Error-correcting codes vs. superconcentrator graphs

Anna Gál

Joint work with: Kristoffer Hansen, Michal Koucky, Pavel Pudlak, Emanuele Viola

Asymptotically good codes

- $C: \{0,1\}^k \rightarrow \{0,1\}^n$ is (ρ,δ) -good if
- 1. $k/n \ge \rho$
- 2. min distance of C is at least δn

What is the complexity of ENCODING asymptotically good codes?

Complexity of ENCODING good codes

[Gelfand, Dobrushin, Pinsker 1973] There exist good codes that can be encoded in linear time.

[Spielman 1995] Explicit good codes encodable (also decodable) in linear time and linear space. Encoding by NC_1 circuits.

[Bazzi, Mitter 2005] Good codes cannot be encoded in linear time and sub-linear space. Unbounded fan-in circuits - with aritrary gates TRADEOFFS between # of wires and depth

 \cdot any code can be encoded in depth 1 with $O(n^2)$ wires

 \cdot for good codes $\Omega(n^2)$ wires are necessary in depth 1 regardless of types of gates

each input has to be connected to $\geq \delta n$ outputs

Tight bounds on \# of wires for every fixed depth d

 $d = 2 \qquad \qquad \Theta(n(\log n / \log \log n)^2)$ $d = 3 \qquad \qquad \Theta(n \log \log n)$ $d = 4,5 \qquad \qquad \Theta(n \log^* n)$ $d = 2i, 2i + 1 \qquad \qquad \Theta(n\lambda_i(n)) \qquad (i \ge 2)$

Lower bounds: regardless of types of gates Upper bounds: probabilistic, using only XOR gates. "almost" linear number of wires in very small depth $\lambda_{i+1} = \lceil \lambda_i^*(n) \rceil$ inverse Ackerman function

* operation:

number of times to iterate λ_i to get a value ≤ 1

$$f^*(n) = \min\{t \mid f(f(\dots f(n) \dots) \le 1\}$$
$$t \text{ times}$$

 $\lambda_1(n) = \log(n)$ $\lambda_2(n) = \log^*(n)$ $\lambda_3(n) = (\log^*)^*(n)$

Our lower bounds hold for any good code regardless of types of gates allowed in the circuits.

We establish some connectivity properties that ANY circuit computing error-correcting codes must have.

Superconcentrator graphs

Definition [Valiant 1975]

Directed acyclic graph with n inputs V_1 , n outputs V_2 , s.t. for any $1 \leq t \leq n$ and any $X \subseteq V_1$, $Y \subseteq V_2$ with

 $|X| = |Y| = t \exists t$ vertex disjoint paths from X to Y.

complete bipartite graph: n^2 edges Valiant: superconcentrators with linear number of edges (even in depth $O(\log n)$, e.g. Pippenger)

Spielman: connection between codes and superconcentrators

Relaxed superconcentrators

Definition [Pudlák 1994] Directed acyclic graph with n inputs V_1 , n outputs V_2 , s.t. for any $1 \le t \le n$ and for RANDOM $X \subseteq V_1$, $Y \subseteq V_2$ with |X| = |Y| = t $E_{X,Y}[\# \text{ of vert.disj.paths from } X \text{ to } Y] \ge \delta t$

(different relaxation: [Dolev, Dwork, Pippenger, Wigderson 1983])

Connectivity property of circuits for codes

Definition "semi-relaxed" superconcentrator Directed acyclic graph with k inputs V_1 , n outputs V_2 , s.t. for any $1 \le t \le k$, for ANY $X \subseteq V_1$ and RANDOM $Y \subseteq V_2$ with |X| = |Y| = t $E_Y[\# \text{ of vert.disj.paths from } X \text{ to } Y] \ge \delta t$

Theorem Any circuit encoding $C : \{0,1\}^k \rightarrow \{0,1\}^n$ with min. dist. δn must be a "semi-relaxed" super-concentrator (with parameter δ).

Connectivity properties

Superconcentrators: ANY $X \subseteq V_1$, ANY $Y \subseteq V_2$

Circuits for codes: ANY $X \subseteq V_1$, RANDOM $Y \subseteq V_2$

Relaxed s.c.: RANDOM $X \subseteq V_1$, RANDOM $Y \subseteq V_2$

We prove matching upper bounds.

Depth d = 2

Superconcentrators: $\Theta(n(\log n)^2 / \log \log n)$ [Radhakrishnan, Ta-Shma 2000]

Circuits for codes: $\Theta(n(\log n / \log \log n)^2)$

Relaxed superconcentrators: $\Theta(n \log n)$ [Pudlák 1994, DDPW 1983]

Lower bound proof sketch

Theorem Any circuit encoding $C : \{0,1\}^k \rightarrow \{0,1\}^n$ with min. dist. δn must be a "semi-relaxed" superconcentrator (with parameter δ).

Sketch of proof Start with any set X of inputs of size t, pick random Y one element at a time.

We show: as long as |Y| < t, with probability at least δ the next randomly chosen output will increase the number of vertex disjoint paths from X to the current Y by one.

Lower bound proof sketch

|X| = t, |Y| < t. Let the # of vertex disjoint paths from X to Y be j < t.

Suppose *B* is a set s.t. the # of vertex disjoint path from *X* to $Y \cup B$ is still *j*. By Menger's theorem, there is a set *S* of *j* vertices s.t. every path must contain a vertex from *S*.

But then, the values at the outputs $Y \cup B$ can take at most 2^j different values.

There are two different codewords $C(0x_1)$ and $C(0x_2)$, that agree on $Y \cup B$, there must be at least δn vertices outside $Y \cup B$.

Lower bound proof sketch

We need: at least δn vertices s.t. adding any of them increases # of paths.

Vertex v is bad if the # of vertex disjoint path from X to $Y \cup v$ is not larger than from X to Y.

BAD: set of all bad vertices.

Lemma # of vertex disjoint path from X to $Y \cup BAD$ is not larger than from X to Y.

Equivalent to a classical theorem from matroid theory.

Matroid Lemma [Hazel Perfect, 1968]

Collections of endpoints of vertex disjoint paths are independent sets of a matroid.

Note: not true for collections of vertex disjoint paths.

Recall: generator matrix of good codes is dense must have $\Omega(n^2)$ nonzero entries

Corollary of our upper bounds:

There are dense generator matrices that can be obtained as the product of two "sparse" matrices. with $O(n(\log n / \log \log n)^2)$ nonzero entries

Upper bound: probabilistic construction

Depth 2 proof sketch: Middle layer: $\log n$ groups of vertices (XOR gates). *i*-th group: $2^i \log n$ vertices with fan-in $n/2^i$. Total # of wires so far: $n(\log n)^2$.

Correspond to range detectors: *i*-th group "detects" weight $(2^{i-1}, 2^i]$: on inputs with such weight outputs a balanced string: constant fraction of 1's and 0's.

Each output gate is connected to one random gate in each group. $n \log n$ wires to outputs.

For every nonzero message, at least one balanced group. This implies, constant fraction of output XOR gates is odd.

Open problems

We have shown by a probabilistic construction the existence of good codes that can be encoded with "almost" linear number of wires in very small depth

OPEN: Explicit construction of such codes Complexity of decoding