Final Exam Review Sheet
EE382V Data Engineering Fall ’10
Professor Daniel Miranker

Exam Date: Friday, 12/3/10, comprehensive 2 1/2 hour exam, closed book.

This review sheet is intended only as a study guide concerning the breadth of the exam. You are expected to know all the terminology presented as covered in class, the texts and the required supplemental reading. Again, individual terms and topics in this document are indicative of the breadth, not a comprehensive syllabus for the exam.

Reading:

In addition to the sections of the textbook corresponding to the lecture topics, it is understood that you will have read the required readings posted as posted on the web site and repeated here:

Text: Ch 7, 8.1 – 8.4, 9.1, 9.2, 13, 14.1, 14.2, 14.6, 14.7, 15
New since midterm: Ch. 16.1-16.6, 17.1-17.4, 18.1-18.4

Topics:

1. What is data modeling?
 a. Terminology
 i. Data model
 ii. Three schema model
 1. external schema
 2. conceptual schema
 3. internal schema
 iii. Entity, attribute, identifier, relation/association
 iv. Logical model, Physical Model, DDL
 b. What are the steps of a data modeling effort
 i. planning and analysis
 ii. conceptual design // logic without the details
 iii. logical design
 iv. physical design
 v. implementation
2. Basic Relational Database Concepts
 a. Schema(s)
 b. Content addressability
 c. Keys
 i. Candidate key
 ii. Primary key
 iii. Foreign key
 iv. Search/index key

3. Data Model Concepts
 a. Data modeling process
 i. Plan project
 ii. Determine requirements
 iii. Specify entities
 b. Entity, attribute, relation/association
 c. Weak and Strong Entities
 d. Relations/associations properties and implementation(s)
 i. Cardinality constraints
 ii. Aggregate
 iii. Inheritance (subtypes)
 e. Consistency Constraints & Triggers
 i. DBMS as an active manager of semantic correctness
 ii. Syntax

4. Disks and Data
 a. Physical properties of disk drives
 b. Two phase external sort

5. Indexing
 a. Methods
 i. B+-trees
 ii. R-trees, and other spatial partitioning methods
 iii. Bit-vector index methods
 iii. Metric space partitioning methods
 b. Secondary Indexes
 i. Applicability
 ii. Clustering

6. Query Systems
 a. Gross Structure
 i. Parsing
 ii. Logical Plan
 iii. Physical Plan
 iv. Optimizer
 v. Physical Operators
 b. Physical Operators
 i. Access Paths
 1. table_scan
 2. index_scan
 ii. Join Operators
1. Nested loops
2. Merge join
3. Hash-join
4. Hybrid-hash join

c. Estimated Query Cost
 i. Estimating the cost of each operator
 ii. Adorning a plan tree.
 iii. Estimating the cost of a plan

d. Optimization
 i. Role of axioms/identified of the relational algebra
 ii. Greedy rules e.g. pushing selects
 iii. Dynamic programming method of optimizing join orders
 iv. Use of a query graph

7. Transactions
 a. ACID properties
 v. A…
 vi. C…
 vii. I…
 viii. D…
 b. Log-based recovery
 i. Hardware organization
 1. log
 2. stable store
 ii. Redo
 iii. Undo
 iv. Undo/redo
 v. Role of commit
 c. Concurrency Control
 i. Schedule
 ii. Serial Schedule
 iii. Conflict/Bernstein Conditions
 iv. Serializability
 v. Precedence graph
 vi. Serializability Theorem
 vii. Locking
 1. Two-phase locking
 2. Escalading/upgrading locks
 a. Shared locks
 b. Granularity (basic ideas, not full implementation and correctness)
 viii. Scheduler