Mechanized Operational Semantics

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 4: Boyer-Moore Fast String Searching)
The Problem

One of the classic problems in computing is *string searching*: find the first occurrence of one character string ("the *pattern*”) in another ("the *text*”).

Generally, the text is *very* large (e.g., gigabytes) but the patterns are relatively small.
Examples

Find the word “comedy” in this *NY Times* article:

Fred Armisen’s office at “Saturday Night Live” is deceptively small, barely big enough to fit a desk, a couch, and an iPod. The glorified closet, the subject of a running joke on the comedy show, now in its 31st season, can simultaneously house a wisecracking . . .
Fast Exact String Pattern-matching Algorithms Adapted to the Characteristics of the Medical Language

Christian Lewis, MD and Robert H. Baud, PhD

Affiliations of the authors: Puget Sound Health Care System, Seattle, Washington (CL); University Hospital of Geneva, Geneva, Switzerland (RHB).

Correspondence and reprints: Christian Lewis, MD, University Hospital of Geneva, Division of Medical Informatics, Rue Micheli du Crest, CH-1211 Geneva 4, Switzerland; e-mail: <christian.louis@hug-ge.ch>

Received October 26, 1999; Accepted February 16, 2000.

Abstract

Objective: The authors consider the problem of exact string pattern matching using algorithms that do not require any preprocessing. To choose the most appropriate algorithm, distinctive features of the medical language must be taken into account. The characteristics of medical language are emphasized in this regard, the best algorithm of those reviewed is proposed, and detailed evaluations of time complexity for processing medical texts are provided.

Design: The authors first illustrate and discuss the techniques of various string pattern-matching algorithms. Next, the source code and the behavior of representative exact string pattern-matching algorithms are presented in a comprehensive manner to promote their implementation. Detailed explanations of the use of various techniques to improve performance are given.

Measurements: Real-time measures of time complexity with English medical texts are presented. They lead to results distinct from those found in the computer science literature, which are typically computed with normally distributed texts.

Results: The Lewis-Hopps algorithm achieves the best overall results when used with medical texts. This algorithm usually performs at least twice as fast as the other algorithms tested.
Variants of the problem allow *wildcards* in the pattern and/or the text. *Exact* matching is when no wildcards are allowed.

We describe the fastest sequential algorithm for solving the exact string searching problem. The algorithm is called the *Boyer-Moore fast string searching algorithm*.
Example

Find the word “comedy” in this *NY Times* article:

Fred Armisen’s office at “Saturday Night Live” is deceptively small, barely big enough to fit a desk, a couch, and an iPod. The glorified closet, the subject of a running joke on the comedy show, now in its 31st season, can simultaneously house a wisecracking . . .
COMEDY

Joke on the Comedy
JOKER ON THE COMEDY
COMEDY

JOKE ON THE COMEDY
Joke on the Comedy
COMEDY

JOKE ON THE COMEDY
COMEDY

JOKE ON THE COMEDY
COMEDY

J O K E O N T H E C O M E D Y
J O K E O N T H E C O M E D Y
COMEDY

JOKE ON THE COMEDY
COMEDY

JOKES ON THE COMEDY
COMEDY

JOKE ON THE COMEDY
CO

M E D Y

O

JOKE ON THE COMEDY
COMEDY

JOKE ON THE COMEDY
Key Property: The longer the pattern, the faster the search!
Pre-Computing the Skip Distance

\[\text{pat: 543210} \quad \text{COMEDY} \]
\[\text{txt: } xxxxx0xxxxxxxxxxxxx... \]
\[\uparrow \]

\[\begin{array}{cccccccc}
 A & 6 & F & 6 & K & 6 & P & 6 \\
 B & 6 & G & 6 & L & 6 & Q & 6 \\
 C & 5 & H & 6 & M & 3 & R & 6 \\
 D & 1 & I & 6 & N & 6 & S & 6 \\
 E & 2 & J & 6 & 0 & 4 & T & 6 \\
 & & & & & & & Y \\
 & & & & & & & Z \\
\end{array} \]

This is a 1-dimensional array, \(\text{skip}[c] \), as big as the alphabet.
COMEDY

JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
COMEDY

JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
COMEDY

JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
C O M E D Y

J O K E O N T H E C O M E D Y

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6

COMEDY
COMEDY

JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
JOKE ON THE COMEDY

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6

COMEDY
Joke on the Comedy

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
Joke on the Comedy

skip[c]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0
 Z 6
Joke on the Comedy

skip[c]:
A 6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D 1 I 6 N 6 S 6 X 6
E 2 J 6 O 4 T 6 Y 0 Z 6
But Wait! There’s More!

\[
\text{pat: NONPARTIPULAR} \\
\text{txt: -----------------------------} \\
\]
But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------R--------------

|
But Wait! There’s More!

\(\text{pat: } \text{NONPARTIPULAR} \)
\(\text{txt: } \cdots \cdots \text{A} \cdots \cdots \)
But Wait! There’s More!

\[pat: \text{NONPARTIPULAR}\]

\[txt: \text{----------P----------}\]

| |
But Wait! There’s More!

\[
\begin{align*}
\text{pat:} & \quad \text{NONPARTIPULAR} \\
\text{txt:} & \quad \underline{-----------P----------} \\
& \quad | \\
\end{align*}
\]

Slide 2 to match the discovered character.
But Wait! There’s More!

\[\text{pat: } \text{NONPARTIPULAR} \]

\[\text{txt: } \underline{\text{---------P??----------}} \]

|
But Wait! There’s More!

$\textit{pat:}$ NONPARTIPULAR

$\textit{txt:}$ ----------PAR----------
 |
But Wait! There’s More!

\textit{pat}: ~NONPARTIPULAR

\textit{txt}: ~-------------------

But Wait! There’s More!

\[\text{pat: } \text{NONPARTIPULAR}\]
\[\text{txt: } \text{-----------}\]
But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------AR----------
But Wait! There’s More!

\[
\text{pat: } \text{NONPARTIPULAR} \\
\text{txt: } \text{----------PAR----------} \\
\text{ | }
\]
But Wait! There’s More!

\(\text{pat:} \ \text{NONPARTIPULAR} \)

\(\text{txt:} \ \underline{-----------\text{PAR}-----------} \)

|
But Wait! There’s More!

pat: NONPARTIPULAR

txt: "-------------PAR"-----------------

Slide 7 to match the *discovered substring*!
\[j \mid pat \mid \]
\[| \mid | \]
\[pat: \text{NONPARTIPULAR} \]
\[txt: \quad \text{---------PAR---------} \]
\[| \]
\[i \]
\[dt: \quad txt[i] \quad pat[j+1] \quad \ldots \quad pat[|pat|] \]
\[P \quad A \quad R \]
\(dt: \quad txt[i] \ pat[j + 1] \ldots \ pat[|pat|] \)

\(dt \) can be computed given \(txt[i] \) and index \(j \) in \(pat \)!

There are only \(|\alpha| \times |pat| \) combinations, where \(|\alpha| \) is the alphabet size.
The Skip Distance – Delta

Given \(pat \), the skip can be pre-computed for every combination of character read, \(c \), and pattern index, \(j \), by finding how far we must slide to find the last occurrence of \(dt \) in \(pat \).
pat: NONPARTIPULAR

txt: --------------PAR-------------
 |

\textit{pat:} \ NON\textbf{PARTIPULAR} \\
\textit{txt:} \ -----------\textbf{PAR}-----------
pat: BC-ABC-BBC-CBC

txt: ---------------BBC--------------

|
pat: BC-ABC-BBC-CBC

txt: ---------------BBC--------------
 |
pat: BC-ABC-BBC-CBC

txt: --------------ABC--------------
pat: BC-ABC-BBC-CBC

txt: --------------ABC--------------
 |

65
pat: BC-ABC-BBC-CBC

txt: ---------------DBC------------
 |
pat: BC-ABC-BBC-CBC

txt: ---------------DBC-------------
pat: EE-ABC-BBC-CBC

txt: ------------DBC--------------

|
pat: EE-ABC-BBC-CBC

txt: ------------DBC-------------
 |
The Delta Array

delta[c,j] is an array of size $|\alpha| \times |pat|$ that gives
the skip distance when a mismatch occurs after
comparing c from txt to $pat[j]$.
The Algorithm

fast\((\text{pat}, \text{txt})\)

If \(\text{pat} = \"\"\)

then

If \(\text{txt} = \"\"\)

then return \(\text{Not-Found}\);

else return 0; end;

end;
preprocess pat to produce $delta$;

\[j := |pat| - 1; \]
\[i := j; \]
while \((0 \leq j \land i < |txt|)\)

do

If \(pat[j] = txt[i]\)

then

\(i := i - 1;\)

\(j := j - 1;\)

else

\(i := i + delta[txt[i], j];\)

\(j := |pat| - 1;\)

end;
If \((j < 0)\)
 then return \(i + 1\);
else return \(Not\-Found\); end;

end;
Performance

How does the algorithm perform?

This depends on the size of the alphabet. We only have data on English text right now.

In our test:

txt: English text of length 177,985.

pat: 100 randomly chosen patterns of length 5 – 30, chosen from another English text and filtered so they do not occur in the search text.
The naive string searching algorithm would look at all 177,985 characters of the search text. In fact, it would look at some characters more than once.
Goal

Prove the correctness of an M1 program for the Boyer-Moore fast string searching algorithm.

We will not code the preprocessing in M1.

We will write code for the Boyer-Moore algorithm that assumes that the contents of a certain local contains a 2-dimensional delta array.

We will initialize the array variable with ACL2 code, not M1 code.
We will proceed as previously advised:

• Step 1: prove that the code implements the algorithm

• Step 2: prove that the algorithm implements the spec

We’ll do Step 2 *first*. It’s *always* the hardest.
Caveat

In this talk I will ignore hypotheses and distracting arithmetic details.

The ACL2 proof scripts provide the complete details.
The Obviously Correct Algorithm

(defun matchp (pat j txt i)
 (cond ((not (natp j)) nil)
 ((>= j (length pat)) t)
 ((>= i (length txt)) nil)
 ((equal (char pat j)
 (char txt i))
 (matchp pat (+ 1 j)
 txt (+ 1 i)))
 (t nil)))
The Obviously Correct Algorithm

(defun matchp (pat j txt i)
 (cond
 ((>= j (length pat)) t)
 ((>= i (length txt)) nil)
 ((equal (char pat j) (char txt i))
 (matchp pat (+ 1 j) txt (+ 1 i)))
 (t nil)))
(defun correct-loop (pat txt i)
 (cond ((>= i (length txt)) nil)
 ((matchp pat 0 txt i) i)
 (t (correct-loop pat txt (+ 1 i))))))

(defun correct (pat txt)
 (correct-loop pat txt 0))
The Fast Algorithm

(defun fast-loop (pat j txt i)
 (cond
 ((< j 0) (+ 1 i))
 (((<= (length txt) i) nil)
 (equal (char pat j) (char txt i))
 (fast-loop pat (- j 1) txt (- i 1)))
 (t (fast-loop pat
 (- (length pat) 1)
 txt
 (+ i (delta (char txt i)
 j pat))))))
(defun fast-loop (pat j txt i)
 (declare
 (xargs :measure (measure pat j txt i)
 :well-founded-relation l<))
 (cond ...)
 ((equal (char pat j) (char txt i))
 (fast-loop pat (- j 1) txt (- i 1)))
 (t (fast-loop pat
 (- (length pat) 1)
 txt
 (+ i (delta (char txt i)
 j pat)))))
Note Above:

In this formalization of the algorithm, we do not pre-compute delta but instead compute the skip distance as a function of the char from txt, the index j in pat, and pat.

The M1 code will use a 2-dimensional array initialized by an ACL2 function.

We will prove the ACL2 preprocessing correct.

But at the algorithmic level, we needn’t think about arrays.
(defun fast (pat txt)
 (if (equal pat "")
 (if (equal txt "")
 nil
 0)
 (fast-loop pat
 (- (length pat) 1) txt
 (- (length pat) 1)))))
“Pre-Processing”

(defun delta (v j pat)
 (let* ((pat~ (coerce pat 'list))
 (dt (cons v (nthcdr (+ j 1) pat~)))
 (+ (- (len pat~) 1)
 (- (find-pmatchp dt pat~ (- j 1))))))

(defun find-pmatchp (dt pat~ j)
 (cond ((pmatchp dt pat~ j) j)
 (t (find-pmatchp dt pat~ (- j 1))))
pat: BC-ABC-BBC-CBC
dt: BBC
pmatchp: BBC

pat: BC-ABC-BBC-CBC
dt: ABC
pmatchp: ABC

pat: BC-ABC-BBC-CBC
dt: GBC
pmatchp: GBC
Goal

(defthm fast-is-correct
 (implies (and (stringp pat)
 (stringp txt))
 (equal (fast pat txt)
 (correct pat txt))))
Observation 1 – List Counterparts

Every string processing function has a list processing counterpart.

(char str i) = (nth i (coerce str 'list))
Observation 1 – List Counterparts

Let pat^\sim be (coerce pat 'list).

$\text{(equal (correct-loop pat txt i)}$
$\text{(correct-loop}^\sim \text{ pat}^\sim \text{ txt}^\sim \text{ i))}$
Observation 1 – List Counterparts

(defun delta (v j pat)
 (let* ((pat~ (coerce pat 'list))
 (dt~ (cons v (nthcdr (+ j 1) pat~))))
 (+ (- (len pat~) 1)
 (- (find-pmatchp dt~ pat~ (- j 1))))))
Observation 2 – Matching is Equality

(defun matchp (pat j txt i)
 (cond ((>= j (length pat)) t)
 ((>= i (length txt)) nil)
 ((equal (char pat j) (char txt i))
 (matchp pat (+ 1 j) txt (+ 1 i)))
 (t nil)))

j

pat: abcUVW

txt: xxxxxxUVWxxxxx

i
Observation 2 – Matching is Equality

(equal (matchp pat j txt i)
 (equal (firstn (len (nthcdr j pat~))
 (nthcdr i txt~))
 (nthcdr j pat~)))

j
pat: abcUVW
txt: xxxxxxUVWxxxxx
 i
Observation 3 – Destructor Elimination

\[(\text{append } (\text{firstn } n \ x) \ (\text{nthcdr } n \ x)) = x\]

So to prove:

\[\psi(x, (\text{firstn } n \ x), (\text{nthcdr } n \ x))\]

it is sufficient to prove

\[\psi((\text{append } a \ b), a, b)\]
Goal

(defthm fast-is-correct
 (implies (and (stringp pat)
 (stringp txt))
 (equal (fast pat txt)
 (correct pat txt))))
The Crux

(implies
 (equal (firstn (len (nthcdr (+ 1 j) pat~))
 (nthcdr (+ 1 i) txt~))
 (nthcdr (+ 1 j) pat~))
 (equal
 (correct-loop~ pat~ txt~
 (+ i (- (find-pmatchp
 (cons (car (nthcdr i txt~))
 (nthcdr j (cdr pat~)))
 pat~ (+ -1 j)))))
 (correct-loop~ pat~ txt~ (+ i (- j))))

99
Decomposition

The crux is to prove that correct-loop can skip ahead in big steps (like fast does).

But we can decompose this into two parts.
Decomposition

(a) correct-loop can skip ahead if there are no matches in the region skipped

(b) there are no matches in the region skipped by find-pmatchp
Summary of Step 2

A total of 9 definitions and lemmas are proved to establish

\[
\text{(defthm fast-is-correct}
\quad \text{(implies (and (stringp pat)}
\quad \quad \text{(stringp txt))}
\quad \text{(equal (fast pat txt)}
\quad \quad \text{(correct pat txt))))}
\]
Step 1

(defconst *m1-boyer-moore-program*

; Allocation of locals

; pat 0
; j 1
; txt 2
; i 3
; pmax 4 = (length pat)
; tmax 5 = (length txt)
; array 6 = (preprocess pat)
; c 7 = temp - last char read from txt

'(load 0) ; 0 (load pat)
(push "") ; 1 (push "")
(ifane 5) ; 2 (ifane loop)
(load 2) ; 3 (load txt)
(push ")") ; 4 (push ")")
(ifane 40) ; 5 (ifane win)
(goto 43) ; 6 (goto lose)

; loop:
(load 1) ; 7 (load j)
(iflt 37) ; 8 (iflt win))
(load 5) ; 9 (load tmax)
(load 3) ; 10 (load i)
(sub) ; 11 (sub)
(ifle 37) ; 12 (ifle lose)
(load 0) ; 13 (load pat)
(load 1) ; 14 (load j)
(aload) ; 15 (aload)
(load 2) ; 16 (load txt)
(load 3) ; 17 (load i)
(aload) ; 18 (aload)
(store 7) ; 19 (store v)
(load 7) ; 20 (load v)
(sub) ; 21 (sub)
(ifne 10) ; 22 (ifne skip)
(load 1) ; 23 (load j)
(push 1) ; 24 (push 1)
(sub) ; 25 (sub)
(store 1) ; 26 (store j)
(load 3) ; 27 (load i)
(push 1) ; 28 (push 1)
(sub) ; 29 (sub)
(store 3) ; 30 (store i)
(goto -24) ; 31 (goto loop)

; skip:
(load 3) ; 32 (load i)
(load 6) ; 33 (load array)
(load 7) ; 34 (load v)
(aload) ; 35 (aload)
(load 1) ; 36 (load j)
(aload) ; 37 (aload)
(add) ; 38 (add)
(store 3) ; 39 (store i)
(load 4) ; 40 (load pmax)
(push 1) ; 41 (push 1)
(sub) ; 42 (sub)
(store 1) ; 43 (store j)
(goto -37) ; 44 (goto loop)

; win:
(load 3) ; 45 (load i)
(push 1) ; 46 (push 1)
(add) ; 47 (add)
(return) ; 48 (return)

; lose:
(push nil) ; 49 (push nil)
(return) ; 50 (return))

)
The Schedule

How do we define the schedule for such a complicated piece of code?
The Schedule

(defun m1-boyer-moore-loop-sched (pat j txt i)
 (cond
 ((< j 0) (repeat 0 6))
 (((<= (length txt) i) (repeat 0 8))
 ((equal (char-code (char pat j))
 (char-code (char txt i)))
 (append (repeat 0 25)
 (m1-boyer-moore-loop-sched pat (- j 1)
 txt (- i 1)))
 (t (append (repeat 0 29)
 (m1-boyer-moore-loop-sched
 pat (- (length pat) 1)
 txt (+ i (delta (char txt i) j pat)))))))))
The Schedule

(defun m1-boyer-moore-loop-sched (pat j txt i)
 (cond
 ((< j 0) (repeat 0 6))
 (((<= (length txt) i) (repeat 0 8))
 ((equal (char-code (char pat j))
 (char-code (char txt i)))
 (append (repeat 0 25)
 (m1-boyer-moore-loop-sched pat (- j 1)
 txt (- i 1))))
 (t (append (repeat 0 29)
 (m1-boyer-moore-loop-sched pat (- (length pat) 1)
 txt (+ i (delta (char txt i) j pat)))))))
(defun m1-boyer-moore-sched (pat txt)
 (if (equal pat "")
 (if (equal txt "")
 (repeat 0 9)
 (repeat 0 10))
 (append (repeat 0 3)
 (m1-boyer-moore-loop-sched
 pat (- (length pat) 1)
 txt (- (length pat) 1))))
The Schedule

Defining the schedule is trivial if you have verified the algorithm.

They have identical recursive structure and justification.
(defthm m1-boyer-moore-is-fast
 (implies
 (and (stringp pat) (stringp txt))
 (equal (top (stack
 (run (m1-boyer-moore-sched pat txt)
 (make-state 0
 (list pat (- (length pat) 1)
 txt (- (length pat) 1)
 (length pat) (length txt)
 (preprocess pat) 0)
 nil *m1-boyer-moore-program*))))
 (fast pat txt))))
(defthm m1-boyer-moore-halts
 (implies
 (and (stringp pat) (stringp txt))
 (haltedp
 (run (m1-boyer-moore-sched pat txt)
 (make-state 0
 (list pat (- (length pat) 1)
 txt (- (length pat) 1)
 (length pat) (length txt)
 (preprocess pat)
 0)
 nil *m1-boyer-moore-program*))))
Main Theorem

Given

(defthm fast-is-correct
 (implies (and (stringp pat)
 (stringp txt))
 (equal (fast pat txt)
 (correct pat txt))))

and
(defthm m1-boyer-moore-is-fast
 (implies
 (and (stringp pat) (stringp txt))
 (equal (top (stack
 (run (m1-boyer-moore-sched pat txt)
 (make-state 0
 (list pat (- (length pat) 1)
 txt (- (length pat) 1)
 (length pat) (length txt)
 (preprocess pat) 0)
 nil *m1-boyer-moore-program*))))
 (fast pat txt))))

it is trivial to show:
(defthm m1-boyer-moore-is-correct
 (implies
 (and (stringp pat) (stringp txt))
 (equal (top (stack
 (run (m1-boyer-moore-sched pat txt)
 (make-state 0
 (list pat (- (length pat) 1)
 txt (- (length pat) 1)
 (length pat) (length txt)
 (preprocess pat) 0)
 nil *m1-boyer-moore-program*))))
 (correct pat txt))))
Demo 1
Conclusion

Mechanized operational (interpretive) semantics

• are entirely within a logical framework and so permit logical analysis of programs by traditional formal proofs, without introduction of meta-logical transformers (VCGs)

• are generally \textit{executable}

• are easily related to implementations

• allow derivation of language properties
• may allow derivation of intensional properties (e.g., how many steps a program takes to terminate)

• allow verification of system hierarchies (multiple layers of abstraction can be formalized and related within the proof system)
Thank You