Generating Programs from Connections of Physical
Models

Gordon S. Novak Jr. *
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

novak@cs.utexas.edu

October 27, 1997

Copyright (©)1994 by IEEE.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

This article appears in Proceedings of the Tenth Conference on Artificial Intelligence for
Applications, San Antonio, Texas, March 1-4, 1994, pp. 224-230. IEEE Computer Society
Press Order No. 5550-02.

Abstract

We describe a system thal constructs a computer program from a graphical specification
provided by the user. The specification consists of diagrams that represent physical and
mathematical models; connections between diagram ports signify that corresponding quantities
must be equal. A program (in Lisp or C) is generated from the graphical specification by data
flow analysis and algebraic manipulation of equations associated with the physical models.
Equations, algebraic manipulations, and unit conversions are hidden from the user and are
performed automatically. This system allows more rapid generation of programs than would
be possible with hand coding.

*Computer equipment used in this research was furnished by Hewlett Packard.



1 Introduction

Scientific programming is typically done in languages such as Fortran or C. It usually requires
the programmer to select appropriate equations to model the physics and mathematics of
the problem, manually manipulate the equations to compute the desired quantities, and
convert units of measurement. Although powerful algebraic manipulation packages such as
Mathematica [19] exist, they are not well integrated with the programming process. There
are few machine checks of the correctness of equations or unit conversions, making it possible
for errors to be overlooked.

In this paper, we describe a system called VIP (for View Interactive Programming). VIP
allows a scientific program to be specified by means of graphical connections of diagrams
that represent physical or mathematical principles. Each principle has a set of equations
associated with it. When a specification is complete, a program is generated from the
graphical specification by data flow and by symbolic manipulation of equations. The resulting
program, in the GLISP language [11], can then be compiled into Lisp or, with an additional
mechanical translation step, into readable C. The compilation process performs automatic
conversion and checking of units of measurement.

The examples that have been done using VIP have shown that programs can be generated
much more rapidly than is possible with conventional programming. The radar example,
described below, is about 22 lines of code in C; it was produced in two minutes of user inter-
action using VIP. These results are an encouraging indication that this kind of programming
interface and program generation may lead to increased programmer productivity.

2 Related Work

The SIGMA system [4] has a goal similar to ours: helping scientists to perform calculations
based on a knowledge base of physical models. SIGMA differs from VIP in several ways.
First, SIGMA is based on direct use and connection of equations. VIP is based on connections
of physical principles, each of which may involve multiple equations. SIGMA, as reported
in [4], did not yet have a graphical interface, although one was planned. In SIGMA, the
user must specify directionality of data flow; we prefer to let the system determine data
flow, removing this burden from the user. Finally, SIGMA is interpretive: it produces a
queue of equations whose inputs are known and that are therefore ready for solution. VIP,
in contrast, produces a program, making VIP useful both for quick calculations and for
generating application programs.

The Sinapse system [3] synthesizes programs that solve differential equations by finite
difference methods. This system is notable for generating programs that are moderately
large (hundreds to thousands of lines) that deal with large spatial arrays and must therefore
be efficient.

The use of diagrams as a means of communication and as a reasoning aid is common in sci-
ence and



engineering; Larkin and Simon [7] consider psycho-logical benefits of diagrams. With Bulko
[13] [16], we have investigated the use of diagrams together with English text as a means
of specifying physics problems. Diagrams are heavily used together with equations in books
of standard formulas such as that of Gieck [2]. The use of circuit diagrams has a long
history in electrical engineering. Related kinds of diagrams have also been used to specify
programs. The LabView system [6] allows the creation of “virtual instrument” programs
for measurement, display, and control by making graphical connections of computational
modules; the connections represent data flow. Data flow graphs have also been used to
specify parallel computations [10].

There have been many approaches to visual or graphical programming environments.
Shu [17] contains a good selection of representative papers.

3 An Example

We begin with a simple example to illustrate the use of VIP. The problem could be stated
as follows:

An object is dropped and hits the ground with velocity vel (in meters/second).
From what height was it dropped?

it
Done
FALLING Redo

Mowve
fjﬂfﬁ%ﬁﬁigﬁi: Expand
Delete
Geometry

Physics
User Law
v$ VEL

\

Make Var
A Specifty Type
115

Type-1in

Constant

Figure 1: Height from which Object was Dropped

The user invokes VIP with a list of the input variables for the program and their types,
and the name of the program that is to be produced:



(vip *((vel (units real (/ meter second))))
't1)

In this case, there is a single real input variable vel whose unit is (/ meter second). VIP
responds by opening a window that contains a command menu, boxes for the input variables,
and an OUTPUT variable (Fig. 1).

In order to model the physics of this problem, the user selects Physics from the command
menu. A series of menus is then presented to allow the user to select the desired physical
model from a hierarchical structure. The user selects Kinematics from the physics menu,
then Fallingfrom the kinematics menu. The Falling diagram is then added to the window.
The user moves the variable boxes into appropriate positions, then connects these boxes to
ports of the Falling diagram by clicking the mouse on the boxes and the ports to which
they are connected. The system responds by drawing lines to show the connections that
have been made. Finally, the user selects Done from the command menu. The system
then produces a program in the GLISP language by data flow and by algebraic solution of
equations associated with the Falling physical model. The GLISP program is shown below:

(LAMBDA (VEL: (UNITS REAL (/ METER SECOND)))

(LET (QUTPUT)
(OUTPUT :=

(* (/ °(Q 9.80665 (/ M (x 5 8))) 2)

(EXPT (/ VEL ’(Q 9.80665
(/ M (x S58))))
2)))
OUTPUT))

The form *(Q 9.80665 (/ M (* S S))) is a numeric constant for the acceleration of grav-
ity, including its unit of measurement. This program can be compiled into plain Lisp, as
shown below:

>(glcp ’t1) ; compile function ti
result type: (UNITS REAL METER)
(LAMBDA (VEL)
(LET (OUTPUT)
(SETQ OUTPUT (* 0.0509858 (EXPT VEL 2)))
OQUTPUT) )

The compiler has folded constant computations and has derived the units of measurement
of the result. The program can also be mechanically translated into C:



>(g1toc '£1) ; translate function t1 to C

/* Unit of T1 is METER */
float t1 (vel)
float vel;
{
float output;
output = 0.0509858 * square(vel);
return output;

b

This is a very simple example. Nevertheless, it required some algebraic manipulation of
equations, the use of a physical constant, and derivation of the units of the result. All of
these details were performed automatically by VIP; it is clear that it is much easier for the
user to specify such a program by making diagrammatic connections than by manual algebra
and programming. Larger examples are given later.

4 User Interface

VIP’s user interface allows the user to take most of the initiative in specifying a program.
The initial display consists of a command menu, a set of boxes that represent input variables,
and a single OUTPUT variable. Variables can be data structures as well as simple numeric
variables. The user builds a program specification by selecting physical or mathematical
models and adding them to the workspace, and by connecting the models appropriately.
The major commands that can be selected from the Commands menu are as follows:

1. Geometry and Physics allow the user to select mathematical and physical models and
add them to the workspace. Each of these commands causes menus to be presented
to the user for selection of the desired model from a tree-structured hierarchy. The
top level of the Physics hierarchy includes Kinematics, Dynamics, Force, and Energy.
When the user has selected the desired model, the system presents a “ghost” box so
that the user can place it in the desired position. The diagram associated with the
model is then drawn. (An interactive drawing utility program makes it easy to add
new principles and their associated diagrams to the system.)

2. The Make Var command allows the user to specify the name and type of a variable,
which is added to the workspace. This feature allows the user to specify intermediate
variables if desired. If the type of a variable is a structured type, a new structure can
be created from a set of component values.

3. The Specify Type command allows the user to specify the type and units of measure-
ment of a variable.

4. The 0P command selects arithmetic operations, such as +. This allows the user to
specify equations that do not exist as predefined models.



5. The Type-in command allows the user to enter a numeric constant and its units.

6. The Constant command allows selection of commonly used physical constants (such
as the speed of light) from a menu hierarchy.

Each diagram that represents a physical principle has “buttons” or ports that are shown
on the diagram and labeled with mnemonic identifiers. Each button corresponds to a variable
in the underlying set of equations for the model. In the diagram shown in Fig. 1, the Falling
diagram has three buttons, labeled h, v, and t; these represent the height from which an
object is dropped, the final velocity, and the time of falling, respectively. When the mouse
pointer is moved close to a button, the button is highlighted by displaying a small box around
it; if the mouse button is clicked while the pointer is inside the box, the button is selected.
In the case of variables or constants, the entire box is treated as a single button. The user
can connect two buttons by selecting them, in either order; the system responds by drawing
a line connecting the selected buttons.

Once the user has made a complete specification, with the desired result connected to
the OUTPUT box, the user selects the Done command. The system then converts the graph
specification into a program.

5 Program Derivation

The diagrammatic specification given by the user corresponds to an undirected graph; this
graph must be converted into executable code. The conversion is accomplished by data flow
analysis and by algebraic manipulation. Each constant and input variable is assumed to be
“solved”. The value of a solved variable is propagated, in the form of a Lisp expression, to
all of the ports to which it is connected that do not already have values.

When a value is propagated into a port of a model, the equations associated with the
model are examined to see whether any of them can be solved. If an equation has only a
single unknown, it can be algebraically rewritten to express that unknown in terms of solved
variables. This makes that unknown solved, which can lead to the solution of other equations
within the model itself; the solved variable will also be propagated to other models to which
it is connected. If the expression that represents the solution of a variable is larger than a
certain size, or is connected to multiple ports, a local temporary program variable is created,
and code is output to set its value to the value of the expression; the program variable name
then replaces the expression as the code for the variable. Because this process is performed
only when a variable becomes solved based on previously solved values, it is guaranteed that
the inputs to the expression will be available when the expression is computed. If a value is
propagated into the OUTPUT variable, the specification of the program is complete.

In the case of the example of Fig. 1, the equations associated with falling are:

(setf (get ’falling ’equations)
"((=g ’(q 9.80665 (/ m (*x s 5))))



(=h (x (/ g 2) (expt time 2)))

(=v (*x g time)) ) )

When the input vel is propagated into the falling box as the value of the local variable v,
this equation set is examined to see which equations can be solved. The first equation, which
defines the gravitational constant, is trivially solved. The third equation then has only one
unknown, and it can be solved for time:

(= TIME (/ V G))

This causes the second equation to become solved in terms of time, so that all equations are
now solved.

Variables whose types are data structures are treated differently from equations. When
a value is propagated into a component of a structured variable, the value is saved. When
all the components have become defined, code is produced to create an instance of the
structured variable and assign it to the variable name. The structured variable itself can
then be propagated.

This simple algorithm is surprisingly powerful, and it has been able to solve most of the
examples we have tried. Although it is unable to solve simultaneous equations in the general
case, 1t often is able to do so in practice. If there is a way to solve for a single variable at a
time, this can allow simultaneous equations to be solved in steps. The equation handling of
VIP allows redundant equations to be specified within a model, so that the model builder
can predefine ways of solving for variables based on various sets of known quantities. When
failure to solve simultaneous equations occurs, it is generally because multiple models are
connected by multiple ports simultaneously. Clearly, VIP should be extended to be able to
solve simultaneous equations.

The result of the program derivation process is a program expressed in the GLISP
language. GLISP [11] is a high-level language with abstract data types that is compiled into
Common Lisp; with an additional mechanical translation step, the Lisp output of GLISP can
be translated into readable C. Several features of GLISP facilitate the production of programs
by VIP. GLISP performs automatic conversion and checking of units of measurement. There-
fore, VIP does not have to be concerned with units; GLISP inserts appropriate conversion
factors automatically when needed. However, VIP probably should be modified to examine
units to provide earlier detection of errors. GLISP allows overloading of operators, e.g., the
operator + can be used with vectors as well as scalars; this allows the operators of VIP to
be polymorphic. GLISP translates structure accesses and code that creates data structures
into appropriate code for the implementation of the data structures; this allows VIP simply
to refer to the components of structures without any concern for their implementations. We
have investigated the creation of interfaces to subroutines [14] and the use of views of data
as different types [15]; it would be useful to integrate these capabilities with VIP.



6 Larger Examples
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Figure 2: Calculation of the Mass of the Sun

In this section, we consider some larger examples that have been solved using VIP. The first
example, shown in Fig. 2, is a physics problem: calculation of the mass of the sun. In this
example, we follow Newton’s reasoning: the gravitational attraction between the earth and
the sun is equal to the force required to keep the earth in its (nearly) circular orbit. The
user selects a Gravitation model and a Centrifugal-Force model and adds them to the
workspace. The £ buttons of these two models are connected, constraining the forces to
be equal. A Constant for the mass of the earth is selected and connected to mass buttons
in each model; likewise, the earth-sun distance is connected to the radius of each model.
The second mass button in the Gravitation model, which will be the mass of the sun,
is connected to the OUTPUT box. Following these actions, only the velocity of the earth in
its orbit remains unspecified. This can be found by noting that the earth goes around the




sun once each year. A Circle model is selected from the Geometry menu, and the earth-
sun distance is connected to its radius. A division operator is then selected using the OP
command; the circumference of the earth’s orbit is connected to the numerator, and a time
constant of one year is connected to the denominator. The output of this operator is then
connected to the velocity in the Centrifugal-Force model. The resulting program has no
inputs; it simply calculates a numeric result, which is 1.966E30 kilograms.
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Figure 3: Position of Aircraft from Radar Data

Our second example, shown in Fig. 3, is a small but realistic version of an application
problem: the calculation of the position of an aircraft from data provided by an air search
radar. We assume that the radar provides as input the time difference between transmission
and return of the radar pulse, as well as the angle of the radar antenna at the time the
return pulse is detected. When the radar illuminates the aircraft, we assume that the
aircraft transponder transmits the identity of the aircraft and its altitude. The position and
altitude of the radar station are assumed to be known. These items comprise the input data



provided to the program. We assume that the units of measurement of the input data are
externally specified (e.g., by hardware devices), so that the program is required to use the
given units.

(LAMBDA (TIME-DIFF:
(UNITS INTEGER (* 100 NANOSECOND))
AIRCRAFT-ALTITUDE:
(UNITS INTEGER (* 10 FOOT))
RADAR-ALTITUDE:
(UNITS INTEGER (* 10 FOOT))
RADAR-ANGLE: (UNITS INTEGER
(/ (x 2 PI RADIANS) 4096))
RADAR-UTM: UTM-CVECTOR)
(LET (OUT3 QUTPUT D2 OUT4 X3 Y2 X4
RELPOS : UTM-CVECTOR)
(OUT3 := (- AIRCRAFT-ALTITUDE
RADAR-ALTITUDE))
(D2 := (x *(Q 2.998E8 (/ M S)) TIME-DIFF))
(0UT4 := (/ D2 2))

(X3 := (SQRT (- (EXPT QUT4 2)
(EXPT QUT3 2))))
(Y2 := (x X3 (SIN RADAR-ANGLE)))
(X4 := (x X3 (COS RADAR-ANGLE)))
(RELPOS := (A UTM-CVECTOR NORTH Y2
EAST X4))
(QUTPUT := (+ RELPOS RADAR-UTM))

QUTPUT))

Figure 4: GLISP Program Generated by VIP for Radar Problem

The user first decides to model the travel of the radar beam as an instance of uniform-motion.
The user selects the Physics command, then kinematics from the Physics menu, then
uniform-motion from the kinematics menu. The input value TIME-DIFF is connected to
the time button t of the motion. Next, the user selects Constant and obtains the constant
for the speed of light, denoted C, and connects it to the velocity v of the motion. The distance
d of the motion then gives the total (out-and-back) distance from the radar to the aircraft; by
dividing this distance by 2, the one-way distance is obtained. This distance is connected to
the hypotenuse of a Geometry object, right-triangle. The difference between the altitude
of the aircraft and the altitude of the radar is connected to the y of this triangle. The x of
this triangle is then the distance to a point on the ground directly underneath the aircraft.
This distance and the angle of the radar give a range and bearing to the aircraft from the
radar; by connecting these to another right triangle, x and y offsets of the aircraft from the
radar are obtained. These are collected to form a relative position vector, RELPOS, which is
added to the radar’s UTM (universal transverse mercator) coordinates to form the output.
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Note that the + operator is generic and can be applied to structured objects such as vectors
so long as the operator is overloaded for the structured objects in GLISP.

CUTM #*tqc (time_diff, aircraft_altitude,
radar_altitude, radar_angle, radar_utm)
long time_diff, aircraft_altitude,
radar_altitude, radar_angle;
CUTM *radar_utm;
{ long outi;
CUTM *output;
float d1, out2, x1, yi1, x2;
CUTM *relpos, *glvarl62l;
outl = aircraft_altitude
- radar_altitude;
d1 2.997925E8 * time_diff;
out2 = d1 / 2;

x1 = sqrt(square(out?2)

- 9.290304E14 * lsquare(outl));
y1 = x1 * sin(0.00153398 * radar_angle);
x2 = x1 * co0s(0.00153398 * radar_angle);

relpos = (CUTM*) malloc(sizeof (CUTM));
relpos->north = 1.00000000E-7 * y1;
relpos->east = 1.00000000E-7 * x2;
glvar1621 = (CUTM*) malloc(sizeof (CUTM));
glvarl621->east = relpos->east

+ radar_utm->east;
glvarl621->north = relpos->north

+ radar_utm->north;
output = glvarl621;
return output; 7

Figure 5: Radar Program Converted to C

While the process described above is rather lengthy when described in words, the time
taken by an experienced user to create this program using VIP was less than two minutes.
Note that this problem involves several instances of conversion of units of measurement, a
physical constant, and algebraic manipulation of several equations; all of these were hidden
and performed automatically. The GLISP program produced by VIP and a version of the
program that has been compiled and mechanically translated into C are shown in Figs. 4

and 5.

This example calculation is conceptually simple. However, for a human programmer,
the requirements of performing algebraic manipulation of equations, converting units of
measurement, and finding values of physical constants keep it from being a simple program.
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VIP hides these sources of programming difficulty and potential error.

7 Discussion and Future Work

Equations are heavily used in science and in scientific programming. Equations are powerful
in the sense that, by algebraic manipulation, a small set of equations can represent a large
set of problems. However, our study of the process of solving physics problems [12] indicates
that equations are not the most fundamental representation of a problem: choice of the
correct equations is based on a representation of a problem in terms of physical principles.
Larkin et al. [9] and others have investigated the physical intuition that underlies the choice
of physical models. With Kook [5], Lee [8], and Chang [1], we have examined computational
representations of physical models and their use in understanding and solving problems.

VIP allows the user to specify a problem directly in terms of physical principles, rather
than in terms of the equations associated with those principles. Manipulation of equations by
humans is recognized as a source of difficulty and error. By abstracting away the algebra and
unit conversions normally associated with scientific programming, VIP makes it significantly
faster and easier to write the kinds of programs illustrated by our examples. Other systems,
notably SIGMA [4], are based directly on equations. VIP’s models often involve multiple
equations; packaging together all of the equations associated with a single model gives the
user fewer objects to deal with and facilitates the solution of multiple equations within the
same model.

It remains to be seen how well the techniques of VIP will scale up for larger problems.
Graphical displays often look good when they are small, but become confusing and unwieldy
as they grow larger. It is clear that there needs to be a way to modularize parts of a VIP
diagram, both for possible reuse and to make the size of a display manageable. The lack of
directionality in VIP diagrams is important for reuse, since reuse of a subset of a diagram
might involve different data flow directions than the original use.

VIP itself needs to be improved in several ways, including more thorough type checking
such as that performed by SIGMA [4] (type errors currently are caught by GLISP, but should
be detected earlier by VIP) and an ability to solve simultaneous equations. We also plan to
investigate the use of VIP’s user interface for specification of other kinds of programs.
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