Mechanized Operational Semantics

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 1: The Logic (ACL2))
Caveat

The most widely accepted meaning of *Operational Semantics* today is Plotkin’s “Structural Operational Semantics” (SOS) (1981) in which the semantics is presented as a set of inference rules on syntax and “configurations” (states) defining the valid transitions.
But in these lectures I take an older approach perhaps best called *interpretive semantics* in which the semantics of a piece of code is given by a recursively defined interpreter on the syntax and a state.
I suspect the older approach came from McCarthy who wrote “the meaning of a program is defined by its effect on the state vector,” in “Towards a Mathematical Science of Computation” (1962).
The interpretive approach was used with mechanized support in *A Computational Logic* (Boyer and Moore, 1979) to specify and verify an expression compiler. The low level machine was defined as a recursive function on programs (sequence of instructions) against a state consisting of a push down stack and an environment assigning values to variables.
Plotkin rightly states that the interpretive approach tends to produce large and possibly unwieldy states. Procedure call and non-determinism make things worse. This is mitigated by the presence of a mechanized reasoning system. Interpretive semantics also confer certain advantages we will discuss.
The Boyer-Moore community has used operational semantics (in the “interpretive” sense) with great success since the mid-1970s.

So what you’re about to see is an old-fashioned but effective treatment of Operational Semantics.

End of Caveat
Outline

Lecture 1: The Logic (ACL2)
Lecture 2: An Operational Semantics
Lecture 3: Direct Code Proofs
Lecture 4: Inductive Assertion Proofs
Lecture 5: Extended Example
A Computational Logic for Applicative Common Lisp

- functional programming language
- mathematical logic
- mechanized theorem prover

for describing and analyzing digital systems
A Computational Logic for Applicative Common Lisp
A Computational Logic for Applicative Common Lisp
ACL = ACL2
ACL2

- functional programming language
- mathematical logic
- mechanized theorem prover
A Formal Logic

• syntax
• axioms
• rules of inference
• semantics
For Those Who Know Logic

ACL2 is a first-order, quantifier-free, untyped logic of total recursive functions.
For Those Who Know Logic

ACL2 is a first-order1, quantifier-free2, untyped3 logic of total4 recursive functions.

\begin{enumerate}
\item But see functional-instantiation.
\item But see defchoose.
\item But see guard.
\item But see defpun.
\end{enumerate}
Example Terms

ACL2 term | traditional notation

(sqrt (log 2 i)) | sqrt(log(2, i))

\(\sqrt{\log_2 i}\)

(+ x (* 3 (expt y 2))) | \(x + 3 \times y^2\)

(cons (car x) rest) | cons(car(x), rest)
Whitespace Is Ok

(firstn (length (terminal-substring j dt)) pat
Whitespace Is Ok

(firstn (length (terminal-substring j dt)) pat)
Whitespace Is Ok

(firstn (length
 (terminal-substring j dt))
pat)
Whitespace Is Ok

(firstn (length
 (terminal-substring
 j
 dt))
 pat)
Whitespace Is Ok

(firstn
 (length
 (terminal-substring
 j
 dt))
 pat)
Data Types

ACL2 supports five disjoint data types:

• numbers
• characters
• strings
• symbols
• pairs
About T and NIL

T and NIL are used as the “truth values” true and false.

NIL is also used as the “terminal marker” on nested pairs representing lists. (More later.)

Informally, “NIL is the empty list.”
But T and NIL are *symbols*!
About Pairs

\(< x, < y, < z, \text{nil} >> >\)

\((x \ y \ z)\)
Atoms

An *atom* is any ACL2 object other than a pair.

So here are some atoms: 123, nil, COLOR.

Here is a non-atom: (PUSH 3)
((PUSH 3) (LOAD 2) (ADD))
Primitive Functions

• \((\text{cons } x \ y)\) – the ordered pair \(\langle x, y \rangle\)

• \((\text{car } x)\) – left component of \(x\), if \(x\) is a pair; else nil

• \((\text{cdr } x)\) – right component of \(x\), if \(x\) is a pair; else nil

• \((\text{consp } x)\) – t if \(x\) is a pair; else nil
Axioms

(car (cons x y)) = x

(cdr (cons x y)) = y

(consp x) = t \lor (consp x) = nil

(consp (cons x y)) = t

(consp x) = nil \rightarrow (car x) = nil
(consp \(x\)) = \text{nil} \rightarrow (\text{cdr } x) = \text{nil}

(consp \(x\)) = \text{t} \rightarrow (\text{cons } (\text{car } x) (\text{cdr } x)) = x

(symbolp \(x\)) = \text{t} \rightarrow (\text{consp } x) = \text{nil}

(integerp \(x\)) = \text{t} \rightarrow (\text{consp } x) = \text{nil}
Primitive Functions (Continued)

- (equal \(x\ y\)) – \(t\) if \(x\) is \(y\); else \(\text{nil}\)

- (if \(x\ y\ z\)) – if \(x\) is \(t\) then \(y\); else \(z\)
 (non-Boolean \(x\) are treated as \(t\))

- (+ \(x\ y\)) – sum of \(x\) and \(y\)
 (non-numbers are treated as \(0\))
• (− x y) – difference of x and y
 (non-numbers are treated as 0)
• (* x y) – product of x and y
 (non-numbers are treated as 0)
• (zp x) – t if x is 0; else nil
 (non-naturals are treated as 0!)
Defining Functions

(defun endp (x) (not (consp x)))

(defun atom (x) (not (consp x)))

(defun not (p) (if p nil t))

(defun and (p q) (if p q nil))

(defun or (p q) (if p p q))
(defun implies (p q)
 (if p (if q t nil) t))

(defun iff (p q)
 (and (implies p q) (implies q p)))

(defun natp (x)
 (and (integerp x)
 (<= 0 x)))
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 \prec 1 \prec 2 \prec \ldots \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

0 ≺ 1 ≺ 2 ≺ ... ≺ ω
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 \prec 1 \prec 2 \prec \ldots \prec \omega \prec \omega + 1 \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 < 1 < 2 < \ldots < \omega < \omega + 1 < \omega + 2 < \ldots \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 < 1 < 2 < \ldots < \omega < \omega + 1 < \omega + 2 < \ldots \]

\[\ldots < \omega \times 2 \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 \prec 1 \prec 2 \prec \ldots \prec \omega \prec \omega + 1 \prec \omega + 2 \prec \ldots \]
\[\ldots \prec \omega \times 2 \prec \omega \times 2 + 1 \prec \ldots \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 < 1 < 2 < \ldots < \omega < \omega + 1 < \omega + 2 < \ldots \]
\[\ldots < \omega \times 2 < \omega \times 2 + 1 < \ldots \]
\[\ldots < \omega^2 \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 < 1 < 2 < \ldots < \omega < \omega + 1 < \omega + 2 < \ldots \]
\[\ldots < \omega \times 2 < \omega \times 2 + 1 < \ldots \]
\[\ldots < \omega^2 < \ldots < \omega^3 < \ldots \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 \prec 1 \prec 2 \prec \ldots \prec \omega \prec \omega + 1 \prec \omega + 2 \prec \ldots \]
\[\ldots \prec \omega \times 2 \prec \omega \times 2 + 1 \prec \omega \times 2 + 2 \ldots \]
\[\ldots \prec \omega^2 \prec \ldots \prec \omega^3 \prec \ldots \]
\[\ldots \prec \omega^\omega \]
The Ordinals

The ordinals are a well-ordered extension of the natural numbers.

\[0 ≺ 1 ≺ 2 ≺ \ldots ≺ \omega ≺ \omega + 1 ≺ \omega + 2 ≺ \ldots \]

\[\ldots ≺ \omega \times 2 ≺ \omega \times 2 + 1 ≺ \omega \times 2 + 2 \ldots \]

\[\ldots ≺ \omega^2 ≺ \ldots ≺ \omega^3 ≺ \ldots \]

\[\ldots ≺ \omega^\omega ≺ \ldots ≺ \omega^{\omega^\omega} \ldots = \varepsilon_0 \]
Ordinals below ε_0 can be represented with lists (Cantor’s canonical form).

For example,

$$\omega^{\omega+3} \times 27 + \omega^{100} + \omega^3 \times 238 + \omega \times 3 + 798$$

is represented by

$$((((1 \ . \ 1) \ . \ 3) \ . \ 27) (100 \ . \ 1) (3 \ . \ 238) (1 \ . \ 3) \ . \ 798))$$
Ordinals below ε_0 can be represented with lists (Cantor’s canonical form).

The recognizer for such ordinals can be defined recursively.

The “less than” relation, \prec, can be defined recursively.
Primitive Functions (continued)

- $(o_p \ x)$ – t if x represents an ordinal below ϵ_0; else nil

- $(o< \ x \ y)$ – the well-founded ordering \prec on ordinals below ϵ_0
Induction and Recursion

Recursive definitions are admissible only if some measure of the arguments can be proved to decrease in a well-founded ordering, typically some ordinal measure ordered by $o<$.
Inductions are justified by a well-founded ordering. Given a measure and ordering, you can assume any “smaller” instance of the conjecture being proved.

Induction and recursion are duals.
(defun len (x)
 (if (endp x)
 0
 (+ 1 (len (cdr x)))))

(len '(a b c)) ⇒ 3

('⇒' means “evaluates to (reduces under the axioms to the constant)”.)
(defun len (x)
 (if (endp x)
 0
 (+ 1 (len (cdr x)))))

Why is this admissible?
(defun len (x)
 (if (endp x)
 0
 (+ 1 (len (cdr x))))
)

Theorem:
\neg \text{endp}(x) \implies \text{size}(\text{cdr}(x)) < \text{size}(x)
(defun len (x)
 (if (endp x)
 0
 (+ 1 (len (cdr x))))

Theorem:
(implies (not (endp x))
 (o< (size (cdr x))
 (size x)))
Induction (suggested by (len x))

To prove $\psi(x, y)$ it is sufficient to prove:

Base Case:
(implies (endp x) $\psi(x, y)$)

Induction Step:
(implies (and (not (endp x))
 $\psi((\text{cdr } x), \alpha))$
 $\psi(x, y)$)
Every total recursive function suggests an induction.

We won’t discuss it further, but that is key to the automation of induction.
(defun nth (n x)
 (if (zp n)
 (car x)
 (nth (- n 1) (cdr x)))

(nth 3 '(A B C D E)) ⇒ D.
(defun char (s n)
 (nth n (coerce s 'list)))

(char "Hello" 1) ⇒ #\e
(the lowercase character ‘e’).
(defun update-nth (n v x)
 (if (zp n)
 (cons v (cdr x))
 (cons (car x)
 (update-nth (- n 1) v (cdr x))))

(update-nth 3 'X '(A B C D E))
⇒ (A B C X E).
(defun member (e x)
 (if (endp x)
 nil
 (if (equal e (car x))
 x
 (member e (cdr x))))

(member 3 '(1 2 3 4 5)) ⇒ (3 4 5).
(defun repeat (x n)
 (if (zp n)
 nil
 (cons x (repeat x (- n 1)))))

(repeat t 4) ⇒ (t t t t t)

(defun append (x y)
 (if (endp x)
 y
 (cons (car x)
 (append (cdr x) y))))

(append '(A B C) '(D E))
⇒ (A B C D E).
(equal (append (append a b) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a). (equal (append (append a b) c) (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append b c))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)
 (append b c))
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
T
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append a b) c) (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (cons (car a)
 (append (cdr a) b)) c)
 (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (cons (car a)
 (append (cdr a) b)) c)
 (append a (append b c)))
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a) (append (append (cdr a) b) c)) (append a (append b c)))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (equal (append (append (cdr a) b) c))
 (append a (append b c))))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (append (append (cdr a) b) c))
 (cons (car a)
 (append (cdr a) (append b c))))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
 (append (append (cdr a) b) c))
 (cons (car a)
 (append (cdr a) (append b c)))))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal
 (equal
 (append (append (cdr a) b) c)
 (append (cdr a) (append b c))))
(equal (append (append a b) c)
 (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append (cdr a) b) c)
 (append (cdr a) (append b c)))
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append (cdr a) b) c) (append (cdr a) (append b c)))
\[(\text{equal} \ (\text{append} \ (\text{append} \ a \ b) \ c) \ \ (\text{append} \ a \ (\text{append} \ b \ c)))\]

Proof: by induction on \(a\).

Induction Step: \((\text{not} \ (\text{endp} \ a))\).
T
(equal (append (append a b) c) (append a (append b c)))

Proof: by induction on a.

Q.E.D.
Boyer-Moore Project

McCarthy’s “Theory of Computation”

Edinburgh Pure Lisp Theorem Prover

A Computational Logic

NQTHM

ACL2

Boyer
Moore
Kaufmann
User

proposed definitions conjectures and advice

Q.E.D.

database composed of “books” of definitions, theorems, and advice

User

proposed definitions conjectures and advice

Q.E.D.

Memory Gates Arith Vectors
Irrelevance

User

Equality

Destructor Elimination

Generalization

Elimination of
Irrelevance

Induction

Simplification

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back- and forward-chaining
metafunctions
congruence-based rewriting
Books

The ACL2 user develops *books* that tailor the system to find proofs in a given domain.

The user provides *proof sketches* in the form of sequences of key lemmas.

The system fills in the gaps.
This enables *proof maintenance*. Minor modifications to previously proved theorems (or previously analyzed formal models) can often be verified without user intervention – because the books encode a *strategy* not a *proof*.
Next Time

An operational semantics for a simple language.