list s and (update-nth i v
s) constructs a list like s but whose it* element is v. Thus, a term like (b
(update-c x s)) expands to (nth 1 (update-nth 2 x s)). Our algorithm is
fundamentally concerned with applying the theorem

Theorem. nth-update-nth:
(equal (nth i (update-nth j v s))
(if (equal (nfix i) (nfix j)) v (nth i s)))

as a rewrite rule (left-to-right). The function nfix is the identity on natural
numbers and otherwise is 0. Its use in the theorem above is a reflection of the
absence of syntactic typing in the language. The theorem says that the it*
component of the state produced by updating the j** component of s with v is
either v or the i*" component of s, depending on whether i and j are equal. The
definitions of user-level state access/update functions (e.g., b and update-c) are
treated as ordinary function definitions like phasel above.

We call expressions like [*1] “nth/update expressions” or v-ezpressions (for
“nu” or “nth/update”). This loosely defined class of expressions includes state
accessor/updater functions defined in terms of nth and update-nth, their array
counterparts, if-then-else expressions, and variable binding constructs such as
let or function or lambda application.

5 Binding Stacks, Facets, and Reconciliation

ACL2’s standard rewriter is inside-out. To rewrite (f a; ... a,) it first rewrites
the a; to standardize them. Thus, the opportunity to apply nth-update-nth to
(b (phasel x s)) occurs only after (phasel x s) is expanded to an update--
nth expression. This may exponentially increase the size of the term.

Instead of rewriting a2 in (nth a; a2) we wish to “look ahead” to see
whether we can “see” a2 as an update-nth expression by expanding non-recursive

functions. For example [*1] can be seen as an update-c expression, which can,
in turn, be seen as an update-nth expression. These expressions must be under-
stood in an appropriate variable binding environment. Note that the update-c
expression in [*1] buried in the expression and would be the late in the pro-
cess of ordinary rewriting. By nth-update-nth, if the indices in the nth and
update-nth expressions are the same, the answer is (new-c x s), under appro-
priate bindings for x and s; if the indices are unequal, the answer is (nth a; s),
under appropriate bindings. Clearly, if we can decide the equality of the indices
then work can be saved. (Often, in this setting, the indices are constants.) The
challenge is to keep the bindings straight.

Many applications require descending through hundreds of lambda expres-
sions. We want to “be” inside the deepest lambda without creating the instance.
We therefore introduce the idea of seeing a term in the context of a substitution
and we represent the substitution as a stack of function call frames. This is just a
generalized version of a nest of lambda applications. We call this object a “facet”
and define it below.

A binding stack is a stack of frames. Each frame contains a list of n variables
and a list of n terms. The free variables occurring in the terms of a frame (other
than the deepest frame) are among the variables of the frame immediately below.

We represent stacks as lists, where the first element of the list is the top
frame. Here is a stack containing two frames,

(((a b) . ((afn u w) (bfn u v))) ; frame 1
((uwv) . ((ufn s) (wfn s) (vfn s)))). ; frame 2

Call this stack ¢. In the top frame of o, frame 1, a is associated with (afn u w)
and b with (bfn u v). We say (afn u w) is the term corresponding to a in that
frame. The representation of frames this way, rather than as association lists,
makes them faster and cheaper to create.

A stack represents the substitution created by pairing each variable in the
top frame with the result of instantiating its corresponding term with the sub-
stitution represented by the rest of the stack. Thus, the stack o represents the
substitution that replaces a by (afn (ufn s) (wfn s)) and b by (bfn (ufn
s) (vin s)).

A facet is a pair consisting of a term ¢ and stack o, written < t,0 >, and
represents the instance of ¢ under the substitution represented by ¢. Hence, if o
is the example stack above, the facet <(h a b),0 > represents (h (afn (ufn
s) (wfn s)) (bfn (ufn s) (vfn s))).

When we refer to a facet as though it were a term, we mean to refer to its
term component. An empty facet is one whose stack is the empty list, ().

The function symbol of a non-variable, non-constant facet is the same as
the function symbol of the term it represents. This allows us seldom to create
the substitutions represented by stacks or the terms represented by facets. In-
stead, we “chase” the variable bindings when we need them. Facets are similar
to the records and binding environments of the structure sharing representation
of clauses [4]. Another way to think of a facet is that it is a nest of lambda ap-
plications turned inside out and flattened. Given a nest of lambda applications,

the term of the corresponding facet is the body of the innermost lambda expres-
sion and the stack of the facet is the list of paired formals and actuals, starting
with that for the innermost 1ambda application and proceeding outwards. Facets
have two computationally convenient properties. First, if the term of a facet is
an application of a defined non-recursive function, then we can represent the
expansion of that function by a facet easily derived from the first. Second, if the
term of a facet mentions a variable symbol then we can easily find out how that
variable symbol is replaced by the substitution and we can represent the actual
expression by another facet easily derived from the first. Lambda expressions are
nested the “wrong way” to make these operations efficient.

We define finite chains of facets related by a generalized notion of expansion.
Let ¢ be the non-empty facet < t,0 >. Then its expansion, ¢, is defined as
follows. If ¢ is a variable symbol that is not a member of the variables in the top
frame of o or t is a constant, ¢' is < t,()>. If t is a variable symbol that is a
member of the variables in the top frame of o, ¢’ is < t/, 0’ >, where t' is the
term corresponding to ¢ in the top frame and ¢’ is the result of removing the top
frame from ¢. If ¢ is the application of a defined non-recursive function, f, with
formals v and body b, to actual expressions a, ¢' is < b, ((v . a) . 0)>,i.e,
the facet whose term is the body of f and whose stack is obtained from o by
pushing a new frame containing the formals and actuals. In all other cases no
expansion is possible.

All the facets in an expansion chain represent equal terms. We call them
“facets” because they are different ways of looking at a term.

The preferred facet of a facet ¢ is the last facet in its expansion chain. Note
that since update-nth is a recursive function, if ¢ can be seen as an instance
of an update-nth term by sufficient expansions of non-recursive functions, then
the preferred facet of ¢ will have an update-nth term as its term component.

Given a facet we can economically create a term equal to the one it represents,
using lambda abstraction. The lambda abstraction of the facet < b,() > is the
term b. The 1lambda abstraction of < b,((v.a) . o > is the lambda abstraction
of <((lambda v b) a),c >. Note the bindings of the abstraction occur in the
opposite order. The size of the lambda abstraction of a facet is linear in the size
of the facet.

An important optimization of lambda abstraction is to eliminate unnecessary
bound variables. If the body of a 1ambda does not use a variable symbol that is
listed in the formals, it and the corresponding actual can be eliminated. Another
optimization is that variables bound to constants can be eliminated.

Because we will manipulate facets in lieu of the terms they represent, we will
also have occasion to form new facets by putting together several others.

For example, let ¢;, 1 < i < n, be n facets, each of the form < ¢;,0; >. Fach
¢; represents a term r;. Think of the ¢; as having been generated by applying
our algorithm to the arguments of a call of some function f. We wish to represent
the term (f 71 ... r,) as a facet. We call this the reconciliation of (f ¢1 ...
¢n). Note that (f ¢1 ... ¢,) is neither a term nor a facet. It fails to be a

term because it contains facets. It fails to be a facet because there is no single,
outermost stack.

The reconciliation of (f ¢1 ... ¢,) is computed as follows. We first find the
greatest common ancestor stack, o, of the o;. Let p; be the top part of ¢;, down
to the common ancestor o. Thus, o; is the concatenation of p; and o. Let ¢} be
the lambda abstraction of the facet < t;, p; >. Then <(f ¢} ... ¢,),0 > is the
reconciliation of (f ¢1 ... ¢,,) and is a facet that represents a term equal to
(f rn ... rn) .

Reconciliation has two important optimizations. The first is that preferred
constant facets, i.e., facets whose terms are constant expressions, have empty
stacks. If these empty stacks participate in the greatest common ancestor com-
putation, the ancestor stack is always (), meaning the reconciled subexpressions
share no subterms. But constants denote themselves in any stack. So we ignore
constant facets when determining the ancestor. The second optimization of rec-
onciliation exploits an empirical observation. Frequently all the non-constant
facets in a reconciliation have the same stack. In that case, that stack is the
ancestor. This case arises so frequently (in 98% of the cases over a test involving
roughly 100,000 reconciliations) that it is worthwhile to code for it.

6 Our Algorithm

We now describe an algorithm for simplifying a term by applying nth-update--
nth and expanding functions. We call the rewriter the “v-rewriter.” The algo-
rithm operates on facets. To use it on terms we apply it to the empty facet
containing the term and then we lambda abstract the resulting facet.

The v-rewrite Algorithm

1. We wish to v-rewrite the facet ¢. Let ¢’ be the preferred facet of ¢. If
¢' is a variable or constant facet or the term of ¢ does not begin with
nth, we return ¢'.

2. Otherwise, ¢’ is <(nth i ¢),0 >. Létbe the facet obtained by v-
rewriting < 4,0 >. Let ¢ be the preferred facet of < t,o >. If f is a
variable or constant, we reconcile and return (nth 7 £).

3. At this point, we know { is a function application. Since # is a pre-
ferred facet, its term is not a lambda application. Let f be the function
symbol of £. Our code considers five cases on f: it is if, update-nth,
update-nth-array, nth, or some other symbol.
3.1 If f is if, then £ is of the form <(if a b ¢),p >. Let ¢;
be the result of reconciling and v-rewriting (nth ¢ < b,p >)
and let ¢» be the result of reconciling and v-rewriting (nth i
<ecp>).
3.1.1. If ¢1 and ¢- are the same facet, return ¢;.
3.1.2. If no applications of nth-update-nth were made
in producing ¢; or ¢2, then return the reconciliation of
(nth i £).

3.1.3. Otherwise, let ¢¢ be the result of v-rewriting
<a,p>.
3.1.3.1. If ¢ is a constant facet, return ¢ or ¢,
according to whether the constant is nil (i.e.,
the test of the if can be decided).
3.1.3.2. Otherwise, return the reconciliation of
(if ¢o ¢1 ¢2).
3.2. If f is update-nth, ¢ is of the form < (update-nth j v
), p >. Let] be the result of v-rewriting the facet < j, p >.
3.2.1. If ; and j represent equal naturals, we return the
result of v-rewriting the facet < v, p >.
3.2.2. If 7 and 3 represent unequal naturals, we return
the result of v-rewriting the reconciliation of
(nth 7 < s,p>).
3.2.3. Otherwise, we return the reconciliation of (if (equal
(nfix i) (nfix 3)) <wv,p> (nth i < S, p>)).
3.3 and 3.4. If f is either update-nth-array or another nth,
then (assuming the original term was derived from a state ac-
cess/update nest) we are dealing with an array or some other
structured component. To keep this paper brief, we do not dis-
cuss that case here, but it is analogous to what we have described.
3.5. If f is some other symbol, then we return the reconciliation
of (nth i 7).

7 Discussion

The algorithm focuses entirely on terms of the form (nth ¢ ¢). The main case
split is on the form of ¢.

In paragraph 3.1 we consider the case that ¢ can be seen as an if-then-
else expression. We might be v-rewriting a term like (nth ¢ (if a b ¢)), but
more often we are v-rewriting a term like (nth ¢ (phase a s)), where phase
is defined to be a nest of lets with an if expression as the body.

Observe that in attacking (nth i (if a b ¢)) we first “distribute” the if,
moving the nth onto b and c. After rewriting these two subgoals we ask whether
the resulting facets are equal. If so, we can avoid rewriting a by virtue of (if x
y y) =y. Of course, we might have chosen to rewrite a first and determined that
it is equal to nil, say, thereby avoiding the need to rewrite b. But the v-rewriter
has relatively little support for deciding propositions (since it is context free and
does not use the ACL2 type system or other decision procedures).

To see why the “(if x y y)” heuristic so often wins, consider the origins
of the problem. Here b and ¢ are state transformations, the modeled machine is
branching on a, and we are interested in determining the i*" component of the
new state. But most state transformations on the machines we have seen leave
most state components unchanged. Thus, in many cases neither b nor ¢ change
the value of the i*" component and our heuristic makes the superior choice.

In paragraph 3.1.2 we basically abandon the rewriting of (nth 7 (if a b
¢)) if no nth-update-nth rule was applied while rewriting (nth ¢ b) or (nth ¢
¢). We prefer to keep the if inside the nth to avoid case splitting. To implement
the test, the v-rewriter returns a flag that indicates whether it used any rules. It
is insufficient to test whether the rewritten facets are equal to their unrewritten
versions since quite often b and ¢ will have been replaced by their preferred facets
(i-e., we may have opened function applications).

Paragraph 3.2 is the case for which the algorithm was invented. It applies
the nth-update-nth theorem.

Paragraphs 3.3 and 3.4 deal with arrays in our setting and are not discussed
here.

We have optimized the algorithm in several ways. The most important is to
use caching or memoization to avoid recomputing the v-rewrite of a previously
seen facet. In our implementation, we use a hash table with 64K entries, each of
which is a ring containing (at most) the five most recently seen facets that hashed
to that location and the results of the corresponding v-rewrites. Even though
we hit on a hash entry only approximately 6% of the time, we find that the
savings is significant and, indeed, makes the difference between being practical
or impractical on industrial-scale problems.

Recall the tests in Section 3. Consider the theorem there called b-phasel--
phasel. Implementing the algorithm without caching gives rise to 10,236 calls
of the v-rewriter. With caching, that theorem generates 124 calls. Of those 124
calls, 18 hit in the cache, giving a cache hit rate of 14%. Each hit, however, saves
the algorithm from re-exploring a potentially large subtree.

In practical applications, the cache is of supreme importance. For example,
in a theorem taken from the proprietary Rockwell test suite, the cached version
of the v-rewriter was called 216,524 times. The cache hit rate was 6.2%. But
without the cache the algorithm would require about 3 x 1026 calls.!

Because of our desire to cache the results, we have made the v-rewriter com-
pletely “context-free.” That is, it does not take any arguments that encode the
hypotheses governing the current term, since to do so would mean that we would
have to cache that contextual information and probably have to probe the cache
to look for prior calls in weaker contexts rather than identical contexts.

For a discussion of several elaborations of the algorithm, how it is used
in ACL2’s rewriter, and some proposed improvements, see http://www.cs.-
utexas.edu/users/moore/publications/nu-rewriter.

8 Related Work

A term representation similar to our facets is provided by the “term module”
of Hickey and Nogin’s modular theorem proving architecture [10]. Their notion
of “delayed substitution” is motivated by the same considerations that led us to

! The number is 338,664,298,746,582,325,860,641,409. This is too large compute by
the brute force method of eliminating the cache and counting calls. It was computed
by using the cache to remember how much work was done for each entry.

introduce facets. Their framework is more general than ours; in particular, they
provide utilities for fast tactic-based theorem proving. However, their approach
to delayed substitution is, essentially, to use lambda applications to represent
terms and to implement the operations of destructuring such terms without
doing the substitution implied by beta reduction. Our facet data structure is
more efficient for the operations we support. This is important when dealing
with very deep lambda nests.

Our notion of reconciliation, which is designed to generate a facet from a
term-like structure containing facets, has no counterpart in their system because
their “facets” are already terms. We can afford reconciliation because, as noted,
about 98% of the time the facets to be reconciled all have the same stack.

The architecture of [10] does not provide caching, which we have found is
crucial to good performance on large problems.

Facets are suggestive but independent of “explicit substitution” logics [7,1,
2]. Our view of facets is that they merely provide an efficient data structure for
implementing certain simplification strategies in conventional logics. The idea of
“nameless” substitutions might be usefully incorporated in future work.

9 Conclusion

Our algorithm is being tested under fire in industrial applications. We are still
“tuning” our integration of the algorithm, focusing on tactics for using it and cer-
tain low-level implementation details. Of particular interest are the management
of the cache and the associated hashing function used to cache Lisp s-expressions.
The algorithm sometimes generates unnecessarily large intermediate expressions
as suggested by the b-phasel’ series mentioned in Section 3. We are working on
preventing these explosions

Nonetheless, the v-rewriter has been extremely effective in the full-scale in-
dustrial application for which it was developed for Rockwell Collins. It has been
used in the proofs of hundreds of theorems that were previously well beyond the
capability of ACL2 to simplify. We take this as a good sign but still regard this
as a work in progress.

10 Acknowledgments

I thank Dave Greve and Matt Wilding of the Advanced Technology Center of
Rockwell Collins for their inspiration and support of this idea. I also thank
Mark Bickford, Matt Kaufmann, Pete Manolios, and Matt Wilding for their
contributions to this paper.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lvy. Explicit substitutions. Journal
of Functional Programming, 1(4):375-416, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. M. Ayala-Ricon and Cesar Munoz. Explicit subsitutions and

all that. Technical Report TR-2000-45, ICASE, NASA Lan-
gley Research Center, Hampton, Virginia, November 2000.
http://www.icase.edu/Dienst/UI/2.0/Describe/ncstrl.icase/TR-2000-45.

. W.R. Bevier, W.A. Hunt, J S. Moore, and W.D. Young. Special issue on system

verification. Journal of Automated Reasoning, 5(4):409-530, 1989.

. R.S. Boyer and J S. Moore. The sharing of structure in theorem-proving programs.

In Machine Intelligence 7, pages 101-116. Edinburgh University Press, 1972.

. R. S. Boyer and J S. Moore. Single-threaded objects in ACL2. (submitted for

publication), 1999.

. Bishop Brock and Warren A. Hunt, Jr. Formally specifying and mechanically

verifying programs for the Motorola complex arithmetic processor DSP. In 1997
IEEE International Conference on Computer Design, pages 31-36. IEEE Computer
Society, October 1997.

. N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of

expressions and segments. Technical Report TH-Report 78-WSK-03, Department
of Mathematics, Technological University Eindhoven, Netherlands, 1978.

. M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press, 1993.

. J. Grundy. Verified optimizations for the intel ia-64 architecture. In TPHOLs

2000, LNCS 1869, pages 215-232. Springer-Verlag, 2000.

J. Hickey and A. Nogin. Fast tactic-based theorem proving. In TPHOLs 2000,
LNCS 1869, pages 252-267. Springer-Verlag, 2000.

W.A. Hunt and B. Brock. A formal HDL and its use in the FM9001 verification.
Proceedings of the Royal Society, April 1992.

M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Press, 2000.

M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, 2000.

P. Manolios. Correctness of pipelined machines. In Formal Methods in Computer-
Aided Design, FMCAD 2000, pages 161-178. Springer-Verlag LNCS 1954, 2000.
S. P. Miller and M. Srivas. Formal verification of the AAMP5 microprocessor:
A case study in the industrial use of formal methods. In Proceedings of WIFT
’95: Workshop on Industrial-Strength Formal Specification Techniques, pages 2—
16. IEEECS, April 1995.

J S. Moore. Piton: A Mechanically Verified Assembly-Level Language. Automated
Reasoning Series, Kluwer Academic Publishers, 1996.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
pages 748-752. Lecture Notes in Artificial Intelligence, Vol 607, Springer-Verlag,
June 1992.

J. Sawada and W. Hunt. Processor verification with precise exceptions and specula-
tive execution. In Computed Aided Verification, CAV ’98, pages 135-146. Springer-
Verlag LNCS 1427, 1998.

G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press, 30
North Avenue, Burlington, MA 01803, 1990.

Matthew Wilding, David Greve, and David Hardin. Efficient simulation of formal
processor models. Formal Methods in System Design, to appear. Draft TR available
as http://pobox.com/users/hokie/docs/efm.ps.

