
Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

2

Using the JFugue MusicString

This chapter will explain all you need to know to start creating music with
JFugue. Specifically, you will learn about the features of JFugue’s MusicString.
This will enable you to create music with notes of varying octaves, durations,
and instruments. You’ll also learn all about chords, tuplets, tempo, controllers,
key signatures, and more. Finally, you’ll learn how to transcribe sheet music into
a JFugue MusicString.

Introducing the MusicString
The magic behind JFugue – the reason that JFugue is so easy to use and allows a
programmer to create music so quickly – is the MusicString, a specially
formatted String object that contains musical instructions.

For example, to play a C note, one simply needs to program the following:

 Player player = new Player();
 player.play("C");

JFugue parses the MusicString and creates objects behind the scenes to represent
each note, instrument, and so on. These objects are then used to generate the
music, and unleash a torrent of melody from your speakers.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Groovy Note

Incidentally, JFugue is one of the few Java libraries that lets you
do something interesting in one or two lines. This unique
capability led to JFugue being used in an example in Manning
Publications’ book, “Groovy in Action”, in a demonstration
showing how easy it is to load and use a third-party library with
the Groovy scripting language.

The JFugue MusicString is not case-sensitive. You will see a consistent style of
upper- and lowercase used in the examples below. While this style is designed
to make the MusicString as readable as possible, adherence to this particular
style is not required for JFugue to properly parse the MusicString. Style is
addressed in more detail after the elements of the MusicString are introduced.

Learning the Parts of the MusicString
Here are some examples of MusicStrings:

 Player player = new Player();
 player.play("C");
 player.play("C7h");
 player.play("C5maj7w");
 player.play("G5h+B5h+C6q_D6q");
 player.play("G5q G5q F5q E5q D5h");
 player.play("T[Allegro] V0 I0 G6q A5q V1 A5q G6q");
 player.play("V0 Cmajw V1 I[Flute] G4q E4q C4q E4q");
 player.play("T120 V0 I[Piano] G5q G5q V9 [Hand_Clap]q Rq");

Each set of characters separated on either side by one or more spaces is called a
token. A token represents a note, chord, or rest; an instrument change; a voice or
layer change; a tempo indicator; a controller event; the definition of a constant;
and more, as described in more detail in this chapter. In the example above, the
first four MusicStrings each contain one token, and the last four MusicStrings
each contain eight tokens.

Notes, Rests, and Chords
The specification of a note or rest begins with the note name or the rest character,
which is one of the following: C, D, E, F, G, A, B, or R for a rest. After specifying
the note itself, you may then append a sharp or flat, octave, duration, or chord,
all of which are described below.

A note can also be represented numerically. This could be useful if you are
creating algorithmic music, in which each note may be indicated by a calculated
value instead of a letter. A numeric note is specified by providing the note’s
MIDI value in square brackets, such as [60]. The octave is already factored into
the note value, so it is not necessary (nor possible) to specify an octave when
providing a note value. Values over 127 are not permitted.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Octave C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 70
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119

10 120 121 122 123 124 125 126 127
Figure 2.1 Numeric note values

Sharps, Flats, and Naturals
You can indicate that a note is sharp or flat by using the # character to represent a
sharp, and the b character to represent a flat. Place the # or b character
immediately after the note name; for example, a B-flat would be represented as
Bb. JFugue also supports double-sharps or double-flats, which are indicated by
using ## and bb, respectively.

If you use Key Signatures (explained below), you can indicate a natural note by
using the n character after the note. For example, a B-natural would be
represented as Bn. If you hadn’t indicated the B as a natural, JFugue would
automatically change the note value based on the key signature (so, if your key
signature was F-major, that B would be converted into a B-flat automatically).
Key Signatures are explained in more detail below.

Octave
Default: 5 for notes, 3 for chords
You may optionally specify an octave for the note, which is represented by a
number from 0 through 10; for example, C6 plays a C note in the sixth octave. If
no octave is specified, the default for a note will be the fifth octave, and the
default for a chord will be the third octave.

Figure 2.2 Octaves 0 through 10 span the various clefs;

pictured above are Octaves 3 through 6.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Chords
If the given note is to be the root of a chord, the chord is specified next. JFugue
supports a variety of chords, each of which is described in the table below.

Intervals in the table indicate the notes of the chord. For example, a major chord
contains three notes, with intervals 0, 4, and 7. This means that the chord is
comprised of the root (0), the root plus four half-steps (4), and the root plus seven
half-steps (7). Therefore, a C-major chord is comprised of the notes C, E, and G.

Common Name JFugue Name Intervals (0 = root)
major maj 0, 4, 7
minor min 0, 3, 7
augmented aug 0, 4, 8
diminished dim 0, 3, 6
7th (dominant) dom7 0, 4, 7, 10
major 7th maj7 0, 4, 7, 11
minor 7th min7 0, 3, 7, 10
suspended 4th sus4 0, 5, 7
suspended 2nd sus2 0, 2, 7
6th (major) maj6 0, 4, 7, 9
minor 6th min6 0, 3, 7, 9
9th (dominant) dom9 0, 4, 7, 10, 14
major 9th maj9 0, 4, 7, 11, 14
minor 9th min9 0, 3, 7, 10, 14
diminished 7th dim7 0, 3, 6, 9
add9 add9 0, 4, 7, 14
minor 11th min11 0, 7, 10, 14, 15, 17
11th (dominant) dom11 0, 7, 10, 14, 17
13th (dominant) dom13 0, 7, 10, 14, 16, 21
minor 13th min13 0, 7, 10, 14, 15, 21
major 13th maj13 0, 7, 11, 14, 16, 21
7-5 (dominant) dom7<5 0, 4, 6, 10
7+5 (dominant) dom7>5 0, 4, 8, 10
major 7-5 maj7<5 0, 4, 6, 11
major 7+5 maj7>5 0, 4, 8, 11
minor major 7 minmaj7 0, 3, 7, 11
7-5-9 (dominant) dom7<5<9 0, 4, 6, 10, 13
7-5+9 (dominant) dom7<5>9 0, 4, 6, 10, 15
7+5-9 (dominant) dom7>5<9 0, 4, 8, 10, 13
7+5+9 (dominant) dom7>5>9 0, 4, 8, 10, 15

Figure 2.3 Chords supported by JFugue

To specify chords in a MusicString, provide the root’s chord followed by the
“JFugue Name” from the table above. For example, to play a C-major chord in
the default octave, use the MusicString Cmaj. This is equivalent to saying C+E+G,
but JFugue will automatically fill in the other notes based on the chord specified.
Recall that the default octave for chords is the third octave, which is lower than
the default fifth octave for individual notes.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

To specify an octave with a chord, follow the chord root with the octave number.
For example, an E-flat, 6th octave, major chord would be Eb6maj. An easy way to
remember where to place the octave is that the octave describes the root note in
more detail, so it should be next to the root. If a number follows the chord name,
then the number is associated with the chord itself: for example, Cmaj7 describes
a C-major seventh chord, not a C-major chord in the seventh octave.

Chord Inversions
A chord inversion indicates another way to play the notes of a chord by changing
which note in the chord serves as the root note. This is sometimes called the
voicing of a chord.

A first inversion means the chord’s regular root note should be moved up an
octave, making the second note in the chord become the new bass note. A
second inversion means the chord’s root note and second note should be played
an octave higher, making the chord’s third note become the new bass note.
Chords with more than three members can have third inversions, chords with
more than four members can have four inversions, and so on. See Figure 2.4 for
examples of chord inversions.

Chord inversions may also be described by explicitly indicating the note that is
to become the new bass note. You may see this in sheet music when you’re
asked to play a C/E chord. This indicates that a C-Major chord should be played
with the E note as the bass note.

There are two ways to specify chord inversions in JFugue. The first is consistent
with indicating the first, second, third, etc. inversion of the chord. State your
chord as indicated in the section above (for example, Cmaj for a C-Major), then
use a caret character, ^, for each inversion. As shown in Figure 2.4, a first
inversion becomes Cmaj^, and a second inversion becomes Cmaj^^. Additional
inversions are possible with chords that have more member notes.

The second way is consistent with indicating the new bass note for the chord.
Again, state the chord as indicated in the section above (Cmaj for a C-Major),
then use the caret character, ^, followed by the new bass note. For example, the
C-Major inversion with E as the new bass note would be Cmaj^E; the C-Major
inversion with G as the new bass note would be Cmaj^G.

Figure 2.4 Chord inversions of C-Major: no inversion - Cmaj; first inversion -

Cmaj^ or Cmaj^E; second inversion - Cmaj^^ or Cmaj^G

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Duration
Default: Quarter duration (“q”)
Duration indicates how long a note should be played. It is placed after the
octave (or after the chord, if a chord is specified), or immediately after the note
itself if the octave is omitted or if the note is specified as a value. Duration is
indicated by one of the letters in the table below. If duration is not specified, the
default duration of a quarter-note will be used.

Duration Character
whole w
half h
quarter q
eighth i
sixteenth s
thirty-second t
sixty-fourth x
one-twenty-eighth o

Figure 2.5 Durations that can be specified for a note

For example, a C6 note, half duration would be C6h, and a D-flat major chord,
whole duration would be DbmajW.

Dotted duration may be specified by using the period character after the
duration. For example, a dotted half note would be specified using h followed
by a period (h.). A dotted duration is equal to the original duration plus half of
the original duration. So, a dotted half note is equal to the duration of a half note
plus a quarter note.

Durations may be appended to each other to create notes of longer durations.
This is similar to a tie in musical parlance. For example, to play a D6 note for
three measures, the MusicString D6www would be used. (You could alternatively
use ties and measure symbols to indicate ties in the MusicString, as described
below.)

The duration may also be specified numerically. In this case, provide a decimal
value equal to the part of a whole note. To indicate a numeric duration, use the
slash character, followed by a decimal value. For example, to play an A4 note for
a quarter duration, provide the MusicString A4/0.25. A value of 1.0 represents
whole duration. Decimal values greater than 1.0 indicate a note than spans
multiple measures. For example, the D6www MusicString given above is
equivalent to D6/3.0. Numeric durations may be useful for algorithmic music
generators. They are also created when MusicStrings are generated when JFugue
parses MIDI files, as explained more fully in Chapter 5.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Here are some examples of durations:

 player.play("Aw"); // A5 whole note
 player.play("E7h"); // E7 half note
 player.play("[60]wq"); // Middle-C (C5) whole+quarter note
 player.play("G8i."); // G8 dotted-eighth note
 player.play("Bb6/0.5"); // B-flat, 6th octave, half note

 // C-major chord, second inversion, 7th octave, quarter note
 player.play("C7maj^^q");

Triplets and Other Tuplets
Tuplets are groups of notes in which the duration of the notes is adjusted such
that the duration of the group of notes is consistent with the duration of the next
larger note duration. Figure 2.6 makes this a bit more clear.

Figure 2.6 Two triplets (also known as 3-tuplets) of quarter notes. Notice how

each triplet has the same duration of the half note in the bass staff.

Triplets are a special case of tuplets in which there are three notes in the group.
Triplets are the most common tuplet, although other tuplets are possible (in both
music theory and JFugue).

For a triplet, three notes are played with the same duration of the next greater
duration; this is a 3:2 tuplet. For a triplet made up of quarter notes, as shown in
Figure 2.6, this means the group of notes will be played in the duration of a half
note, so each note in the triplet will be played at two-thirds (2/3) of its regular
duration.

Consider tuplets of more notes – for example, a quintuplet, which consists of five
notes. Five quarter notes may be played in the same duration as a whole note if
they’re part of a 5:4 tuplet, in which each note is played at 4/5 of its regular
quarter duration.

To specify a tuplet in JFugue, use the asterisk, *, after the duration of a note that
is part of a tuplet. For triplets, that’s all you need to do. For other tuplets, the

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

asterisk must be followed by the ratio that describes the tuplet, such as 5:4 in the
example above. Each note in the tuplet must have the tuplet notation, and the
ratio must be the same for each note in the tuplet (if it’s not, nothing catastrophic
will happen, but your music won’t sound right).

Here are some examples:

player.play("Eq* Fq* Gq*"); // These two lines create
player.play("Eq*3:2 Fq*3:2 Gq*3:2"); // equivalent music

Each of these lines will play three quarter notes as a triplet. The group of three
quarter notes will have the duration of a two quarter notes (identical to one half
note).

player.play("Ci*5:4 Ei*5:4 Gi*5:4 Ei*5:4 Gi:5*4");

These five eighth notes (a quintuplet) will be played in the duration of a four
eighth notes (identical one half note).

Ties
In sheet music, a tie connects two notes of the same pitch1, and indicates that the
two notes are to be played as one note, with the total duration equal to the sum
of the durations of the tied notes. Ties are often used in sheet music to depict a
note that has a duration which stretches across the bar line between two
measures (Figure 2.7). Ties may also be used to connect notes to create a
combined duration that cannot otherwise be indicated by note symbols, such as a
half note plus an eighth note (Figure 2.8).

Figure 2.7 Tying two notes across a measure

Figure 2.8 Tying two notes to achieve a combined duration

In JFugue, the dash symbol, -, is used to indicate ties. For a note that is at the
beginning of a tie, append the dash to the end of the duration. For a note that is
at the end of a tie, prepend the dash to the beginning of the duration. If a note is

1 A line or curve connecting notes of different pitches is a slur, which indicates that the transitions
between notes are to be played fluidly. Slurs are not currently supported by JFugue.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

in the middle of a series of notes that are all tied together, two dashes are used:
one before the duration, and one after. In each case, think of the dash as
indicating whether the tie “follows” the duration of a note, whether it
“continues” the duration of a note, or whether the note is in the middle of a tie,
in which case the tie both “follows” and “continues” the duration. Each of these
cases is shown in Figure 2.9, which uses the Measure symbol (the vertical line or
pipe character, |), which will be introduced soon.

Figure 2.9 Examples of ties in a MusicString.
The MusicString for this sequence of notes is

“G5q B5q G5q C6q- | C6-w- | C6-q B5q A5q G5q”

Attack and Decay Velocities
Default: 64 for attack velocity, 64 for decay velocity
Notes may be played with a specified attack and decay velocity. These velocities
indicate how long it takes for a note to “warm up” to its full volume, and
“dissipate” from its peak volume. For example, a note with a long attack and a
quick decay sounds like it build over a period of time, then turns off quickly.
Notes with long attacks sound somewhat ethereal. Notes with a long decay
sound like they continue to resonate after the note has been struck, like a bell or a
guitar string.

Attack and decay for notes may be specified using the letters a and d,
respectively. Each letter is followed by a value of 0 through 127; the default is 0.
Low values indicate quicker attack or decay; high values indicate a long attack or
decay. Either attack or decay may be used independently (but if they appear
together, the attack must be specified first).

For example, the following are value notes with attack and decay velocities set:

player.play("C5qa0d127"); // Sharp attack, long decay
player.play("E3wwd0"); // Default attack, sharp decay
player.play("C7maja30"); // C7, E7, and G7 (components of

// C7maj) will all play with an
// of attack 30

Notes played in Melody and Harmony
Notes that are to be played in melody – that is, one after another – are indicated
by individual tokens separated by spaces, as shown in Figure 2.10. So far, all of
the MusicStrings examples have shown notes played in melody.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Figure 2.10 A melody; the MusicString is “C5q E5q G5q”

Notes may also be played in harmony – together with other notes. This can be
indicated by combining the tokens with a plus symbol, +, instead of a space, as
shown in Figure 2.11. Of course, notes in a chord are played in harmony
automatically, but the + token lets you play any notes in harmony.

Figure 2.11 A harmony; the MusicString is “C5q+E5q+G5q”

You may also find some occasions when a note is to be played in harmony while
two or more notes are played in melody. To indicate notes that should be played
together while played in harmony with other notes, use the underscore
character, _, to connect the notes that should be played together. This is much
clearer in a picture than in words, so look at Figure 2.12. In this example, the C5
note is played continuously while the E5 and G5 notes are played in sequence.

Figure 2.12 A harmony and a melody played together;

the MusicString is “C5h+E5q_G5q”

Chords and rests may also be played in harmony or in combined
harmony/melody using the plus and underscore characters as connectors. Only
notes, chords, and rests can take advantage of the + and _ characters.

Measure
JFugue MusicStrings were created with the intention of making music creation
easy; they were not developed to provide a fully complete syntax for
representing sheet music. Indicating a bar line in a MusicString does not affect
the musical output of the MusicString. Nevertheless, it is often useful to indicate
the break between measures in a MusicString. To indicate a bar line, use the
vertical line (or pipe) character, |, which must be separated from other tokens in
the MusicString with spaces.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Key Signature
Default: C-major
A key signature may be indicated, which instructs JFugue to play the
MusicString in a particular key or scale. To indicate a key signature, use the
letter K, followed by the root of the key, then maj or min to indicate major or
minor scale. For example, KCbmaj will set the key to C-flat major.

JFugue will automatically adjust the note values for the notes that are affected by
the key signature. For example, if you set the key signature to F-major, then play
a B note in your MusicString, JFugue will automatically convert that B to a B-flat.
If you want the B to remain natural, you must indicate that by using the natural
symbol, n, which is placed after the note. In this case, playing the B as a natural
note would require the token Bn.

Instrument
Default: Piano
The music produced by JFugue uses MIDI to render audio that is played with
instruments from the Java Sound soundbank. The MIDI specification describes
128 different instruments, and more may be supported with additional sound
banks. Most MIDI devices use the same definitions for the first 128 instruments,
although the quality of the sound varies by device and by soundbank. For
example, MIDI instrument #0 often represents a piano, but the piano sound
rendered by various MIDI devices may differ.

To select these instruments in JFugue’s MusicString, use the instrument token,
which is the I character followed by the instrument number from 0 to 127. For
example, to specify a piano, you would enter the MusicString I0. Alternatively,
JFugue defines constants that you can use to specify the instrument using the
name of the instrument. This tends to be easier to read and remember. For
example, the constant for a piano is PIANO, so the MusicString to specify a piano
could also appear as I[Piano]. You can define your own constants as well;
constants are described in more detail later in this chapter.

Figure 2.13 contains a list of instrument numbers and JFugue constants. You’ll
notice that some instruments contain more than one constant. In these cases, you
can use either constant; they will both resolve to the same instrument number.
Recall that the MusicString is not case-sensitive.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Piano
0 PIANO or

ACOUSTIC_GRAND
1 BRIGHT_ACOUSTIC
2 ELECTRIC_GRAND
3 HONKEY_TONK
4 ELECTRIC_PIANO or

ELECTRIC_PIANO1
5 ELECTRIC_PIANO2
6 HARPISCHORD
7 CLAVINET

Chromatic Percussion
8 CELESTA
9 GLOCKENSPIEL
10 MUSIC_BOX
11 VIBRAPHONE
12 MARIMBA
13 XYLOPHONE
14 TUBULAR_BELLS
15 DULCIMER

Organ
16 DRAWBAR_ORGAN
17 PERCUSSIVE_ORGAN
18 ROCK_ORGAN
19 CHURCH_ORGAN
20 REED_ORGAN
21 ACCORIDAN
22 HARMONICA
23 TANGO_ACCORDIAN

Guitar
24 GUITAR or

NYLON_STRING_GUITAR
25 STEEL_STRING_GUITAR
26 ELECTRIC_JAZZ_GUITAR
27 ELECTRIC_CLEAN_GUITAR
28 ELECTRIC_MUTED_GUITAR
29 OVERDRIVEN_GUITAR
30 DISTORTION_GUITAR
31 GUITAR_HARMONICS

Bass
32 ACOUSTIC_BASS
33 ELECTRIC_BASS_FINGER
34 ELECTRIC_BASS_PICK
35 FRETLESS_BASS
36 SLAP_BASS_1
37 SLAP_BASS_2
38 SYNTH_BASS_1
39 SYNTH_BASS_2

Strings
40 VIOLIN
41 VIOLA
42 CELLO
43 CONTRABASS
44 TREMOLO_STRINGS
45 PIZZICATO_STRINGS
46 ORCHESTRAL_STRINGS
47 TIMPANI

Ensemble
48 STRING_ENSEMBLE_1
49 STRING_ENSEMBLE_2
50 SYNTH_STRINGS_1
51 SYNTH_STRINGS_2
52 CHOIR_AAHS
53 VOICE_OOHS
54 SYNTH_VOICE
55 ORCHESTRA_HIT

Brass
56 TRUMPET
57 TROMBONE
58 TUBA
59 MUTED_TRUMPET
60 FRENCH_HORN
61 BRASS_SECTION
62 SYNTHBRASS_1
63 SYNTHBRASS_2

Figure 2.13 Instrument Values (continued on next page)

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Reed
64 SOPRANO_SAX
65 ALTO_SAX
66 TENOR_SAX
67 BARITONE_SAX
68 OBOE
69 ENGLISH_HORN
70 BASSOON
71 CLARINET

Pipe
72 PICCOLO
73 FLUTE
74 RECORDER
75 PAN_FLUTE
76 BLOWN_BOTTLE
77 SKAKUHACHI
78 WHISTLE
79 OCARINA

Synth Lead
80 LEAD_SQUARE or

SQUARE
81 LEAD_SAWTOOTH or

SAWTOOTH
82 LEAD_CALLIOPE or

CALLIOPE
83 LEAD_CHIFF or CHIFF
84 LEAD_CHARANG or

CHARANG
85 LEAD_VOICE or VOICE
86 LEAD_FIFTHS or FIFTHS
87 LEAD_BASSLEAD or

BASSLEAD

Synth Pad
88 PAD_NEW_AGE or

NEW_AGE
89 PAD_WARM or WARM
90 PAD_POLYSYNTH or

POLYSYNTH
91 PAD_CHOIR or CHOIR
92 PAD_BOWED or BOWED
93 PAD_METALLIC or

METALLIC
94 PAD_HALO or HALO
95 PAD_SWEEP or SWEEP

Synth Effects
96 FX_RAIN OR RAIN
97 FX_SOUNDTRACK or

SOUNDTRACK
98 FX_CRYSTAL or

CRYSTAL
99 FX_ATMOSPHERE or

ATMOSPHERE
100 FX_BRIGHTNESS or

BRIGHTNESS
101 FX_GOBLINS or

GOBLINS
102 FX_ECHOES or ECHOES
103 FX_SCI-FI or SCI-FI

Ethnic
104 SITAR
105 BANJO
106 SHAMISEN
107 KOTO
108 KALIMBA
109 BAGPIPE
110 FIDDLE
111 SHANAI

Percussive
112 TINKLE_BELL
113 AGOGO
114 STEEL_DRUMS
115 WOODBLOCK
116 TAIKO_DRUM
117 MELODIC_TOM
118 SYNTH_DRUM
119 REVERSE_CYMBAL

Sound Effects
120 GUITAR_FRET_NOISE
121 BREATH_NOISE
122 SEASHORE
123 BIRD_TWEET
124 TELEPHONE_RING
125 HELICOPTER
126 APPLAUSE
127 GUNSHOT

Figure 2.13 Instrument values (continued)

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Voice
Default: 0
Music is often broken down into multiple voices, also known as channels or tracks.
Each voice contains a melody, often played with a specific instrument. For
example, in a jazz song, you may have separate voices for the drums, the
saxophone, the bass, and the piano. Or, in solo piano music, you can use one
voice for treble clef, and one for the bass clef.

MIDI supports 16 simultaneous channels, which JFugue exposes through the
Voice command. The Voice command is a V, followed by a number from 0 to 15.

MIDI editors often allow a song to be played with various channels turned on or
off, so you can focus on one part of a song, or hear what a song would sound like
without a certain voice.

MIDI Percussion Track
The tenth MIDI channel (i.e., V9) is special: it is the only channel that is capable of
producing sounds for non-chromatic percussion instruments2, typically drums.
In the tenth channel, each note is assigned to a different percussion instrument.
For example, if the tenth channel is given an A5 note (A note, 5th octave), it won’t
play an A5, but will instead play a bongo drum.

To make it easy to specify drum sounds for the tenth MIDI channel, JFugue
provides a different way to specify notes in V9. Instead of entering V9 A5q and
hoping for a bongo drum, you can use a constant to express the instrument more
directly; in this case, you would enter V9 [Hi_Bongo]q. A list of constants
representing percussion sounds is shown in Figure 2.14.

You can create “chords” of percussion instruments, just like you can with regular
notes. For example, V9 [Hand_Clap]q+[Crash_Cymbal_1]q will play a hand
clap and a cymbal crash at the same time, both for a quarter duration.

2 A percussion instrument is one that makes sound as a result of hitting or shaking things
together. Examples include drums, tambourines, woodblocks, and cymbals. Chromatic
percussion instruments are percussion instruments that can play notes, such as a steel drum.
Non-chromatic percussion instruments can only make one sound, such as a snare drum, triangle,
or cow bell.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Note
Value

JFugue Constant

35 ACOUSTIC_BASE_DRUM
36 BASS_DRUM
37 SIDE_KICK
38 ACOUSTIC_SNARE
39 HAND_CLAP
40 ELECTRIC_SNARE
41 LOW_FLOOR_TOM
42 CLOSED_HI_HAT
43 HIGH_FLOOR_TOM
44 PEDAL_HI_TOM
45 LOW_TOM
46 OPEN_HI_HAT
47 LOW_MID_TOM
48 HI_MID_TOM
49 CRASH_CYMBAL_1
50 HIGH_TOM
51 RIDE_CYMBAL_1
52 CHINESE_CYMBAL
53 RIDE_BELL
54 TAMBOURINE
55 SPLASH_CYMBAL
56 COWBELL
57 CRASH_CYMBAL_2
58 VIBRASLAP

Note
Value

JFugue Constant

59 RIDE_CYMBAL_2
60 HI_BONGO
61 LOW_BONGO
62 MUTE_HI_CONGA
63 OPEN_HI_CONGA
64 LOW_CONGO
65 HIGH_TIMBALE
66 LOW_TIMBALE
67 HIGH_AGOGO
68 LOW_AGOGO
69 CABASA
70 MARACAS
71 SHORT_WHISTLE
72 LONG_WHISTLE
73 SHORT_GUIRO
74 LONG_GUIRO
75 CLAVES
76 HI_WOOD_BLOCK
77 LOW_WOOD_BLOCK
78 MUTE_CUICA
79 OPEN_CUICA
80 MUTE_TRIANGLE
81 OPEN_TRIANGLE
(Working with tables in Microsoft Word is
difficult. This table is properly spaced in the
actual Complete Guide to JFugue

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Figure 2.14 Constants that represent percussion instruments,

to be used in place of notes in V9.

Layer
A layer provides a way to specify separate melodies that are intended to be
played in the same voice. Layers are specific to JFugue – they are not part of the
MIDI specification. Layers were introduced to overcome a difficulty in
programming music for the tenth MIDI channel – the one that plays percussion
instruments. Specifically, if you had numerous melodies that each had their own
rhythm, it would be difficult to combine these as “chords” in that voice. Using
layers, you can easily combine a melody of, say, hand claps, snare drums, and
cow bells.

In addition, layers can be used in other voices, too. They could be leveraged as a
way to simulate getting more than 16 simultaneous melodies out of a MIDI
system. They can also be used to send multiple events in the same track – for
example, to change the pitch wheel while a note is playing, to produce a
modulation of the playing note.

Like the voice token, a layer token is specified by using L, followed by a number
from 0 to 15.

Tempo
Default: 120 beats per minute (roughly Allegro)
The tempo indicates how quickly a song should be played. It is often one of the
first things set in a MusicString, since it applies to all musical events that follow
the tempo command.

Tempo represents beats per minute (BPM). In older versions of JFugue, tempo
represented “pulses per quarter” (PPQ), which indicates how many clock cycles
to give a quarter note. PPQ is inversely proportional to BPM. Of course, PPQ is
not intuitive, so JFugue now supports expressing tempo using BPM.
Fortunately, the most common tempo setting, 120, happens to be an equivalent
value for PPQ and BPM (120 PPQ = 120 BPM)3.

The tempo token is a T, followed by an integer, or by one of the tempo constants
in brackets, such as T[Adagio]. Figure 2.15 lists the tempo constants that you
can use in your MusicStrings.

3 To convert BPM to PPQ, and back, divide 60,000,000 by the opposite (PPQ or BPM) value. In
other words, BPM = 60,000,000/PPQ, and PPQ = 60,000,000/BPM.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

 17

JFugue Constant Beats Per Minute (BPM)
Grave 40
Largo 45
Larghetto 50
Lento 55
Adagio 60
Adagietto 65
Andante 70
Andantino 80
Moderato 95
Allegretto 110
Allegro (default) 120
Vivace 145
Presto 180
Pretissimo 220

Figure 2.15 Tempo constants that can be used with the T[] command

Pitch Wheel
The pitch wheel is used to change the pitch of a note by hundredths of a half-
step, or cents. The pitch wheel can be used to change the frequency of an
individual note 8192 cents in either the downward or upward direction.

The pitch wheel can be used to create Theremin-like effects in your music.
JFugue also uses the Pitch Wheel to make microtonal adjustments for notes,
enabling some Eastern styles of music to be played easily.

The token to adjust the pitch of following notes is an ampersand, &, followed by
an integer value from 0 through 16383. Values from 0 through 8191 make the
pitch of the following notes lower; values from 8193 through 16383 make the
pitch of the following notes higher. To reset the pitch wheel so it makes no
changes to the notes, use &8192.

Channel Pressure
Many MIDI devices are capable of applying pressure to all of the notes that are
playing on a given channel.

The MusicString token for channel pressure is a plus symbol, +, followed by a
value from 0 to 127. It applies to the channel indicated by the most recent voice
token used in the MusicString.

Don’t confuse this token with the use of a plus symbol to connect notes within a
harmony – in the channel pressure case, the token begins with a plus, so it is
parsed differently.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

 18

Polyphonic Pressure
Polyphonic Pressure, also known as Key Pressure, is pressure applied to an
individual note. This is a more advanced feature than Channel Pressure, and not
all MIDI devices support it.

The MusicString token for Polyphonic Pressure is an asterisk symbol, *, followed
by the key value (i.e., the note value), specified as a value from 0 to 127, followed
by a comma, and finally by the pressure value, from 0 to 127.

For example, the following MusicString applies a pressure of 75 to Middle-C
(note 60): *60,75. Note that this command does not accept note values, so using
C5 in this case would not work.

The difference between channel pressure and polyphonic pressure is that
channel pressure applies equally to all of the notes played within a given
channel, whereas polyphonic pressure is applied individually to each note
within a channel. One way to remember the difference between the JFugue
tokens for channel pressure versus polyphonic pressure is that plus character, +,
representing channel pressure, represents a concept slightly simpler than the
asterisk character, *, which represents polyphonic pressure.

Controller Events
The MIDI specification defines about 100 controller events, which are used to
specify a wide variety of settings that control the sound of the music. These
include foot pedals, left-to-right balance, portamento (notes sliding into each
other), tremulo, and lots more. For a complete list, refer to a MIDI specification
document.

The Controller command, X, tells JFugue to set the given controller:

 Xcontroller_number=value
 X37=18
 X[Chorus_Level]=64

If you're familiar with MIDI Controllers, you may know that there are 14
controllers that have both "coarse" and "fine" settings. These controllers
essentially have 16 bits of data, instead of the typical 8 bits (one byte) for most of
the others. There are two ways that you can specify coarse and fine settings.

The first way is quite uninspired:

 X[Foot_Pedal_Coarse]=10
 X[Foot_Pedal_Fine]=65

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

 19

Surely, JFugue can be smarter than this! Indeed it is: For any of those 14
controller events that have coarse and fine components, you can specify both
values at the same time:

 X[Foot_Pedal]=1345

There you have it. Want to set the volume to 10200, out of a possible 16383?
There's no need to figure out the high byte and low byte of 10200. Just use
X[Volume]=10200. JFugue will split the values into high and low bytes for you.

Some controller events have two settings: ON and OFF. Normally, ON means
127 and OFF means 0. JFugue has defined two constants, ON and OFF, that you
can use instead of the numbers: X[Local_Keyboard]=ON. JFugue has also
defined DEFAULT, which is set to 64.

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

 20

Controller JFugue Constant
0 BANK_SELECT_COARSE
1 MOD_WHEEL_COARSE
2 BREATH_COARSE
4 FOOT_PEDAL_COARSE
5 PORTAMENTO_TIME_COARSE
6 DATA_ENTRY_COARSE
7 VOLUME_COARSE
8 BALANCE_COARSE
10 PAN_POSITION_COARSE
11 EXPRESSION_COARSE
12 EFFECT_CONTROL_1_COARSE
13 EFFECT_CONTROL_2_COARSE
16 SLIDER_1
17 SLIDER_2
18 SLIDER_3
19 SLIDER_4
32 BANK_SELECT_FINE
33 MOD_WHEEL_FINE
34 BREATH_FINE
36 FOOT_PEDAL_FINE
37 PORTAMENTO_TIME_FINE
38 DATA_ENTRY_FINE
39 VOLUME_FINE
40 BALANCE_FINE
42 PAN_POSITION_FINE
43 EXPRESSION_FINE
44 EFFECT_CONTROL_1_FINE
45 EFFECT_CONTROL_2_FINE
64 HOLD_PEDAL or HOLD
65 PORTAMENTO
66 SUSTENUTO_PEDAL or

SUSTENUTO
67 SOFT_PEDAL or SOFT
68 LEGATO_PEDAL or LEGATO
69 HOLD_2_PEDAL or HOLD_2
70 SOUND_VARIATION
71 SOUND_TIMBRE
72 SOUND_RELEASE_TIME
73 SOUND_ATTACK_TIME
74 SOUND_BRIGHTNESS
75 SOUND_CONTROL_6
76 SOUND_CONTROL_7
77 SOUND_CONTROL_8
78 SOUND_CONTROL_9
79 SOUND_CONTROL_!10
80 GENERAL_BUTTON_1
81 GENERAL_BUTTON_2
82 GENERAL_BUTTON_3
83 GENERAL_BUTTON_4
91 EFFECTS_LEVEL
92 TREMULO_LEVEL
93 CHORUS_LEVEL
94 CELESTE_LEVEL
95 PHASER_LEVEL

96 DATA_BUTTON_INCREMENT
97 DATA_BUTTON_DECREMENT
98 NON_REGISTERED_COARSE
99 NON_REGISTERED_FINE

100 REGISTERED_COARSE
101 REGISTERED_FINE
120 ALL_SOUND_OFF
121 ALL_CONTROLLERS_OFF
122 LOCAL_KEYBOARD
123 ALL_NOTES_OFF
124 OMNI_MODE_OFF
125 OMNI_MODE_ON
126 MONO_OPERATION
127 POLY_OPERATION

(Working with tables in Microsoft Word is
difficult. This table is properly spaced in the
actual Complete Guide to JFugue)

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Figure 2.16 Controller constants that can be used with the X[] command

Combined Contoller JFugue Constant
16383 BANK_SELECT
161 MOD_WHEEL
290 BREATH
548 FOOT_PEDAL
677 PORTAMENTO_TIME
806 DATA_ENTRY
935 VOLUME
1074 BALANCE
1322 PAN_POSITION
1451 EXPRESSION
1580 EFFECT_CONTROL_1
1709 EFFECT_CONTROL_2
12770 NON_REGISTERED
13028 REGISTERED

Figure 2.17 Combined controller constants. Integers can be assigned to these,
and JFugue will figure out the high and low bytes.

Constants
When you're programming music, your main task is to make beautiful sounds,
not to be inundated with random and meaningless numbers. You should be able
to set the VOLUME and use the FLUTE, without having to remember that
VOLUME is controller number 935 (or, worse, that VOLUME is comprised of a
coarse and fine value) and FLUTE is instrument number 73. To enable you to sit
back, relax, and focus on concepts instead of numbers, JFugue has introduced
constants that you can use in your MusicStrings, and that get resolved as the
music is playing.

The command to set a constant is as follows:

 $WORD=DEFINITION

Here's an example: $ELEC_GRAND=2. Of course, JFugue has already defined
ELECTRIC_GRAND to be 2. But maybe you'd like to use a shorter name, or
maybe you have a more memorable name for this instrument, like simply ELEC.
You could then use your shorter name in the MusicString when you want to refer
to this particular instrument.

JFugue defines a bunch of constants - around 375 - for things like instrument
names, percussion instruments, tempo, and controller events. Creating these
defintions is the job of the JFugueDefinitions class.

Constants are also useful in cases where you have settings that you may want to
change some day. Suppose you want to play some music with your favorite

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

instrument, the piano. You could definine FAV_INST to be 0, and then you can
say I[Fav_Inst] whenever you want to use it. If your favorite instrument
changes, all you have to change in your music string is the definition of
FAV_INST; you do not have to change every place where you refer to your
favorite instrument.

You can use a constant anyplace where a number would be expected, with the
exception of the Octave value (but that's okay, because you can just specify the
note itself, with the octave, as a single number), and if you're using a constant for
a duration, you have to use decimal duration values (and precede the duration
with a slash, /).

When using a constant in the MusicString, always place the word in square
brackets.

Timing Information
When transcribing notes from sheet music, you will find that through a
combination of rests and note durations, you can successfully create music that
has the proper time delays between notes. However, when reading music from a
MIDI file, notes are not guaranteed to follow each other in such a formal way.
For this reason, JFugue uses the Time token to indicate the number of
milliseconds into the sequence to play notes and other tokens. You will hardly
ever need to use this when creating your own music, but you’ll see it if you
convert music from MIDI to a MusicString (which is discussed in more detail in
Chapter 5).

The Time token is an ampersand, @, followed by a time in milliseconds. The time
indicates when the following tokens should be played.

It is not necessary for the times to be sequential. The full JFugue MusicString is
parsed before music is rendered, and timing information that represents any
time will be played at the right time during playback.

MusicString Style
The following guidelines are recommended to help you create MusicStrings that
are easy to read and easy to share. MusicStrings are not case-sensitive, so the use
of upper- and lowercase characters can be used to maximize the MusicString’s
readability.

1. Use a capital letter for a character representing an instruction: I, V, L, T,
X, and K (for Instrument, Voice, Layer, Tempo, Controller, and Key
Signature, respectively)

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

2. Use a capital letter for notes. C, D, E, F, G, A, B, and the rest character,
R.

3. Use lowercase characters when specifying chords: maj, min, aug, and so
on.

4. Use a lowercase letter for note durations: w, h, q, i, s, t, x, o.
However, if you are consistently using durations after chords, it may be
more legible to use uppercase letters for note durations.

5. Use mixed case (also known as camel case) to represent instrument names,
percussion names, tempo names, or controller names: I[Piano],
[Hand_Clap], T[Adagio] , X[Hold_Petal].

6. Use all capital letters when defining and referring to a constant:
$MY_WORD=10.

7. Keep one space between each token, but if writing music for multiple
voices, it’s useful to put each voice on its own line, and use spaces to make
the notes line up, as shown below.

8. Use the vertical bar character (also known as pipe), |, to indicate measures
in a MusicString.

Below are a couple of sample MusicStrings that employ some of these guidelines.

 Player player = new Player();

 // First two measures of "Für Elise", by Ludwig van Beethoven
 player.play("V0 E5s D#5s | E5s D#5s E5s B4s D5s C5s " +
 "V1 Ri | Riii ");

 // First a few simple chords
 player.play("T[Vivace] I[Rock_Organ] Db4minH C5majW C4maj^^");

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

In The Complete Guide to JFugue,
this chapter continues with the following sections:

JFugue Elements: Using Objects instead of MusicStrings
So far in this chapter, you have learned how to create MusicStrings using
JFugue’s notation. You have not learned how to construct a song by creating
many individual note objects and adding them together, mainly because creating
music in such a way would be extremely tedious. It is far easier to craft a
MusicString, and let JFugue create the objects behind the scenes.

However, there may be cases in which you would want to create music by
instantiating individual objects. Perhaps you want to build a loop that actually
generates Note objects. Or, maybe you want compile-time checking of values
that you’re passing as instruments, tempos, or percussive notes.

Read more in The Complete Guide to JFugue http://www.jfugue.org/book.html

Getting Assistance with Notes
One might argue that notes are central to creating music. As such, notes are used
in a variety of circumstances outside of the MusicString. For example, in Chapter
7 you’ll learn about Interval notation, which allows you to specify music in terms
of intervals (the differences between notes) instead of concrete notes themselves;
you then pass a root note to the Interval notation class to create specific instances
of notes based on the intervals provided.

Read more in The Complete Guide to JFugue http://www.jfugue.org/book.html

Transcribing Sheet Music to JFugue MusicString
This section describes how to transcribe sheet music to JFugue notation. We’ll
use the first couple of measures of Antonio Vivaldi’s “Spring” in this
demonstration.

Read more in The Complete Guide to JFugue http://www.jfugue.org/book.html

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Detailed Table of Contents of
The Complete Guide to JFugue
http://www.jfugue.org/book.html

Table of Contents .. 7
Detailed Table of Contents ... 9
Forward... 13
Getting Started with JFugue... 15

Downloading JFugue... 15
Running a Test Program ... 15
Using JFugue from an Integrated Development Environment.. 16
Deciding which version of JFugue to use ... 17
Using MIDI Soundbanks ... 17

Downloading Soundbanks .. 18
Installing the Java Media Soundbanks ... 18
Using Gervill to Load Soundbanks ... 19

Using the JFugue MusicString... 21
Introducing the MusicString... 21
Learning the Parts of the MusicString... 22
Notes, Rests, and Chords ... 22

Sharps, Flats, and Naturals .. 23
Octave... 23
Chords... 24
Chord Inversions... 25
Duration... 26
Triplets and Other Tuplets .. 27
Ties ... 28
Attack and Decay Velocities ... 29
Notes played in Melody and Harmony.. 29

Measure .. 30
Key Signature.. 31
Instrument ... 31
Voice ... 34

MIDI Percussion Track.. 34
Layer ... 35
Tempo ... 36
Pitch Wheel ... 36
Channel Pressure.. 37
Polyphonic Pressure ... 37
Controller Events... 37
Constants .. 40
Timing Information... 41
MusicString Style... 41
JFugue Elements: Using Objects instead of MusicStrings ... 42
Getting Assistance with Notes .. 45
Transcribing Sheet Music to JFugue MusicString... 46

Working with Patterns... 49
What is a Pattern?... 49
Using Patterns as Musical Building Blocks ... 50

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

Using Patterns to Construct Music.. 51
Observing Changes to a Pattern with a PatternListener... 53
Maintaining Properties within a Pattern... 53
Loading and Saving Patterns .. 54
Transforming Patterns with PatternTransformer... 55

PatternTransformers Included with with JFugue .. 56
How to Create a PatternTransformer.. 57
How to Use a PatternTransformer .. 59
PatternTransformers In Action.. 59

Using a ParserListener to Analyze a Pattern .. 60
Working with MIDI Patterns... 62

The JFugue Player... 63
Playing Music .. 63
Starting a Player with a Known Sequencer or Synthesizer... 64
Pausing, Rewinding, and Forwarding the Player .. 64
The Streaming Player.. 65

How to Simulate a Pipe Organ ... 67
Throttling the Delivery of New Fragments .. 68

The Anticipator: Know Upcoming Events Before They Happen ... 68
Working with MIDI Files .. 71

Understanding MIDI Support in JFugue.. 71
Playing MIDI Files ... 72
Creating MIDI Files.. 72
Converting MIDI to JFugue MusicStrings.. 72

Using JFugue with MIDI Devices ... 75
Why Communicate with External Devices? .. 75
Setting Up Communication with External Devices.. 75
JFugue’s Device Classes.. 76
Using the Intelligent Device Resolver ... 76
Sending Music to a MIDI Device ... 77
Listening to Music from a MIDI Device.. 78
Troubleshooting Your Connections... 79

Rhythms, Intervals, and Microtones.. 81
Rhythm .. 81
Interval Notation .. 85
Combining Rhythm and Interval Notation ... 86
Microtonal Music ... 88

The Architecture of JFugue.. 89
Parsers and ParserListeners (or Renderers) .. 89

JFugue Supports MusicXML... 90
Recombine Parsers and Renderers Endlessly... 90
Creating a New Parser.. 90
Creating a New Renderer ... 91
Ideas for New Parsers and Renderers ... 92

Working with MusicStringParser ... 92
Adding a new JFugue Element ... 92

Exploring JFugue’s “Extras” Package.. 97
FilePlayer .. 97
Midi2JFugue.. 98

Excerpt from The Complete Guide to JFugue
http://www.jfugue.org/book.html

JFugue by Example... 99
The Quintessential Music Program... 99
How to Save Music as a MIDI file ... 99
How to Load and Play a MIDI file.. 100
How to Save a Pattern .. 100
How to Load a Pattern... 100
How to Load a MIDI file and convert it into a JFugue MusicString ... 101
How to Combine Patterns ... 101
How to Repeat a Pattern... 101
How to Create an Anonymous ParserListener.. 101
How to Create Your Own Parser... 102
How to Create Your Own Renderer .. 102
How to Connect a Parser to a Renderer ... 103
How to Parse MIDI and Render a MusicString ... 103
How to Parse a MusicString and Render MIDI ... 103
How to Create a Rhythm... 103
How to Use Interval Notation .. 104
How to Combine Intervals and Rhythms... 104
How to Use Microtone Notation .. 105
How to Send MIDI to an External Device.. 106
How to Send a Pattern to an External Device... 106
How to Listen for Music from an External Device ... 106
How to Use JFugue with Loaded Soundbanks ... 107

Creative Applications with JFugue.. 109
JFugue Drum Circle .. 109
Lindenmayer System (L-System) Music ... 114

Conclusion ... 117

