
Automated Reasoning and
The ACL2 Theorem Proving

System

J Strother Moore
Matt Kaufmann

Department of Computer Sciences
University of Texas at Austin

{moore,kaufmann}@cs.utexas.edu

The 2006 Visions of Computing Lecture Series
Department of Computer Sciences

University of Texas at Austin
November 9, 2006

1

Machines that Reason:
The Big Picture

2

Instead of debugging a program, one should prove
that it meets its specifications, and this proof should
be checked by a computer program.

— John McCarthy, “A Basis for a Mathematical
Theory of Computation,” 1961

3

In order for a program to be capable of learning
something it must first be capable of being told it.

— John McCarthy, “Programs with Common Sense”
otherwise known as “The Advice Taker paper”, 1959.

4

ACM Software System
Award

Galois/Rockwell SHADE

Rockwell Greenhills OS

sixth ACL2 workshop

Y86

Dijkstra shortest path

AAMP7G MIL cert.

FM9801

Kalman filters

UCLID integration
prototype

IBM floating point
algorithms

Logic formalization
(Spain), ongoing

initial ACL2 workshop

Rockwell JEM1

real-time model

AMD K5 floating-point
division µcode

Paris-Harrington Ramsey

Motorola CAP

DEC alpha

Nqthm compiler

Motorola 68020

biphase mark

clock sync

Byzantine Generals

FM9001

Gauss

Unity

micro Gypsy compiler

Piton

KIT OS kernel

FM8502

Gödel

FM8501

unsolvability of halting
problem

RSA

BDX930 abandoned

prime factorization

expression compiler

binary adder

insertion sort

Boyer and Moore meet

AMD floating-point rtl,
ongoing

1970 1975 1980 1985 1990 1995 2000 2005 2010

5

Key Research Problems

1. Automatic Invention of Lemmas and New Concepts

2. How to use Examples and Counterexamples

3. How to use Analogy, Learning, and Data Mining

4. How to Architect an Open Verification Environment

5. Parallel, Distributed and Collaborative Theorem Proving

6. User Interface and Interactive Steering

7. Education of the User Community – and Their Managers

8. How to Build a Verified Theorem Prover

6

If we had some exact language : : : or at least a kind of
truly philosophic writing, in which the ideas were
reduced to a kind of alphabet of human thought, then
all that follows rationally from what is given could be
found by a kind of calculus, just as arithmetical or
geometrical problems are solved.

— Leibniz (1646–1716)

7

The ACL2 Theorem Prover

8

Introduction
ACL2 = ACL2 = ACLACL
A Computational Logic for Applicative Common Lisp
Following in the tradition of past Boyer-Moore provers, ACL2 is:I a first-order logic with mathematical induction;I a functional programming language; andI a computer program based on these, which can prove and

organize theorems.

For more information, see the ACL2 home page,
http://www.cs.utexas.edu/users/moore/acl2/:I DownloadsI Tutorials and documentationI Weekly UT seminarI Proceedings of the six past workshopsI PapersI Mailing lists

9

Introduction
ACL2 = ACL2 = ACLACL
A Computational Logic for Applicative Common Lisp
Following in the tradition of past Boyer-Moore provers, ACL2 is:I a first-order logic with mathematical induction;I a functional programming language; andI a computer program based on these, which can prove and

organize theorems.

For more information, see the ACL2 home page,
http://www.cs.utexas.edu/users/moore/acl2/:I DownloadsI Tutorials and documentationI Weekly UT seminarI Proceedings of the six past workshopsI PapersI Mailing lists

10

Introduction
ACL2 = ACL2 = ACLACL
A Computational Logic for Applicative Common Lisp
Following in the tradition of past Boyer-Moore provers, ACL2 is:I a first-order logic with mathematical induction;I a functional programming language; andI a computer program based on these, which can prove and

organize theorems.

For more information, see the ACL2 home page,
http://www.cs.utexas.edu/users/moore/acl2/:I DownloadsI Tutorials and documentationI Weekly UT seminarI Proceedings of the six past workshopsI PapersI Mailing lists

11

System DevelopmentI Begun in August 1989 by Bob Boyer and J Moore,
continuing their line of research in automated reasoning.I Further research and development by Matt Kaufmann and
J Moore since 1993, with contributions from many others
(though we are responsible for bugs!)I 8.4M of source files, programmed primarily in itself: forces
attention to sufficient functional language features and
efficient executionI Has evolved with user feedbackI Distribution contains about 40,000 theorems, many from
libraries of user-contributed books (input files)I Serves as a test suite for the ACL2 system

12

System DevelopmentI Begun in August 1989 by Bob Boyer and J Moore,
continuing their line of research in automated reasoning.I Further research and development by Matt Kaufmann and
J Moore since 1993, with contributions from many others
(though we are responsible for bugs!)I 8.4M of source files, programmed primarily in itself: forces
attention to sufficient functional language features and
efficient executionI Has evolved with user feedbackI Distribution contains about 40,000 theorems, many from
libraries of user-contributed books (input files)I Serves as a test suite for the ACL2 system

13

System DevelopmentI Begun in August 1989 by Bob Boyer and J Moore,
continuing their line of research in automated reasoning.I Further research and development by Matt Kaufmann and
J Moore since 1993, with contributions from many others
(though we are responsible for bugs!)I 8.4M of source files, programmed primarily in itself: forces
attention to sufficient functional language features and
efficient executionI Has evolved with user feedbackI Distribution contains about 40,000 theorems, many from
libraries of user-contributed books (input files)I Serves as a test suite for the ACL2 system

14

System DevelopmentI Begun in August 1989 by Bob Boyer and J Moore,
continuing their line of research in automated reasoning.I Further research and development by Matt Kaufmann and
J Moore since 1993, with contributions from many others
(though we are responsible for bugs!)I 8.4M of source files, programmed primarily in itself: forces
attention to sufficient functional language features and
efficient executionI Has evolved with user feedbackI Distribution contains about 40,000 theorems, many from
libraries of user-contributed books (input files)I Serves as a test suite for the ACL2 system

15

System DevelopmentI Begun in August 1989 by Bob Boyer and J Moore,
continuing their line of research in automated reasoning.I Further research and development by Matt Kaufmann and
J Moore since 1993, with contributions from many others
(though we are responsible for bugs!)I 8.4M of source files, programmed primarily in itself: forces
attention to sufficient functional language features and
efficient executionI Has evolved with user feedbackI Distribution contains about 40,000 theorems, many from
libraries of user-contributed books (input files)I Serves as a test suite for the ACL2 system

16

System DevelopmentI Begun in August 1989 by Bob Boyer and J Moore,
continuing their line of research in automated reasoning.I Further research and development by Matt Kaufmann and
J Moore since 1993, with contributions from many others
(though we are responsible for bugs!)I 8.4M of source files, programmed primarily in itself: forces
attention to sufficient functional language features and
efficient executionI Has evolved with user feedbackI Distribution contains about 40,000 theorems, many from
libraries of user-contributed books (input files)I Serves as a test suite for the ACL2 system

17

The ACL2 Community

Application−Oriented
Research

ACL2 PROJECT

AMD

Boeing IBM

Galois Intel

Microsoft

NI

NSA

RCI

w3.orgJHU

JPL

ACL2
System

Our Research Program

"Customers"

18

Logical Issues

ACL2 users are, in essence, applied logicians.

But we ACL2 system builders are also applied logicians!I ACL2 provides proof structuring constructs that have
rigorous logical foundations. These constructs have
previously been a source of subtle logical bugs.I We are developing sound connections with other proof
tools.I ACL2 processes some of its own source code (falls short
of formally verifying ACL2, but it’s a start...).

19

User Support

Our goal: Incorporate our research into industrial-strength
software.I Provide hypertext documentation (over 1200 pages if

printed).I Support the help list.I Generate interactive feedback, in particular:I robust error and warning messages; andI proof logs with a navigation tool.I Respond to user requests, which drive many of the
improvements.

20

Efficiency Issues

Example: Recent changes in theory management (collections
of rules) to support users at Rockwell Collins, Inc.

Some statistics from one of their proofs:

ACL2 3.0: 3156.21 secs then FAILS (out of memory)
ACL2 3.0.1: 3095.68 secs
ACL2 3.0.2 alpha: 265.00 secs

21

Some Current DirectionsI Connect with other reasoning tools (e.g., SAT and SMT
solvers and resolution provers) to leverage progress in the
field.I Do more search during proof process, while maintaining
controllability.I Incorporate memoization and hash-table work pursued by
UT CS professors Bob Boyer and Warren Hunt.I Support development of interfaces for use in
undergraduate courses.I And as always, support our users.

22

Some Current DirectionsI Connect with other reasoning tools (e.g., SAT and SMT
solvers and resolution provers) to leverage progress in the
field.I Do more search during proof process, while maintaining
controllability.I Incorporate memoization and hash-table work pursued by
UT CS professors Bob Boyer and Warren Hunt.I Support development of interfaces for use in
undergraduate courses.I And as always, support our users.

23

Some Current DirectionsI Connect with other reasoning tools (e.g., SAT and SMT
solvers and resolution provers) to leverage progress in the
field.I Do more search during proof process, while maintaining
controllability.I Incorporate memoization and hash-table work pursued by
UT CS professors Bob Boyer and Warren Hunt.I Support development of interfaces for use in
undergraduate courses.I And as always, support our users.

24

Some Current DirectionsI Connect with other reasoning tools (e.g., SAT and SMT
solvers and resolution provers) to leverage progress in the
field.I Do more search during proof process, while maintaining
controllability.I Incorporate memoization and hash-table work pursued by
UT CS professors Bob Boyer and Warren Hunt.I Support development of interfaces for use in
undergraduate courses.I And as always, support our users.

25

Some Current DirectionsI Connect with other reasoning tools (e.g., SAT and SMT
solvers and resolution provers) to leverage progress in the
field.I Do more search during proof process, while maintaining
controllability.I Incorporate memoization and hash-table work pursued by
UT CS professors Bob Boyer and Warren Hunt.I Support development of interfaces for use in
undergraduate courses.I And as always, support our users.

26

Some Current DirectionsI Connect with other reasoning tools (e.g., SAT and SMT
solvers and resolution provers) to leverage progress in the
field.I Do more search during proof process, while maintaining
controllability.I Incorporate memoization and hash-table work pursued by
UT CS professors Bob Boyer and Warren Hunt.I Support development of interfaces for use in
undergraduate courses.I And as always, support our users.

27

Conclusion

We are excited by our progress to date.

We thank Warren Hunt for repeatedly pursuing applications that
have pushed the envelope.

More generally, we want to acknowledge the ACL2 user
community, without whom progress would be much less.

We invite you to use ACL2!

http://www.cs.utexas.edu/users/moore/acl2/

28

