
Running PARSEC 2.1 on M5
Version 1.0

Mark Gebhart* Joel Hestness* Ehsan Fatehi+

Paul Gratz+ Stephen W. Keckler*

*Computer Architecture and Technology Laboratory
Department of Computer Science
The University of Texas at Austin

cart@cs.utexas.edu — www.cs.utexas.edu/users/cart

+Department of Electrical and Computer Engineering
Texas A&M University

Technical Report TR-09-32

Abstract: This technical report describes the steps that we took to cross-compile PARSEC 2.1 [1] for the Alpha
architecture to run on M5 [2]. M5 is a full system multiprocessor simulator that is capable of booting a full Linux
system. This report covers building an Alpha cross-compiler, adding M5 intrinsics to the PARSEC infrastructure,
cross-compiling the benchmarks, and the creation of M5 execution scripts. Currently, we are able to compile all of
the PARSEC 2.1 benchmarks and all benchmarks except forswaptions successfully run on M5. Along with this
technical report we are distributing a disk image containing pre-compiled statically linked Alpha binaries for all of
PARSEC 2.1 that can be used with M5. Using the disk image removes the need to cross-compile the benchmarks.
Additionally, we are distributing configuration files and patches that are needed to recompile all of the benchmarks for
those that wish to cross-compile the benchmarks.

1 Overview

We are providing a set of configuration files and instructionsthat can be used to cross-compile the PARSEC 2.1
benchmarks for Alpha and run them on M5. We have not experimented with using any ISA besides Alpha with M5.
For users not interested in changing the application sourcecode or recompiling the PARSEC 2.1 benchmarks, we
have made a disk image with all of the pre-compiled statically linked benchmarks and inputs sets available. The disk
image contains the parallel versions of the benchmarks. We have compiled all of the benchmarks to use pthreads
for parallelization except forfreqmine which does not have a pthreads implementation and instead uses OpenMP.
Those interested in their serial performance should compile the serial versions of the benchmarks and build a custom
disk image, for which instructions can be found below. Alongwith this technical report we have made all of the files
mentioned available at the following webpage:

http://www.cs.utexas.edu/˜parsec m5

To use the disk image, follow the steps in the following sections:

Section 3) Obtain and compile the M5 source code from the M5 project website

Section 4) Download our disk image with the pre-compiled benchmarks

Section 8) Download PARSEC run scripts for M5 from our website and run the M5 simulator with the disk image
and run scripts

To recompile the benchmarks, either to change the application source code, compiler, set of compiler flags, or paral-
lelization method follow the steps in the below sections:

Section 3) Obtain and compile the M5 source code from the M5 project

Section 5) Obtain a cross-compiler

1

Section 6.2) Download the PARSEC application source code from the PARSEC project

Section 6.3) Download the Alpha configuration files and patches from our website

Section 6.4) Add additional libraries needed for raytrace

Section 6.5) Apply Alpha specific patches and configuration files

Sections 6.7-6.11) Compile the PARSEC benchmarks using thePARSEC providedparsecmgmt tool

Section 7) Create a disk image with the PARSEC binaries and input sets

Section 8) Download PARSEC run scripts for M5 from our website and run the M5 simulator with the newly
created disk image and our run scripts

2 Benchmark Overview

The benchmarks in PARSEC use a variety of parallelization methods including pthreads, Intel TBB, and OpenMP.
We use the pthreads version of all benchmarks except forfreqmine , which does not have a pthreads implementation
and in that case we use the OpenMP version. The applications are divided into three phases: an initial serial phase,
a parallel phase, and a final serial phase. The parallel phaseis called the region of interest (ROI) and is marked in
the application source code by calls to the PARSEC hooks library. The hooks library can be used to perform certain
actions upon entering and leaving the ROI. We use the hooks library to dump M5 statistics upon entry and exit of the
ROI.

M5 can either be run in a detailed mode where an out of order CPUis modelled along with a cache hierarchy or a
simple mode that models a simple CPU and does not model any caches. The simulation speed of the simple mode is
roughly 10 – 15 times faster than detailed mode. For that reason there are several options to reduce the simulation time.
One option is to switch into the detailed mode immediately before the application is executed by issuing a command
in the M5 run script. This avoids booting Linux in detailed mode but then the entire application is executed in detailed
mode. Some of the benchmarks, specificallyraytrace andfacesim have long initial serial portions, the simulation
of which can take several days. An alternative is to not switch into detailed mode until the beginning of the ROI is
encountered. This can be done by first running M5 in simple mode and having it produce a checkpoint at the beginning
of the ROI. Then a second run of M5 is done in detailed mode beginning at the checkpoint. Section 8 discusses these
options in more detail.

The configuration files that we distribute include support for taking a checkpoint at the beginning of the ROI. The
only downside to producing a checkpoint when it is not going to be used is the disk space that the checkpoint takes,
which is generally 10 – 20 MBs. To disable this support edit the following file:

parsec-2.1/pkgs/libs/hooks/parsec/alpha-gcc-hooks.b ldconf

The disk image that we are distributing includes two sets of binaries one with checkpointing enabled and another
without. The layout of the disk image is given in Section 8.

3 Obtaining M5

The first step is to obtain and compile the M5 simulator. The latest version of M5 can be downloaded from the M5
website using Mercurial by following these instructions:

http://www.m5sim.org/wiki/index.php/Repository

There are two repositories available:m5-stable andm5. Them5 repository is the development repository but as of
the time of writing this version is fully functional and should be used instead of the stable version. There is a detailed
guide that describes how to compile the M5 source code available here:

http://www.m5sim.org/wiki/index.php/Compiling M5

4 Downloading our Pre-Built Disk Image

To run our pre-compiled binaries, download our pre-built disk image from:

2

http://www.cs.utexas.edu/˜parsec m5/linux-parsec-2-1-m5.img.bz2

Then skip the following steps and proceed to Section 8.

5 Obtain a Cross-Compiler

The M5 website has several pre-built cross-compilers available for download. We recommend using the following
pre-built cross-compiler:

gcc-4.3.2, glibc-2.6.1 (NPTL,x86/32)

This toolchain can be downloaded from the following webpage:

http://www.m5sim.org/wiki/index.php/Download

If problems with the pre-built cross-compilers are encountered we have had success usingcrosstool-NG 1.5.2 to
build custom toolchains. It is available on the following website:

http://ymorin.is-a-geek.org/projects/crosstool

The following instructions can be used to build a cross-compiler with crosstool-NG:

First, unpackcrosstool-NG and then install it with the following commands:

./configure --prefix=/location/to/install/crosstool- NG
make
make install

The next step is to specify the configuration options used to build the cross-compiler:

/location/to/install/crosstool-NG/bin> ./ct-ng menuco nfig

We used the following configuration options:

• Target options

– Target Architecture - alpha

– Variant - ev67

• Operating System

– Target OS - linux

• Binary utilities

– binutils version - 2.19.1

• C compiler

– gcc version - 4.3.4

– Additional supported languages: C++

• C-library

– C library - glibc

– glibc version - 2.6.1

– Threading implementation to use - nptl

The rest of the options can be left with their default values.Once these options are configured, exit the menu, save the
new configuration, and type the following command to build the cross-compiler:

/location/to/install/crosstool-NG/bin> ./ct-ng build

The build process will take around an hour to complete. The newly built toolchain will be installed in:

/home/$USERNAME/x-tools

There is an option in the main menu underPaths and misc options to change the location where the cross-
compiler will be installed.

3

6 Compiling PARSEC 2.1 Benchmarks

6.1 Compiler Options

We experimented with several different CPU specific optimizations to determine how to produce the most efficient
Alpha code. When using theev67 optimizations we see on average a 10% reduction in the numberof instructions
executed and a 10% speedup in performance. There is wide variance across the benchmarks with some seeing little
benefit and one achieving a 60% speedup. However,dedup, ferret, vips, and x264 fail to execute because
of unimplemented subword operations in M5: maxuw4, minuw4,and minsb8. Support for these instructions could
be added to M5 but we have not attempted this. These optimizations are specified in the configuration files that we
distribute with:

CFLAGS="${CFLAGS} -mcpu=ev67 -mtune=ev67"
CXXFLAGS="${CXXFLAGS} -mcpu=ev67 -mtune=ev67"

We also tried compiling with the 21064 specific optimizations. However, we do not see any speedup from using
these flags:

CFLAGS="${CFLAGS} -mcpu=21064 -mtune=21064"
CXXFLAGS="${CXXFLAGS} -mcpu=21064 -mtune=21064"

On the disk image we are distributing, all of the benchmarks that work correctly with theev67 flags are compiled
with them, while the 4 other benchmarks (dedup, ferret, vips, and x264) are compiled with the21064 flags.
We use the same set of flags for the configuration files that we are distributing.

6.2 Initial Environment Setup

The first step is to download the PARSEC 2.1 sources from:
http://coblitz.codeen.org/parsec.cs.princeton.edu/d ownload/2.1/parsec-2.1-core.tar.gz

After unpacking the tar file to a place with plenty (1-2 GBs) offree space, source the PARSEC environment:
parsec-2.1> source env.sh

If the following error messages are encountered it is safe toignore them:

dirname: invalid option -- b
Try ‘dirname --help’ for more information.
dirname: missing operand
Try ‘dirname --help’ for more information.

The next step is to create an Alpha configuration. This step assumes the hooks package is used to obtain performance
measurements of the region of interest. For more information on the hooks package see Section 6.5.

parsec-2.1> bldconfadd -n alpha-gcc-hooks -c gcc-hooks

6.3 Obtain Extra Files

A tar file of all of the extra files that are needed is available here:
http://www.cs.utexas.edu/˜parsec m5/TR-09-32-parsec-2.1-alpha-files.tar.gz

After downloading and unpacking this tar file an environmentvariable pointing to the location of files must be set in
the following two files:

apply-parsec-2.1-alpha-diffs
unpack-parsec-2.1-extra-alpha-packages

The environment variable is at the beginning of both scripts:

#!/bin/bash

ALPHA_FILES=/path/to/alpha/files/TR-09-32-parsec-2. 1-alpha-files
. . .

4

6.4 Add Missing Packages

In order to compile raytrace,libX11 must be cross-compiled which requires cross-compiling thefollowing libraries:

libX11
libXmu
libXext
libxcb
xproto
xextproto
xtrans
libpthread_stubs
libXau
kbproto
inputproto
jpeg

A single tar file (parsec-2.1-extra-alpha-packages.tar.gz) containing all of these packages is included in
the tar file mentioned above. We have a simple script to unpackall of these packages and place them in the correct
place. This script must be run from theparsec-2.1/pkgs directory:

parsec-2.1/pkgs> /path/to/alpha/files/TR-09-32-parse c-2.1-alpha-files/unpack-parsec
-2.1-extra-alpha-packages

This script also unpacks the extra configuration files and places them in the correct place.

6.5 Alpha Specific Patches

There are a few Alpha specific changes that must be made to the PARSEC 2.1 sources. These changes address a
combination of compile time and runtime errors that were encountered. They have been reported to the PARSEC
project and may be supported directly by future version of PARSEC. The majority of these changes do not have an
impact on the performance of the benchmarks, the one exception is the change to Streamcluster. Some of these changes
may be specific to the version of the cross-compiler and library that we used. These can be applied by running the
scriptapply-parsec-2.1-alpha-diffs from theparsec-2.1 directory:

parsec-2.1> /path/to/alpha/files/TR-09-32-parsec-2.1 -alpha-files/apply-parsec-2.1-alpha-diffs

The Alpha specific changes that this script applies are:

• Bodytrack - Comment out line 101 of pkgs/apps/bodytrack/src/config.h.in, original:

/ * Define to rpl_malloc if the replacement function should be u sed. * /
#undef malloc

After change:

/ * Define to rpl_malloc if the replacement function should be u sed. * /
//#undef malloc

Add the -all-static flag to lines 107 a 115 of pkgs/apps/bodytrack/src/TrackingBenchmark/Makefile.in, original:

CXXLINK = $(LIBTOOL) --tag=CXX --mode=link $(CXXLD) $(AM_ CXXFLAGS) \
$(CXXFLAGS) $(AM_LDFLAGS) $(LDFLAGS) -o $@

LINK =$(LIBTOOL) --tag=CC --mode=link $(CCLD) $(AM_CFLAG S) $(CFLAGS) \
$(AM_LDFLAGS) $(LDFLAGS) -o $@

After change:

CXXLINK = $(LIBTOOL) --tag=CXX --mode=link $(CXXLD) -all- static $(AM_CXXFLAGS) \
$(CXXFLAGS) $(AM_LDFLAGS) $(LDFLAGS) -o $@

LINK =$(LIBTOOL) --tag=CC --mode=link $(CCLD) -all-stati c $(AM_CFLAGS) $(CFLAGS) \
$(AM_LDFLAGS) $(LDFLAGS) -o $@

5

• Dedup - The configure script for the SSL library detects the platform automatically and the best solution we
found was to have the parsecmgmt tool bypass configure and useConfigure.pl directly. The easiest way to
accomplish this is through a symbolic link:

mv pkgs/libs/ssl/src/configure pkgs/libs/ssl/src/conf igure.save
ln -s pkgs/libs/ssl/src/Configure.pl pkgs/libs/ssl/src /configure

The MAXBUF define needs to be reduced to run on M5, change pkgs/kernels/dedup/src/dedupdef.h line 185,
original:

#define MAXBUF (600 * 1024 * 1024) / * 128 MB for buffers * /

After change:

#define MAXBUF (30 * 1024 * 1024) / * 128 MB for buffers * /

The OLARGEFILE flag is not supported on Alpha and causes an error, change pkgs/kernels/dedup/src/en-
coder.c line 1135

Original:

/ * src file open * /
if((fd = open(conf->infile, O_RDONLY | O_LARGEFILE)) < 0)

EXIT_TRACE("%s file open error %s\n", conf->infile, strer ror(errno));

After change:

/ * src file open * /
if((fd = open(conf->infile, O_RDONLY)) < 0)

EXIT_TRACE("%s file open error %s\n", conf->infile, strer ror(errno));

In order to support the alphaev67-unknown-linux-gnu-gcc cross-compiler built withcrosstool-NG the ssl/sr-
c/Configure.pl file needs updating at line 359 to add the new name of the cross compiler, original:

"linux-alpha-gcc","gcc:-O3 -DL_ENDIAN -DTERMIO::-D_RE ENTRANT::-ldl:
SIXTY_FOUR_BIT_LONG RC4_CHUNK DES_RISC1 DES_UNROLL:${no_asm}:dlfcn:linux-
shared:-fPIC::.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR)",

"linux-alpha+bwx-gcc","gcc:-O3 -DL_ENDIAN -DTERMIO::- D_REENTRANT::-ldl:
SIXTY_FOUR_BIT_LONG RC4_CHAR RC4_CHUNK DES_RISC1 DES_UNROLL:${no_asm}:dlfcn:
linux-shared:-fPIC::.so.\$(SHLIB_MAJOR).\$(SHLIB_MI NOR)",

After change:

"linux-alpha-gcc","gcc:-O3 -DL_ENDIAN -DTERMIO::-D_RE ENTRANT::-ldl:
SIXTY_FOUR_BIT_LONG RC4_CHUNK DES_RISC1 DES_UNROLL:${no_asm}:dlfcn:linux-
shared:-fPIC::.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR)",

"linux-alpha-alphaev67-unknown-linux-gnu-gcc","alph aev67-unknown-linux-gnu-gcc:-O3
-DL_ENDIAN -DTERMIO::-D_REENTRANT::-ldl:SIXTY_FOUR_B IT_LONG RC4_CHUNK

DES_RISC1 DES_UNROLL:${no_asm}:dlfcn:linux-shared:-f PIC::.so.\$(SHLIB_MAJOR).\
$(SHLIB_MINOR)",

"linux-alpha+bwx-gcc","gcc:-O3 -DL_ENDIAN -DTERMIO::- D_REENTRANT::-ldl:
SIXTY_FOUR_BIT_LONG RC4_CHAR RC4_CHUNK DES_RISC1 DES_UNROLL:${no_asm}:dlfcn:
linux-shared:-fPIC::.so.\$(SHLIB_MAJOR).\$(SHLIB_MI NOR)",

• Facesim - Add a call to RANLIB to line 338 of pkgs/apps/facesim/src/PublicLibrary/Makefile.common, origi-
nal:

$(TARGET_NAMES): %$(SUFFIX).a: $(OBJ)
mkdir -p $(PHYSBAM_LIBDIR)
rm -f $@
$(AR) -r $@ $ˆ

else

6

After change:

$(TARGET_NAMES): %$(SUFFIX).a: $(OBJ)
mkdir -p $(PHYSBAM_LIBDIR)
rm -f $@
$(AR) -r $@ $ˆ
$(RANLIB) $@

else

• Ferret - Add a call to RANLIB to line 46 of pkgs/apps/ferret/src/Makefile, original:

$(LIBDIR)/libcass.a: $(lib_obj)
@echo " A ’$@’"
@$(AR) rcs $@ $ˆ

After change:

$(LIBDIR)/libcass.a: $(lib_obj)
@echo " A ’$@’"
@$(AR) rcs $@ $ˆ
@$(RANLIB) $@

Also do the same for line 57, original:

$(LIBDIR)/libcassimage.a: $(libimage_obj)
@echo " A ’$@’"
@$(AR) rcs $@ $ˆ

After change:

$(LIBDIR)/libcassimage.a: $(libimage_obj)
@echo " A ’$@’"
@$(AR) rcs $@ $ˆ
@$(RANLIB) $@

• Streamcluster - When using the PARSEC replacement barrier implementation with more than four threads a ker-
nel error is encountered. The PARSEC barrier implementation is more efficient than the default implementation
so disabling it will reduce the overall benchmark performance; however, we are unaware of another solution. To
disable the replacement barrier implementation make the following change to pkgs/kernels/streamcluster/src/-
parsecbarrier.h, original:

//If defined then macros will be used to redefine the relevan t pthread_barrier *
//symbols to the equivalent parsec_barrier * symbols. This will make the host code
//use the parsec_barrier * replacement calls without the need to touch the source
//code (other than including this header file), but it makes it harder to
//understand
//what is going on
#define ENABLE_AUTOMATIC_DROPIN

//Whether to allow the use of spinning. If enabled then the ba rrier implementation
//will busy-wait on a flag first. After a pre-determined amo unt of time has passed
//without any success it will fall back to waiting on a condit ion variable.
//Spinning
//will result in unsynchronized memory accesses to the flag .
#define ENABLE_SPIN_BARRIER

after change:

//If defined then macros will be used to redefine the relevan t pthread_barrier *
//symbols to the equivalent parsec_barrier * symbols. This will make the host code
//use the parsec_barrier * replacement calls without the need to touch the source
//code (other than including this header file), but it makes it harder to

7

//understand
//what is going on
//#define ENABLE_AUTOMATIC_DROPIN

//Whether to allow the use of spinning. If enabled then the ba rrier implementation
//will busy-wait on a flag first. After a pre-determined amo unt of time has passed
//without any success it will fall back to waiting on a condit ion variable.
//Spinning
//will result in unsynchronized memory accesses to the flag .
//#define ENABLE_SPIN_BARRIER

• M5 Hooks - Since we are interested in measuring the performance of just the parallel portion of the benchmark,
Region of Interest (ROI), we added support to the hooks package to make M5 pseudo calls to dump the statistics
at the entry and exit of the ROI. Additionally, we have added support to take a checkpoint at the beginning of the
ROI. This checkpoint can later be used to simulate just the ROI in detailed mode. These changes are included
as part of theapply-parsec-2.1-alpha-diffs patch.

First make the following additions to theconfig.h header file:

#if ENABLE_M5_TRIGGER
#include <stdint.h>
void m5_dumpreset_stats(uint64_t ns_delay, uint64_t ns_ period);
void m5_checkpoint(uint64_t ns_delay, uint64_t ns_perio d);
#endif

Add the following function call to the end ofparsec roi begin() and at the beginning ofparsec roi end()

in hooks.c :

#if ENABLE_M5_TRIGGER
m5_dumpreset_stats(0,0);
#endif

Add the following to the end of parsec roi begin() :

#if ENABLE_M5_CKPTS
m5_checkpoint(0,0);
#endif

Add the assembly file to the list of OBJS in the Makefile:

INCLUDEDIR=include TARGET=libhooks.la OBJS=hooks.lo al pha_m5.lo

The final step is to create an Alpha assembly file named:alpha m5.S with the following contents:

#if ENABLE_M5_TRIGGER
.align 3
.globl m5_dumpreset_stats
m5_dumpreset_stats:
.long (((0x01) << 26) | ((16) << 21) | ((17) << 16) | (0x42))
ret ($26)

#endif
#if ENABLE_M5_CKPTS

.align 3

.globl m5_checkpoint
m5_checkpoint:
.long (((0x01) << 26) | ((16) << 21) | ((17) << 16) | (0x43))
ret ($26)

#endif

The low bits in the M5 pseudo instruction tell M5 what action to take. Below are the mappings from constants
to the actions they cause M5 to take for those interested in adding support for other M5 intrinsics:

8

#define arm_func 0x00
#define quiesce_func 0x01
#define quiescens_func 0x02
#define quiescecycle_func 0x03
#define quiescetime_func 0x04
#define deprecated1_func 0x10 // obsolete ivlb
#define deprecated2_func 0x11 // obsolete ivle
#define deprecated3_func 0x20 // deprecated exit function
#define exit_func 0x21
#define initparam_func 0x30
#define loadsymbol_func 0x31
#define resetstats_func 0x40
#define dumpstats_func 0x41
#define dumprststats_func 0x42
#define ckpt_func 0x43
#define readfile_func 0x50
#define debugbreak_func 0x51
#define switchcpu_func 0x52
#define addsymbol_func 0x53
#define panic_func 0x54

6.6 Set Path to Cross-compiler

The location of the cross-compiler must be set in the following PARSEC configuration file:
parsec-2.1/configs/alpha-gcc-hooks.bldconf

The following two environment variables need set in this configuration file:

CC_HOME
BINUTIL_HOME

6.7 Building Bodytrack

On some systemsbodytrack will end up dynamically linking instead of statically linked, first try and build it:
> parsecmgmt -a build -c alpha-gcc-hooks -p bodytrack

If the following error is generated, (if no error is generated skip to the next subsection):

/path/to/cross-compiler/gcc-4.2.4-glibc-2.3.6/alpha -unknown-linux-gnu/lib/gcc/alpha-
unknown-linux-gnu/4.2.4/../../../../alpha-unknown-l inux-gnu/bin/ld: cannot find -
lgcc_s

collect2: ld returned 1 exit status
make[3]: *** [bodytrack] Error 1

Run the following command, which is a hack to force it to find the static library in the hooks installation path (replace
i386-linux with the host specific string based on the machineyou are building on):

parsec-2.1> ln -s /path/to/cross/compiler/gcc-4.2.4-gl ibc-2.3.6/alpha-unknown-linux-
gnu/lib/gcc/alpha-unknown-linux-gnu/4.2.4/libgcc.a p kgs/libs/hooks/inst/i386-linux.
alpha-gcc-hooks/lib/libgcc_s.a

then rebuildbodytrack :

> parsecmgmt -a clean -c alpha-gcc-hooks -p bodytrack
> parsecmgmt -a build -c alpha-gcc-hooks -p bodytrack

6.8 Building Raytrace

Raytrace is the most complicated benchmark to build because of its dependence onlibX11 andmesa. First, build
libpthreadstubs :

9

> parsecmgmt -a build -c alpha-gcc-hooks -p libpthreadstub s

Next, buildlibX11 :

> parsecmgmt -a build -c alpha-gcc-hooks -p libX11

If the build fails with an error aboutpthread equal , try the build again:

> parsecmgmt -a clean -c alpha-gcc-hooks -p libX11
> parsecmgmt -a build -c alpha-gcc-hooks -p libX11

If that still does not fix the error, edit pkgs/libs/libX11/src/src/UIThrStubs.c L136 to comment out the pragma that
defines pthreadequal:

#if defined(_DECTHREADS_) || defined(linux)
//#pragma weak pthread_equal = _Xthr_equal_stub_ / * See Xthreads.h! * /
int

Then try the build again:

> parsecmgmt -a clean -c alpha-gcc-hooks -p libX11
> parsecmgmt -a build -c alpha-gcc-hooks -p libX11

Then, buildmesa:

> parsecmgmt -a build -c alpha-gcc-hooks -p mesa

If the build fails with the following error:

glxheader.h:49:35: error: X11/extensions/XShm.h: No suc h file or directory

the easiest thing to do is disable shm support inmesa. Do this by editing lines 7680 - 7682 of pkgs/libs/mesa/src/con-
figure, original:

if test "$mesa_driver" = xlib; then
DEFINES="$DEFINES -DUSE_XSHM"

fi

after change:

#if test "$mesa_driver" = xlib; then
DEFINES="$DEFINES -DUSE_XSHM"
#fi

Then try to buildmesa again:
> parsecmgmt -a build -c alpha-gcc-hooks -p mesa

If the build fails with the following error:

glut_input.c:22:35: error: X11/extensions/XInput.h: No such file or directory

The XInput.h file can be obtained by downloadinglibXi-1.3 from:

http://xorg.freedesktop.org/archive/individual/lib/ libXi-1.3.tar.gz

The entire package does not need to be installed, once the package has been unpacked somewhere add its location to
the CFLAGS in pkgs/libs/mesa/parsec/alpha-gcc-hooks.bldconf. Then, rebuildmesa again:

> parsecmgmt -a build -c alpha-gcc-hooks -p mesa

Finally, build raytrace :
> parsecmgmt -a build -c alpha-gcc-hooks -p raytrace

Sometimes some of the support libraries try to use the nativecompiler instead of the cross-compiler. Its not clear why
this happens but the problem does not occur if the command is run a second or third time.
If the following error is encountered:

CMake Error: The following variables are used in this projec t, but they are set to
NOTFOUND.

Please set them or make sure they are set and tested correctly in the CMake files:

10

try rebuildingraytrace :
> parsecmgmt -a build -c alpha-gcc-hooks -p raytrace

If the following errors are encountered:

libglut.a: could not read symbols: Archive has no index; run ranlib to add one

The following command will add an archive:

/path/to/cross/compiler/alphaev67-unknown-linux-gnu /bin/alphaev67-unknown-linux-gnu-
ranlib /path/to/parsec/parsec-2.1/pkgs/libs/mesa/ins t/i686-linux.alpha-gcc-hooks/
lib/ * .a

If the following error is encountered:

skipping incompatible parsec-2.1/pkgs/libs/libxcb/ins t/i686-linux.alpha-gcc-hooks/lib/
libxcb.a when searching for -lxcb

alphaev67-unknown-linux-gnu/bin/../lib/gcc/alphaev6 7-unknown-linux-gnu
/4.3.4/../../../../alphaev67-unknown-linux-gnu/bin/ ld: cannot find -lxcb

Uninstall then reinstalllibxcb :

> parsecmgmt -a uninstall -c alpha-gcc-hooks -p libxcb
> parsecmgmt -a clean -c alpha-gcc-hooks -p libxcb
> parsecmgmt -a build -c alpha-gcc-hooks -p libxcb

Do the same for any other library that has the same error message regarding an incompatible library.
then rebuildraytrace :

> parsecmgmt -a build -c alpha-gcc-hooks -p raytrace

6.9 Building Vips

Vips requiresglib-genmarshal to build on some systems, and it can be found in thelibglib2.0-dev package
on Ubuntu/Debian systems.Vips depends onlibxml2 and on some systems this library can have trouble being built
due to a header file issue. First, try to buildlibxml2 :

> parsecmgmt -a build -c alpha-gcc-hooks -p libxml2

If this works, procede to ensure thatvips is built statically. If the following error is encountered:

./include/libxml/xmlversion.h:391:22: error: ansidecl .h: No such file or directory

Comment out lines 22259-22264 of pkgs/libs/libxml2/src/configure, original:

echo "$as_me:$LINENO: result: ‘eval echo ’${’$as_ac_Head er’}’‘" >&5
echo "${ECHO_T}‘eval echo ’${’$as_ac_Header’}’‘" >&6

fi
if test ‘eval echo ’${’$as_ac_Header’}’‘ = yes; then

cat >>confdefs.h <<_ACEOF
#define ‘echo "HAVE_$ac_header" | $as_tr_cpp‘ 1
_ACEOF

fi

done

After change:

echo "$as_me:$LINENO: result: ‘eval echo ’${’$as_ac_Head er’}’‘" >&5
echo "${ECHO_T}‘eval echo ’${’$as_ac_Header’}’‘" >&6

fi
#if test ‘eval echo ’${’$as_ac_Header’}’‘ = yes; then
cat >>confdefs.h <<_ACEOF
##define ‘echo "HAVE_$ac_header" | $as_tr_cpp‘ 1
#_ACEOF

11

#
#fi

done

Then try buildinglibxml2 again:

> parsecmgmt -a build -c alpha-gcc-hooks -p libxml2

If this works, then buildvips :

> parsecmgmt -a build -c alpha-gcc-hooks -p vips

On some systemsvips may end up linking dynamically rather than statically. First, check to see howvips linked:

parsec-2.1> file pkgs/apps/vips/inst/${PARSECPLAT}/bi n/vips

If vips is linked dynamically run the following commands:

parsec-2.1> cd pkgs/apps/vips/obj/${PARSECPLAT}/src/i ofuncs
iofuncs> rm vips
iofuncs> make

Then copy the final command that creates thevips executable and add the ’-static’ flag immediately before the’-
static-libgcc’ flag and remove the libstdc++.so from the command. This command then should create a statically
linked vips executable. Thevips binary must then be manually copied to theinst directory.

6.10 Building canneal

On some systems there may be issues buildingcanneal because of the system header file that it relies on. First, try
to build canneal :

> parsecmgmt -a build -c alpha-gcc-hooks -p canneal

If errors are encountered beginning with:

atomic/alpha/atomic.h:47: error: expected ’,’ or ’...’ be fore ’ * ’ token
atomic/alpha/atomic.h:47: warning: ISO C++ forbids decla ration of ’u_int8_t’ with no

type
atomic/alpha/atomic.h:48: error: expected ’,’ or ’...’ be fore ’ * ’ token
atomic/alpha/atomic.h:48: warning: ISO C++ forbids decla ration of ’u_int8_t’ with no

type

Add the following typedefs to pkgs/kernels/canneal/src/atomic/alpha/atomic.h immediately after the alphamb func-
tion, original:

alpha_mb(void)
{

__asm__ __volatile__ ("mb");
}

/ *
* Various simple arithmetic on memory which is atomic in the pr esence

* of interrupts and SMP safe.

* /

After change:

static __inline void
alpha_mb(void)
{

__asm__ __volatile__ ("mb");
}

typedef unsigned char u_int8_t;

12

typedef unsigned short u_int16_t;
typedef unsigned int u_int32_t;
typedef unsigned long u_int64_t;

/ *
* Various simple arithmetic on memory which is atomic in the pr esence

* of interrupts and SMP safe.

* /

Alternatively, the following change may be more portable:
After change:

static __inline void
alpha_mb(void)
{

__asm__ __volatile__ ("mb");
}

typedef uint8_t u_int8_t;
typedef uint16_t u_int16_t;
typedef uint32_t u_int32_t;
typedef uint64_t u_int64_t;

/ *
* Various simple arithmetic on memory which is atomic in the pr esence

* of interrupts and SMP safe.

* /

Thencanneal should build successfully:

> parsecmgmt -a build -c alpha-gcc-hooks -p canneal

6.11 Building Remaining Benchmarks

The rest of the suite should now successfully build with the following commands:

> parsecmgmt -a build -c alpha-gcc-hooks -p apps
> parsecmgmt -a build -c alpha-gcc-hooks -p kernels

6.12 Rebuilding glib

When rebuilding theglib library an error indicating that eithermake distclean needs run or thealpha.cache

file must be removed may be encountered.
To solve this issue restore the alpha.cache file to its original state with the following command:

parsec-2.1/pkgs/libs/glib> cp alpha.cache.backup alpha .cache

After restoring the cache file theglib library can be rebuilt.

7 Creating a Disk Image

This set of instructions specifies how to update or create a disk image on a machine with root access (sudo). Members
of the M5 community have explored building a disk image without having root access by using Virtual Box but we
not experimented with this option.

To update a current disk image:

1. Transfer all files to be placed on the disk image to a machineon where root access is available. Transfer a
current disk image to this machine as well.

2. On this machine mount the disk image to modify it:

13

> sudo mount -o loop,offset=32256 /path/to/image/file /mo unt/point

3. Transfer files to the disk:

> sudo cp /path/to/files /mount/point/directory

4. Ensure that owner of the files is root, if they are not they can be set to root with thechown andchgrp commands.
5. Unmount the disk:

> sudo umount /mount/point

6. Transfer the disk image to the machine that will run the M5 simulation.

To create a new disk image (for instance, to increase the sizeof a current disk image):

1. Acquire the script ’mkblankimage.sh’: This script exists in the M5 tree at

util/mkblankimage.sh

2. On the machine with root access, execute the script:

> bash mkblankimage.sh

3. Follow the steps to create the disk

4. Mount the disk:

> sudo mount -o loop,offset=32256 /path/to/image/file /mo unt/point1

5. Mount an existing disk:

> sudo mount -o loop,offset=32256 /path/to/existing/imag e /mount/point2

6. Copy all necessary system files from the existing disk to the new one:

> sudo cp -r /mount/point2/ * /mount/point1/

7. Unmount the disks:

> sudo umount /mount/point1
> sudo umount /mount/point2

8. Transfer the new disk image to the machine that will run theM5 simulation.

Two PARSEC v2.1 benchmarks have input sets that cause namingcollisions when unpackaged into the same
directory. Our convention for handling this issue on the disk images is to append a letter on the end of each filename
or directory affected (test = ’t’, simdev = ’d’, simsmall = ’s’, simmedium = ’m’, and simlarge = ’l’). See section 8 for
our assumed directory structure.

1. Dedup: The simsmall, simmedium and simlarge input sets have the same filename (media.dat), but they repre-
sent different data sets. Based on our convention, the simsmall, simmedium and simlarge input sets are renamed
on our disk images as ”medias.dat”, ”mediam.dat” and ”medial.dat”, respectively.

2. Ferret: Multiple directories of each input set are named the same. They are renamed on our disk image as
follows:

(a) Test: corelt, queriest

(b) Simdev: coreld, queriesd

(c) Simsmall: corels, queriess

(d) Simmedium: corelm, queriesm

(e) Simlarge: corell, queriesl

Also note that the benchmark, facesim, must be executed fromthe directory containing the FaceData/ directory. We
handle this by including the directory in the same directoryas the PARSEC binaries.

14

8 Running Benchmarks on M5

8.1 Obtaining Full System Files

M5 requires full system files such as a Linux kernel, PAL code,and console code which can be downloaded from the
M5 website:

http://www.m5sim.org/wiki/index.php/Download

The version of the Linux kernel that is available on the M5 website is dated and can cause segmentation faults on
some of the PARSEC benchmarks. We recommend upgrading to version 2.6.27 by following the instructions from the
following webpage, which are reproduced below. We are also distributing a compiled version ofvmlinux-2.6.27

on our webpage.

http://www.m5sim.org/wiki/index.php/Compiling_a_Lin ux_Kernel

Get a copy of the linux-2.6 mercurial repository
hg clone http://www.kernel.org/hg/linux-2.6/

Get a copy of our patches to linux
cd linux-2.6/.hg
hg clone http://repo.m5sim.org/linux-patches/ patches

Return to the root linux directory
cd ..

Update the linux source to the desired version (can take 5 mi nutes)
(see discussion above for supported versions)
hg update v2.6.27

Select tho appropriate patches for the version of linux you selected
hg qselect 2.6.27

Apply the patches
hg qpush -a

Copy the default configuration file, so it’s used
cp .config.m5 .config

Compile the kernel (assuming the cross compiler is in $PATH , otherwise full path
would need to be specified)

The dash after gnu is required.
make ARCH=alpha CROSS_COMPILE=alpha-unknown-linux-gnu - vmlinux

If hg has an error on theqselect command ensure that the following line is part of either the system wide or user
.hgrc file:

hgext.mq =

8.2 Update System Paths

M5 must know the name and location of the disk image containing the PARSEC benchmarks. From the M5 root
directory, make the following updates to M5 specific files:

1. Specify the location where disk images and binaries are located in ./configs/common/SysPaths.py line 53: Orig-
inal:

path = [’/dist/m5/system’, ’/n/poolfs/z/dist/m5/system ’]

After change:

15

path = [’/dist/m5/system’, ’<complete path to your disks an d binaries
directory>’]

2. Change the name of the disk image in ./configs/common/Benchmarks.py line 53: Original:

return env.get(’LINUX_IMAGE’, disk(’linux-latest.img’))

After change:

return env.get(’LINUX_IMAGE’, disk(’linux-parsec-2-1- m5.img’))

If using your own disk image, specify the filename of your diskhere.

8.3 Increase Memory

Several of the benchmarks includingraytrace andfacesim require more than the default 128MB of memory. To
increase the amount of memory available edit line 47 of:

m5/configs/common/Benchmarks.py

Original:

def mem(self):
if self.memsize:

return self.memsize
else:

return ’128MB’

After change:

def mem(self):
if self.memsize:

return self.memsize
else:

return ’512MB’

8.4 Disk Layout

The disk image that we are distributing uses the following layout of binaries and input data. The scripts that we are
distributing assume that these layout and naming conventions are used. On the disk image that we distribute and in
the configuration files for the hooks package we trigger M5 to dump and reset the statistics at the beginning and end
of the ROI. There are two sets of binaries on the disk image that we are distributing, one (bin.ckpts) that triggers a
checkpoint to be created at the beginning of the ROI and another (bin) that does not.

/parsec/
-install/

-bin/
-Face_Data/... <--Facesim Input Set
-blackscholes *
-bodytrack *
-canneal *
-dedup *
-facesim *
-ferret *
-fluidanimate *
-freqmine *
-rtview *
-streamcluster *
-swaptions *
-vips *
-x264 *

16

-bin.ckpts/
-Face_Data/... <--Facesim Input Set
-blackscholes *
-bodytrack *
-canneal *
-dedup *
-facesim *
-ferret *
-fluidanimate *
-freqmine *
-rtview *
-streamcluster *
-swaptions *
-vips *
-x264 *

-inputs/
-blackscholes/...
-bodytrack/...
-canneal/...
-dedup/...
-ferret/...
-fluidanimate/...
-freqmine/...
-rtview/...
-streamcluster/...
-vips/...
-x264/...

The ’*’ indicates a binary, and the ’. . . ’ indicates a directory that contains more levels. The ’inputs’ directory
contains directories for the input sets of each of the benchmarks that need external input. Here, in order to keep the
calling convention consistent, the Facesim input set is placed in the directory with the binaries. In PARSEC v2.1,
the swaptions benchmark does not have an input set, as all benchmark input is specified on the command line. The
binaries in the bin.ckpts directory will produce a checkpoint upon entering the ROI.

8.5 Running M5

Once the benchmark binaries and input sets are on the disk image, and the image has been moved to where it can be
accessed by M5, the simulator can be run. We have used M5 exclusively in full system simulation mode. It may be
possible to run PARSEC with M5’s system call emulation mode but we have not yet explored that option. The easiest
way to execute a benchmark in M5 is to specify a .rcS run scripton the command line when executing M5.

8.5.1 Running with Checkpoints

M5’s checkpoint mechanism can be used to only run the ROI in detailed mode. This is done by first running the
benchmarks in simple mode and when the start of the ROI is reached a M5 pseudo instruction causes a checkpoint to
be created. The command line to do this initial run will look like this (where the current directory is the root of the
M5 repository):

> ./build/ALPHA_FS/m5.opt ./configs/example/fs.py -n $n umProcs --script=./path/to/
runscript.rcS

A typical run script looks like this:

#!/bin/sh

File to run the blackscholes benchmark

cd /parsec/install/bin
/sbin/m5 dumpstats
/sbin/m5 resetstats

17

./blackscholes 64 /parsec/install/inputs/blackscholes /in_64K.txt /parsec/
install/inputs/blackscholes/prices.txt

echo "Done :D"
/sbin/m5 exit
/sbin/m5 exit

This script prints the simulation statistics to a file and resets the statistics before executing the benchmark,blackscholes .
This script runsblackscholes with 64 threads. To run M5 with more than 4 processors a modified PAL code must
be used. For more information, see the FAQ page on the M5 website:

http://www.m5sim.org/wiki/index.php/Frequently_Aske d_Questions

Then a second run is done in detailed mode to begin executing at the ROI by reading the checkpoint. The command
to do this run is:

> ./build/ALPHA_FS/m5.opt ./configs/example/fs.py --de tailed --caches --
l2cache --checkpoint-restore=1 -n $numProcs

This command must be run from the same directory as the checkpoint that was created in the first run.
An alternate method, which we have not done, is to add supportto the parsec roi begin() function in the

hooks library to call switchcpu immediately before the ROI begins. This would avoid the need to use checkpointing.

8.5.2 Running without Checkpoints

To run the entire benchmark in detailed mode without using checkpoints use the following M5 command:

> ./build/ALPHA_FS/m5.opt ./configs/example/fs.py -n $n umProcs --script=./path
/to/runscript.rcS --detailed --caches --l2cache -F 50000 00000

Use a run script similar to the following, which causes, through the call to switchcpu, M5 to switch into detailed
mode immediately before the benchmark starts executing. This will execute the entire program in detailed mode. The
portion of the program before the ROI onfacesim andraytrace takes a significant amount of time (several days)
to execute in detailed mode so this may not be a good option forthose benchmarks.

#!/bin/sh

File to run the blackscholes benchmark

cd /parsec/install/bin
/sbin/m5 switchcpu
/sbin/m5 dumpstats
/sbin/m5 resetstats
./blackscholes 64 /parsec/install/inputs/blackscholes /in_64K.txt /parsec/

install/inputs/blackscholes/prices.txt
echo "Done :D"
/sbin/m5 exit
/sbin/m5 exit

8.6 Generating Run Scripts

A script to generate these run scripts along with the input command line parameters are available here:

http://www.cs.utexas.edu/˜parsec_m5/writescripts.pl
http://www.cs.utexas.edu/˜parsec_m5/inputsets.txt

These files are also included in the main tar file:TR-09-32-parsec-2.1-alpha-files.tar.gz . The script can
be executed by calling:

> ./writescripts.pl <benchmark> <nthreads>

This script also includes support for generating scripts that execute the binaries on the disk image that support
collection of checkpoints. To generate these run scripts call:

> ./writescripts.pl <benchmark> <nthreads> --ckpts

This script assumes that the disk image has the PARSEC directory structure shown in the previous subsection.

18

8.7 Runtime Errors

When running with a large number of processors the following error may be encountered:

panic: Can’t create socket:Too many open files !
@ cycle 0

[listen:build/ALPHA_FS/base/socket.cc, line 86]

This occurs because a socket is opened for each processor. The following M5 patch which is part of the M5 repository
added support to disable the listening sockets:

http://repo.m5sim.org/m5/rev/6279e78a2df2

To disable the listening sockets add the following to the fs.py configuration file:

m5.disableAllListeners()

8.8 Simulation Statistics

Our simulations have mostly been done with the simsmall input sets. For some benchmarks we found the simulation
time of simmedium to be quite large but others are tractable.The below table lists the number of instructions executed
both before and during the Region of Interest (ROI) along with the simulation time in minutes when run on the fast
functional simulator. This simulation mode is roughly 10 – 15 times faster than the detailed mode with a full cache
hierarchy. All of these simulations model a single processor system. These simulations were run across a cluster
consisting of Pentium III, Pentium 4, and Core 2 machines so the simulation times should be taken as approximations.

Before ROI During ROI
Benchmark # instructions Simulation time # instructions Simulation time

(billions) (minutes) (billions) (minutes)
Blackscholes 0.1 1.7 0.9 9.6
Bodytrack 0.6 6.9 0.9 9.8
Canneal 2.0 22.9 0.4 4.4
Dedup 0.2 2.0 3.1 34.2
Facesim 8.5 95.6 24.3 280.5
Ferret 0.1 1.5 2.5 26.8
Fluidanimate 0.2 2.6 1.8 19.4
Freqmine 0.1 1.1 6.9 77.9
Raytrace 43.1 492.6 1.9 24.0
Streamcluster 0.1 1.1 1.8 20.3
Swaptions 0.1 1.1 1.2 13.6
Vips 0.1 1.1 5.2 55.5
X264 0.1 1.1 9.0 95.4

9 Current Status of PARSEC 2.1 on M5

At the time of writing we are currently able to successfully compile all of the benchmarks. We are still trying to solve
the following runtime issues:

• swaptions: When swaptions is run on more than 3 threads it experiences various issues depending on the simu-
lation mode used. We have not been able to reliably run it for more than 3 threads.

• x264: When running x264 on simsmall the reported simulation times within the region of interest for 16 or
greater processors are unexpectedly low. The unit of parallelization of x264 is a video frame and the simsmall
input contains 8 video frames. It seems that running it with more than 8 threads causes it to exit prematurely.

• bodytrack, canneal, facesim, fluidanimate, freqmine, raytrace, streamcluster, swaptions: After the main function
returns these benchmarks die with a segmentation fault in the C-library cleanup code. This error does not occur

19

with gcc-3.4.3 but does occur withgcc-4.3.2 . However, fewer benchmarks work successfully when using
gcc-3.4.3 so we usegcc-4.3.2 . This error appears long after the ROI and the output of the benchmarks still
appears to be correct so we do not believe that this error greatly affects the integrity of the benchmarks. Hope-
fully this can be resolved in the future.Update: This issue can be solved by using a modifiedlibpthread.a

library, see the website for more details:

www.cs.utexas.edu/˜parsec_m5

10 Bug Reports / Suggestions

Please report all bugs found in this technical report and accompanying files to Mark Gebhart (mgebhart@cs.utexas.edu)
and Joel Hestness (hestness@cs.utexas.edu). Please also report any suggestions on how to solve the remaining open
issues documented in this technical report. We will update the technical report and website with these fixes.

11 Acknowledgements

We would thank the members of both the M5 and PARSEC communitythat have provided valuable assistance in
solving numerous challenges in this bringup process.

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characterization and architectural implications. InProceedings of the

17th International Conference on Parallel Architectures and Compilation Techniques, pages 72–81, October 2008.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems. In
IEEE Micro, pages 52–60, July/August 2006.

20

