I. Introduction
 A. Architecture of Database Management Systems
 B. The role of disks.

II. UML as a Data Modeling Language (Ch. 4)
 A. Basic E-R Modeling
 B. Mapping of E-R modeling to UML
 C. Use of Rational Rose, (or other), CASE tool for data modeling.

III. Views, Constraints, Rule Systems Management (Ch. 7)
 A. Views
 B. Integrity constraints
 C. Active-Database Systems
 D. Deductive Database Systems (Datalog) (time permitting)

III. Index Structures (Ch. 14)
 A. B-trees
 B. Bit-vector indexes
 C. Multidimensional Indexing
 i. R-trees
 ii. KD-trees
 D. Metric Space Indexing
 E. Extensible Hashing (time permitting)

IV. Query Execution (Ch. 15, 16)
 A. Basic Join Algorithms
 B. Expression tree representation
 C. Cost functions
 D. Transformation rules
 E. System R Optimization Algorithm
 F. Parallel query processing (Time permitting)

V. Transaction Management (Ch. 17, 18.1-18.5, 19.1-19.2)
 A. ACID Properties
 B. Logging and error recovery
 C. Serializability
 D. Two phase locking
 E. Distributed Commits (time permitting)

VI. Data Integration
 A. A large-scale architectures (Ch. 21.1-21.3)
 I. XML
 II. Warehouse vs. Mediator Architecture
 III. Semantic Net
 B. XML
 I. Declaration, Storage, Representation of New Datatypes (Ch. 11)
 II. Language Support (Ch. 12)
 1. XSL(T)
 2. Xquery
 C. The Semantic Web (Supplementary Materials)
 I. Ontologies
 II. Semantic Web languages, SPARQL, OWL, RDFS, RDF
 III. Mediator Architectures