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Asymptotically good codes

C : {0,1}k → {0,1}n is (ρ, δ)-good if

1. k/n ≥ ρ

2. min distance of C is at least δn

What is the complexity of ENCODING asymptotically
good codes?



Complexity of ENCODING good codes

[Gelfand, Dobrushin, Pinsker 1973] There exist good

codes that can be encoded in linear time.

[Spielman 1995] Explicit good codes encodable (also

decodable) in linear time and linear space.

Encoding by NC1 circuits.

[Bazzi, Mitter 2005] Good codes cannot be encoded

in linear time and sub-linear space.



Unbounded fan-in circuits - with aritrary gates

TRADEOFFS between # of wires and depth

· any code can be encoded in depth 1 with O(n2) wires

· for good codes Ω(n2) wires are necessary in depth 1

regardless of types of gates

each input has to be connected to ≥ δn outputs



Tight bounds on # of wires for every fixed depth d

d = 2 Θ(n(logn/ log logn)2)

d = 3 Θ(n log logn)

d = 4,5 Θ(n log∗ n)

d = 2i,2i+ 1 Θ(nλi(n)) (i ≥ 2)

Lower bounds: regardless of types of gates

Upper bounds: probabilistic, using only XOR gates.

“almost” linear number of wires in very small depth



λi+1 = dλ∗i (n)e inverse Ackerman function

* operation:

number of times to iterate λi to get a value ≤ 1

f∗(n) = min{t | f(f(. . . f(n) . . .) ≤ 1}
t times

λ1(n) = log(n)

λ2(n) = log∗(n)

λ3(n) = (log∗)∗(n)



Our lower bounds hold for any good code

regardless of types of gates allowed in the circuits.

We establish some connectivity properties that ANY

circuit computing error-correcting codes must have.



Superconcentrator graphs

Definition [Valiant 1975]

Directed acyclic graph with n inputs V1, n outputs V2,

s.t. for any 1 ≤ t ≤ n and any X ⊆ V1, Y ⊆ V2 with

|X| = |Y | = t ∃ t vertex disjoint paths from X to Y .

complete bipartite graph: n2 edges

Valiant: superconcentrators with linear number of edges

(even in depth O(logn), e.g. Pippenger)

Spielman: connection between codes and superconcentrators



Relaxed superconcentrators

Definition [Pudlák 1994]

Directed acyclic graph with n inputs V1, n outputs V2,

s.t. for any 1 ≤ t ≤ n and

for RANDOM X ⊆ V1, Y ⊆ V2 with |X| = |Y | = t

EX,Y [# of vert.disj.paths from X to Y ] ≥ δt

(different relaxation: [Dolev, Dwork, Pippenger, Wigderson 1983])



Connectivity property of circuits for codes

Definition “semi-relaxed” superconcentrator

Directed acyclic graph with k inputs V1, n outputs V2,

s.t. for any 1 ≤ t ≤ k,

for ANY X ⊆ V1 and RANDOM Y ⊆ V2

with |X| = |Y | = t

EY [# of vert.disj.paths from X to Y ] ≥ δt

Theorem Any circuit encoding C : {0,1}k → {0,1}n
with min. dist. δn must be a “semi-relaxed” super-
concentrator (with parameter δ).



Connectivity properties

Superconcentrators: ANY X ⊆ V1, ANY Y ⊆ V2

Circuits for codes: ANY X ⊆ V1, RANDOM Y ⊆ V2

Relaxed s.c.: RANDOM X ⊆ V1, RANDOM Y ⊆ V2



Depth d ≥ 3 We use known lower bounds on

relaxed superconcentrators [Pudlák 1994]

d = 3 Ω(n log logn)

d = 2i,2i+ 1 Ω(nλi(n)) (i ≥ 2)

We prove matching upper bounds.



Depth d = 2

Superconcentrators: Θ(n(logn)2/ log logn)

[Radhakrishnan, Ta-Shma 2000]

Circuits for codes: Θ(n(logn/ log logn)2)

Relaxed superconcentrators: Θ(n logn) [Pudlák 1994,
DDPW 1983]



Lower bound proof sketch

Theorem Any circuit encoding C : {0,1}k → {0,1}n
with min. dist. δn must be a “semi-relaxed” super-
concentrator (with parameter δ).

Sketch of proof Start with any set X of inputs of size t, pick

random Y one element at a time.

We show: as long as |Y | < t, with probability at least δ the

next randomly chosen output will increase the number of vertex

disjoint paths from X to the current Y by one.



Lower bound proof sketch

|X| = t, |Y | < t. Let the # of vertex disjoint paths from X to Y

be j < t.

Suppose B is a set s.t. the # of vertex disjoint path from X

to Y ∪ B is still j. By Menger’s theorem, there is a set S of j

vertices s.t. every path must contain a vertex from S.

But then, the values at the outputs Y ∪ B can take at most 2j

different values.

There are two different codewords C(0x1) and C(0x2),

that agree on Y ∪B,

there must be at least δn vertices outside Y ∪B.



Lower bound proof sketch

We need: at least δn vertices s.t. adding any of them

increases # of paths.

Vertex v is bad if the # of vertex disjoint path from
X to Y ∪ v is not larger than from X to Y .

BAD: set of all bad vertices.

Lemma # of vertex disjoint path from X to Y ∪ BAD is not
larger than from X to Y .

Equivalent to a classical theorem from matroid theory.



Matroid Lemma [Hazel Perfect, 1968]

Collections of endpoints of vertex disjoint paths are

independent sets of a matroid.

Note: not true for collections of vertex disjoint paths.



Recall: generator matrix of good codes is dense

must have Ω(n2) nonzero entries

Corollary of our upper bounds:

There are dense generator matrices that can be ob-

tained as the product of two “sparse” matrices.

with O(n(logn/ log logn)2) nonzero entries



Upper bound: probabilistic construction

Depth 2 proof sketch:
Middle layer: logn groups of vertices (XOR gates).
i-th group: 2i logn vertices with fan-in n/2i.
Total # of wires so far: n(logn)2.

Correspond to range detectors: i-th group “detects” weight
(2i−1,2i]: on inputs with such weight outputs a balanced string:
constant fraction of 1’s and 0’s.

Each output gate is connected to one random gate in each group.
n logn wires to outputs.

For every nonzero message, at least one balanced group.
This implies, constant fraction of output XOR gates is odd.



Open problems

We have shown by a probabilistic construction the

existence of good codes that can be encoded with

“almost” linear number of wires in very small depth

OPEN:

Explicit construction of such codes

Complexity of decoding


