Simulation Infrastructure for Modeling Large
Scale Neural Systems

Charles C. Peck, James Kozloski, A. Ravishankar Rao, and
Guillermo A. Cecchi

IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

{cpeck, kozloski, ravirao, gcecchi}@us.ibm.com

Abstract. This paper describes the Large-scale Edge Node Simulator,
a problem solving environment for the implementation of large scale
models of neural systems. This work was motivated by the absence of
adequate modeling tools for this domain. The object-oriented Large-scale
Edge Node Simulator was developed after a rigorous requirements anal-
ysis for this class of simulations. An example use of this environment
for a complex neural simulation of cortical plasticity is presented. It is
shown that the Large-scale Edge Node Simulator is capable of meeting
the challenges of simulating large scale models of neural systems.

1 Introduction

This paper describes the Large-scale Edge Node Simulator, a problem solving
environment for the implementation of large scale models of neural systems.

Neural systems are highly complex, structured, and can be viewed from many
levels of abstraction. For example, the human brain is composed of roughly 100
billion neurons interconnected by 100 trillion synapses. These fundamental ele-
ments are assembled into approximately 850 anatomically identifiable structures
[1], such as the cerebellum and the visual cortex, each consisting of specific
classes of neurons interconnected in stereotyped patterns. These structures have
patterned connections to and from other structures. Finally, these networks of
structures interact with the sensors and muscles of the body to generate behavior
that is appropriate for a particular environmental context.

Since the earliest experimental studies of neural dynamics [2], simulations
have provided value to the understanding of neural systems. Simulations can
guide experiments by providing a conceptual framework within which to inter-
pret data, form hypotheses,and allow exploration of phenomena that are not
directly accessible. For instance, simulations have been used to model epileptic
seizures for clinical purposes [3]. At a higher level of abstraction, large scale
simulations can provide a testbed for exploring the fundamental computational
principles of global brain function. The value and impact of simulations is ex-
pected to increase dramatically with the continuing improvement of computa-
tional performance and the full exploitation of recently developed experimental

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 1127-[[136, 2003.
© Springer-Verlag Berlin Heidelberg 2003

1128 C.C. Peck et al.

techniques, such as PET and fMRI, multi-electrode recordings from brain areas,
and optical recordings.

Adequate tools for large scale neural simulations do not presently exist. Cur-
rently available simulation environments are either general purpose or tailored
to a specific class of neural models. General purpose tools lack support for
neural system-specific modeling, such as simple methods for generating com-
plex network topologies and global architectures. Conversely, environments like
Neuron™ and Genesis™ provide tools for detailed compartmental modeling of
individual neurons with few capabilities for models at other levels of abstrac-
tion. Furthermore, the low abstraction level of compartmental modeling makes
large-scale simulations of neural systems computationally intractable.

The remainder of the paper presents the specific challenges of large scale
neural system modeling and their technological implications, a description of
the Large-scale Edge Node Simulator and how this environment solves these
challenges, an example application of the environment, and a brief conclusion.

2 Challenges of Large Scale Modeling of Neural Systems

Large scale modeling of neural systems imposes several key technical challenges,
including extensibility, scalability, and interoperability. In addition, challenges
specific to each phase of the experimental cycle must also be satisfied.

Extensibility is required to enable the introduction and execution of arbitrary
models. Furthermore, the simulation must not constrain these models to operate
at a specific level of abstraction. As examples, one may desire to model: the visual
cortex as a collection of thousands of minicolumn model instances, a minicolumn
as a collection of about 100 neuron model instances, or a neuron as a collection
of hundreds of compartmental model instances.

Scalability is required to support simulations with complexity spanning many
orders of magnitude. For example, a simulation at the level of neurons and
synapses might involve a few hundred neurons and thousands of synapses, or
it might require > 10® neurons and > 10% synapses to model a large structure,
such as the hippocampus.

Interoperability of models is required to support the needs of the neurosci-
entific community. These needs include exchanging and refining models, com-
municating experimental phenomena, developing higher level models based on
models developed by others, and replicating results.

Conducting a complex experiment takes a considerable amount of time from
conception through data analysis. While the design and implementation of
most simulation systems emphasizes run-time execution performance, experience
shows that the time required for setup and initialization of complex simulations
exceeds that for run-time execution by many orders of magnitude. The same is
true for data collection and analysis. To reduce the time required for a simu-
lation experiment, the simulation environment must therefore expedite each of
the three phases of the experimental lifecycle (i.e., setup and initialization, run-

Simulation Infrastructure for Modeling Large Scale Neural Systems 1129

time execution, and data collection and analysis). The remainder of this section
addresses the specific challenges in each of the three phases.

2.1 Setup and Initialization

To be most efficient, the manner in which the simulation is setup and initial-
ized should be well matched to the manner in which the experiment designer
conceptualizes large scale neural systems. In particular, there should be support
for instantiating multiple types of models and for establishing complex patterns
of connectivity. This latter requirement is especially important for maintaining
scalability, as point-to-point specification of connections would not be possible
for experiments consisting of large numbers (possibly millions) of interconnected
model instances.

The simulation environment must also support the parameterization of the
model instances. This challenge is exacerbated by the large numbers of instances,
that they may be instantiated from arbitrary models, and that the parameters
for each instance may vary or even depend upon the configuration context.

In addition to parameterizing the instances of models, the simulation en-
vironment must also support parameterization of connections or relationships
among models. For example, the effect one neuron has on another is dependent
on where the synapse occurs on the postsynaptic neuron. This position informa-
tion, which may be parameterized, is not a property of either neuron, rather it
is a property of the relationship between them.

2.2 Run-Time Execution

Computational efficiency is critical for large scale simulations. The run-time en-
vironment must effectively utilize all available computational resources, such as
the CPUs and system memory. In addition, the run-time environment should
support both time-step and discrete time event update modes to allow the se-
lection of the most appropriate mode for a particular model. For example, since
neuron models are continuously and frequently updated they should use the
time-step mode. In contrast, models of environmental stimuli may use fewer
resources with the higher overhead, but far less frequent, discrete time event
updates.

The run-time environment must also support control of computation sequenc-
ing at each time step. This control enables integration of heterogeneous models
and greater parallelism. Such control would enable, for example, the ability to
execute all synapse model instances in parallel prior to executing any neuron
model instances. Once all synapse instances have been executed, the neuron
model instances could then be executed, also in parallel.

2.3 Data Collection and Analysis

Data collection and analysis is specific to the particular experiment being per-
formed, and must be easy, efficient, involve minimal code development, and max-
imize the reuse of third party data analysis tools, such as data visualization and

1130 C.C. Peck et al.

statistical analysis packages. For ease and efficiency, data collection and analy-
sis setup should be done in the same way as simulation setup and initialization.
Furthermore, it should be possible to extract specific data from individual model
instances or desired collections of instances.

The simulation environment must also support a rich set of data collection
and analysis operations. For example, it must be possible to perform data collec-
tion every time step, when a predicate is satisfied, or when a user interactively
indicates. It must also be possible to capture time-series of variables of interest.
Finally, the simulation environment should provide interactive access to arbi-
trary data while a simulation is running.

3 A Large-Scale Neural Simulation Infrastructure

3.1 Overview

This section presents a detailed description of the Large-scale Edge Node Simu-
lator approach for satisfying each of the requirements for large-scale simulations
of neural systems.

3.2 Modeling Architecture

The primary design philosophy for the Large-scale Edge Node Simulator was to
allow experiment designers to express their designs in a manner consistent with
their conceptualizations, to allow model developers to write their models for
maximum computational efficiency, and to bridge the gap between simulation
specification and model development with technology.

This philosophy is illustrated in Figure [l The “Simulation Design” refers
to the experimenter’s conceptualization of the experiment. The “Domain Level”
refers to a specification using the terminology and knowledge framework pro-
vided by neuroscience. The “Network Level” refers to the technology bridge and
the “Computational Level” refers to the level at which model development is
performed.

A description of how each of these levels is implemented is given below.

Domain level. To allow the simulation designer to create domain level mod-
els without requiring simulation system expertise, the Large-scale Edge Node
Simulator includes a specification language. This language allows domain level
modeling to proceed using familiar terms, and for domain level simulation design-
ers to access, parameterize, and compose existing models automatically based
on a high level specification.

Network level. To bridge the gap between domain level modeling and its
mapping onto the computational infrastructure, the network level generates an
isomorphic description of the simulation in the form of an edge-node graph.

Simulation Infrastructure for Modeling Large Scale Neural Systems 1131

Computational

Simulation Design Domain Level Network Level Level
Network specification:
Edge Node Nod
NodeType Minicolumn; Typel Typel Type2

Grid V1

Edge

out »; Modifies
Attr
Init)

Node'
3

Fig. 1. Summary of design philosophy for the problem solving environment.

Both domain level simulation designers and model code developers can address
network elements directly through this graph description. The graph is funda-
mentally constrained in that nodes connect directionally to an arbitrary number
of edges while edges connect directionally to precisely two nodes.

To a simulation designer, edges and nodes represent network elements that
are invoked within a specification using domain level names (eg., neuron,
synapse, minicolumn). To a code developer, these same network elements are
computational models that support standard interfaces for initialization, execu-
tion, browsing, and data collection and analysis.

Connections within the edge-node graph are traversed through hierarchical
collections of node repertoires and edge connection sets. Some aspects of this
hierarchy have been proposed previously in other simulation system designs [4].
There are two types of repertoires. Composite repertoires are composed of other
repertoires, and grid repertoires consist of a multidimensional array nodes. Grids
provide access to nodes according to their grid coordinate system and/or their
model type. Grids have arbitrary dimensionality and may support an arbitrary
number of nodes at each grid coordinate. Finally, each repertoire provides access
to all edges that are entirely contained within it.

Computational level. To provide a basis for model development, the Large-
scale Edge Node Simulator provides standard API’s for model initialization,
parallelization, memory management, execution, browsing, and data collection.
These APIs assume a uniprocessor or shared memory multiprocessor system.
Model developers can use these APIs to efficiently exploit the available compu-
tational resources.

1132 C.C. Peck et al.

3.3 System Architecture

As shown in Figure 2] the Large-scale Edge Node Simulator possesses data stores
containing specification files and model libraries, and a simulation infrastructure
that includes an initializer and simulation kernel. The initializer consists of a
parser for reading specification files and generating the simulation implementa-
tion and a loader for dynamically loading the specified models. The simulation
kernel owns and executes computational categories, which themselves contain
executable models, and the edge-node graph description of the simulation. In
addition, a Java-based data browser and simulation control system, and dis-
tributed third-party tools for data collection and analysis are depicted running
on systems that form dynamic links to the simulation to perform these functions.

Simulation Infrastructure

e Model
Specification Initializer Libraries
Parser Loader
| Simulation Kernell
Edge-Node Graph/Computational

o Categories
| — = L

Browser Data Collection
and Analysis Tools

Fig. 2. Architectural design of problem solving environment.

Within this system, data about the simulation originates in the specification
files and model libraries. The specification is read by the parser, which, after
dynamically loading the specified models and initialization algorithms, gener-
ates instances of edges and nodes. These instances are then composed into an
edge-node graph using the specified connection algorithms. Nodes and edges,
their connectivity, and the relationships between them, are then parameterized
algorithmically. Both browsing systems and data collection and analysis tools
access the graph through the network level hierarchy.

3.4 Initialization Solution

Specification language. The specification language allows the setup and ini-
tialization of large-scale simulations of neural systems to proceed using the terms
with which the simulation designer conceptualizes these systems. The language

Simulation Infrastructure for Modeling Large Scale Neural Systems 1133

is based on a generic programming paradigm, is similar to C+-+ in its gram-
mar, and uses Standard Template Library syntax. Functor (function objects),
variables, and scripts are each specifiable using the language. Multiple types of
models can be readily specified for instantiation, then parameterized and con-
nected together in complex patterns using functors. Relationships between mod-
els are parameterized separately from the models themselves. The specification
language also supports setup and initialization of data collection and analysis.

Loader. For extensibility, all components (eg., nodes, edges, and functors) of the
simulation are dynamically loaded from model libraries. The simulation system
provides a means to parameterize loaded models easily from within a specifica-
tion. To support efficient data exchange between arbitrary models, an interface
negotiation protocol has been provided that allows the initializer to verify that
specified connections are supported, and to establish a direct link between data
objects once, prior to simulation run-time.

3.5 Run-Time Solution and Simulation Kernel

Thread-pools of CPU-bound kernel threads. Thread pools are available to
model code developers as they design and implement computational categories
for high performance. Threads are managed by the simulation engine, and bound
to all available CPUs in a shared memory system.

Synchronous and asynchronous event queues. To achieve high perfor-
mance, the simulation engine supports two simulation modes for model compu-
tation: time-step and discrete-event. These modes are integrated by the simula-
tion engine through the use of both synchronous and asynchronous event queues.
Code developers can therefore choose to implement models using the more effi-
cient mode of operation, and simulation designers can specify the use of these
models arbitrarily within a simulation.

Arbitrary phase ordering. The simulation infrastructure allows model code
developers to arbitrarily control the sequencing of their model computations
through assignment of computational phases during initialization. During im-
plementation, developers assign computational categories their relative compu-
tational phases (e.g., compute edges before nodes), which are then made absolute
when models are loaded during initialization.

3.6 Data Collection and Analysis Solution

The simulation infrastructure creates a easy and efficient means to access, collect,
and analyze arbitrary data from within a simulation.

1134 C.C. Peck et al.

Composable Collection and Analysis Tools. The operations of data col-
lection and analysis are implemented as composable, reusable elements within
the simulation infrastructure. Data collection objects are specified, parameter-
ized, and composed using domain modeling terms from within a specification.
These objects collect arbitrary data from arbitrary simulation components or
collections of components. In addition, the data collection and analysis solu-
tion supports an arbitrary, composable triggering scheme, such that data can be
collected continuously, over any specified time interval relative to a simulation
event, or upon a user command.

Network, Data, and Analysis Browser. Users can access all simulation
elements with a Java-based network, data, and analysis browser. The browser
allows a user to navigate the edge-node graph, select data for collection and
analysis, and invoke arbitrary analysis tools. Tools can be created from pre-
specified types, or can be dynamically loaded from tool libraries.

Integrated Open Source Data Visualization Tool. Third party, open
source data visualization is fully integrated within the simulation infrastructure.
The visualization tool, DataExplorer™, employs a socket interface to access
active data collection and analysis tools within the simulation. Sockets can be
created during initialization or dynamically, then directed to DataExplorer™
for real-time data display. Because data collection and analysis tools can access
arbitrary data, the entire simulation is accessible for visualization.

4 Simulation Example

4.1 Rationale and Simulation Overview

In order to validate our simulation environment, we implemented a previously
published neural simulation [5], which modeled results from experiments on the
plasticity of connections in somatosensory cortex [0].

The somatosensory cortex is organized into regions, such that each hand digit
maps to a specific region. Neurons within each region are organized into tight
clusters called neuronal groups, such that synaptic weights between neurons
within a neuronal group is significantly higher than weights between neurons in
different groups. This group structure is hypothesized to arise as a consequence
of self-organization through synaptic changes driven by the sensory input.

In our simulation, the somatosensory cortex receives inputs from four digits.
The digits were modeled using two receptor sheets, derived from a grid of size
32x16. Each receptor sheet projects to a patch of cortex, overlaid on a grid of
size 32x16. The simulation includes three classes of neurons and two classes of
synaptic connections, for a total of 1500 neurons and 170,000 synaptic connec-
tions. The simulation also includes rules for synaptic modification, and specific
patterns of anatomical connectivity between the network elements. The simula-
tion was run on a 4-processor IBM RS /6000 machine running AIX Version 4.3.2.
The Large-scale Edge Node Simulator was integrated with a third party data
analysis tool, the IBM DataExplorer™ data visualization system.

Simulation Infrastructure for Modeling Large Scale Neural Systems 1135

4.2 Specification Example

The simulation was implemented in our environment using the specification lan-
guage in about 50 lines. The following excerpt shows the ability of the language
to capture complex configurations in a compact way.

Cortical simulation specification excerpt:

1 NodeType ExcCell;

2 NodeType InhCell;

3 Grid Cortex

4 {

5 Dimension(32,16);

6 Layer (excitatory, ExcCell, UniformLayout(2), <kind="Exc">);
7 InitNodes(. [].Layer(excitatory), nodeDefault);

8 Layer (inhibitory, InhCell, UniformLayout(1), <kind="Inh">);
9 InitNodes(. [].Layer(inhibitory), nodeDefault);

10 list<int> e2e = {1,8,8%};

11 list<int> e2i = {1,4,8,24,32};

12 list<int> i2e = {1,8,8};

13 list<int> i2i = {0};

14 centerSurround(.[],.[], e2e, e2i, i2e, i2i);

15 };

In this specification, two node types are declared “ExcCell” and “InhCell”
(lines 1,2). Next a grid repertoire “Cortex” is declared (line 3), its size and
dimensionality specified (line 5), its layers declared with a uniform distribution
of nodes (lines 6,8), and its nodes initialized with the default parameter sets
(lines 7,9). Finally, a functor, “centerSurround,” is employed that connects the
Cortex’s own “excitatory” and “inhibitory” layers (specified as “. [1” in the
first two arguments of centerSurround) using a geometric pattern specified in
four list arguments (lines 10-13).

4.3 Simulation Results

Figure Bl shows the output from the DataExplorer™ module of our simulation

after running this experiment. The left panel shows the pattern of neural ac-
tivation in response to a single stimulus in both the inhibitory (leftmost) and
excitatory (rightmost) layers of the cortical sheet model. The right panel shows
the connections from the receptor sheet to the somatosensory cortex, after re-
peated stimulation of the digits. The synaptic strength of the connections is
color-coded. The emergence of neuronal groups can be observed as clusters of
high synaptic strength, in agreement with previous results [15].

5 Conclusion

This paper was motivated by the lack of adequate problem solving environments
for implementing large scale simulations of neural systems. Consequently, this

1136 C.C. Peck et al.

BTN 1o+ Socketecoeetnet 3 SLIE

File Windows Connection Options Help | File (e Windows Connection Options Help

Fig. 3. Results of test simulation visualized with DataExplorer™.

paper has identified the challenges associated with meeting the needs of this
domain. Based on these challenges, the Large-scale Edge Node Simulator en-
vironment was designed and implemented. It has been demonstrated that the
environment is able to implement, execute, and analyze large scale, complex sim-
ulations of neural systems. Finally, the has shown that it is possible to meet the
challenges of large scale simulations of neural systems and that the Large-scale
Edge Node Simulator has done so.

Acknowledgements. The authors would like to acknowledge the contributions
of Bill Arnold in the software development process of the Large-scale Edge Node
Simulator.

References

1. See http://rpresgi.rpre.washington.edu/neuronames/index1.html

2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117:500-544 (1952).

3. Schiff, S.J.: Forecasting brain storms, Nat. Med. 4(10):1117-8 (1998).

4. Reeke, G.N., Edelman, G. M.: Selective Networks and Recognition Automata, An-
nals New York Academy of Sciences. 426:181-201 (1984).

5. Pearson, J.C., Finkel, L.H., Edelman, G.H.: Plasticity in the organization of adult
cerebral cortical maps: a computer simulation based on neuronal group selection, J.
Neuroscience, 7(12): 4209-4233, December 1987.

6. Merzenich, M.M., Kaas, J.H., Wall, J.T., Neson, R.J., Sur, M., Felleman, D.J.: To-
pographic reorganization of somatosensory cortical ares 3b and 1 in adult monkeys
following restricted deafferentation, Neuroscience 10:639-665, 1983.

	1 Introduction
	2 Challenges of Large Scale Modeling of Neural Systems
	2.1 Setup and Initialization
	2.2 Run-Time Execution
	2.3 Data Collection and Analysis

	3 A Large-Scale Neural Simulation Infrastructure
	3.1 Overview
	3.2 Modeling Architecture
	3.3 System Architecture
	3.4 Initialization Solution
	3.5 Run-Time Solution and Simulation Kernel
	3.6 Data Collection and Analysis Solution

	4 Simulation Example
	4.1 Rationale and Simulation Overview
	4.2 Specification Example
	4.3 Simulation Results

	5 Conclusion
	References

