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Asymptotically good codes

C:{0,1}* = {0,1}" is (p,d)-good if
1. k/n>p

2. min distance of C is at least on

What is the complexity of ENCODING asymptotically
good codes?



Complexity of ENCODING good codes

[Gelfand, Dobrushin, Pinsker 1973] There exist good
codes that can be encoded in linear time.

[Spielman 1995] Explicit good codes encodable (also
decodable) in linear time and linear space.
Encoding by NC'y circuits.

[Bazzi, Mitter 2005] Good codes cannot be encoded
In linear time and sub-linear space.



Unbounded fan-in circuits - with aritrary gates
TRADEOFFS between # of wires and depth

. any code can be encoded in depth 1 with O(n?) wires

. for good codes Q2(n?) wires are necessary in depth 1
regardless of types of gates

each input has to be connected to > dn outputs



Tight bounds on # of wires for every fixed depth d

d="2 ©(n(logn/loglogn)?)
d=23 ©(nloglogn)

d=4,5 O(nlog*n)

d=2i,2i+ 1 O(ni;(n)) (t > 2)

Lower bounds: regardless of types of gates
Upper bounds: probabilistic, using only XOR gates.

“almost” linear number of wires in very small depth



Ni+1 = [A7(n)] inverse Ackerman function

* operation:

number of times to iterate \; to get a value <1

Fr(n) = min{t | F(f(.. f(n)...) <1}

t times

A1(n) =log(n)
A2(n) = log*(n)
A3(n) = (log*)*(n)



Our lower bounds hold for any good code

regardless of types of gates allowed in the circuits.

We establish some connectivity properties that ANY

circuit computing error-correcting codes must have.



Superconcentrator graphs

Definition [Valiant 1975]

Directed acyclic graph with n inputs V7, n outputs V>,
s.t. forany 1 <t <n and any X C Vi, Y C V5 with
| X| = |Y| =1t 3t vertex disjoint paths from X to Y.
complete bipartite graph: n? edges

Valiant: superconcentrators with linear number of edges
(even in depth O(logn), e.g. Pippenger)

Spielman: connection between codes and superconcentrators



Relaxed superconcentrators

Definition [Pudlak 1994]
Directed acyclic graph with n inputs V7, n outputs V>,

s.t. forany 1 <t¢t<n and
for RANDOM X C Vi, Y C Vs with |X| = |Y| =t
Ex y[# of vert.disj.paths from X to Y] > 4t

(different relaxation: [Dolev, Dwork, Pippenger, Wigderson 1983])



Connectivity property of circuits for codes

Definition “semi-relaxed” superconcentrator
Directed acyclic graph with k inputs V7, n outputs V5,
s.t. forany 1 <t <k,

for ANY X C V7 and RANDOM Y C V5

with | X| =|Y| =t

Ey [# of vert.disj.paths from X to Y] > 6t

Theorem Any circuit encoding C : {0,1}* — {0,1}"

with min. dist. on must be a ‘“semi-relaxed” super-
concentrator (with parameter §).



Connectivity properties

Superconcentrators: ANY X C V73, ANY Y C V5

Circuits for codes: ANY X C V7, RANDOM Y C V5

Relaxed s.c.: RANDOM X C V7, RANDOM Y C V5



Depth d > 3 We use known |lower bounds on
relaxed superconcentrators [Pudlak 1994]

d=3 Q(nloglogn)

d= 2,21+ 1 Q(nX;(n)) (1> 2)

We prove matching upper bounds.



Depth d =2
Superconcentrators: ©(n(logn)?/loglogn)
[Radhakrishnan, Ta-Shma 2000]

Circuits for codes: ©(n(logn/loglog n)z)

Relaxed superconcentrators: ©(nlogn) [Pudlak 1994,
DDPW 1983]



Lower bound proof sketch

Theorem Any circuit encoding C : {0,1}* — {0,1}"
with min. dist. on must be a “semi-relaxed”’ super-
concentrator (with parameter §).

Sketch of proof Start with any set X of inputs of size ¢, pick
random Y one element at a time.

We show: as long as |Y| < t, with probability at least § the
next randomly chosen output will increase the number of vertex
disjoint paths from X to the current Y by one.



Lower bound proof sketch

| X| =1t |Y| <t. Let the # of vertex disjoint paths from X to Y
be 57 < t.

Suppose B is a set s.t. the # of vertex disjoint path from X
to Y U B is still 3. By Menger's theorem, there is a set S of 3
vertices s.t. every path must contain a vertex from S.

But then, the values at the outputs Y U B can take at most 2J
different values.

There are two different codewords C(0x1) and C(0x»),

that agree on Y U B,
there must be at least dn vertices outside Y U B.



Lower bound proof sketch

We need: at least on vertices s.t. adding any of them
increases # of paths.

Vertex v is bad if the # of vertex disjoint path from
X to Y Uw is not larger than from X to Y.

BAD: set of all bad vertices.

Lemma # of vertex disjoint path from X to Y U BAD is not
larger than from X to Y.

Equivalent to a classical theorem from matroid theory.



Matroid Lemma [Hazel Perfect, 1968]
Collections of endpoints of vertex disjoint paths are

independent sets of a matroid.

Note: not true for collections of vertex disjoint paths.



Recall: generator matrix of good codes is dense

must have 2(n?) nonzero entries

Corollary of our upper bounds:
There are dense generator matrices that can be ob-

tained as the product of two ‘“‘sparse’” matrices.

with O(n(logn/loglogn)?) nonzero entries



Upper bound: probabilistic construction

Depth 2 proof sketch:

Middle layer: logn groups of vertices (XOR gates).
i-th group: 2'logn vertices with fan-in n/2°.

Total # of wires so far: n(logn)?.

quresp_ond to range detectors: -th group "“detects” weight
(2:=1 2] on inputs with such weight outputs a balanced string:
constant fraction of 1's and O’s.

Each output gate is connected to one random gate in each group.
nlogn wires to outputs.

For every nonzero message, at least one balanced group.
This implies, constant fraction of output XOR gates is odd.



Open problems

We have shown by a probabilistic construction the
existence of good codes that can be encoded with

“almost” linear number of wires in very small depth

OPEN:
Explicit construction of such codes

Complexity of decoding



