Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- From last week: Difference between open and closed loop?
Logistics

- Thesis defense Monday 11/30 at 10am: GDC 3.516
 - Daniel Urieli: Autonomous Trading in Modern Electricity Markets
Logistics

• Thesis defense Monday 11/30 at 10am: GDC 3.516
 – Daniel Urieli: Autonomous Trading in Modern Electricity Markets

• All grades should now be out
Logistics

- Thesis defense Monday 11/30 at 10am: GDC 3.516
 - Daniel Urieli: Autonomous Trading in Modern Electricity Markets

- All grades should now be out

- Extra credit for taking class survey (provide screenshot as proof)
Logistics

- Thesis defense Monday 11/30 at 10am: GDC 3.516
 - Daniel Urieli: Autonomous Trading in Modern Electricity Markets

- All grades should now be out

- Extra credit for taking class survey (provide screenshot as proof)

- Final projects due next week (team on Tuesday, report on Thursday)!
Class Tournament Teams TODO

- Have penalty kick behavior ready
Class Tournament Teams TODO

- Have penalty kick behavior ready
- No ground truth measurements provided during games
Class Tournament Teams TODO

• Have penalty kick behavior ready

• No ground truth measurements provided during games

• 2D: You can create and compile in a custom banner (not required)
Class Tournament Teams TODO

- Have penalty kick behavior ready
- No ground truth measurements provided during games
- 2D: You can create and compile in a custom banner (not required)
- 3D: Make sure that you’re using a legal set of agent types
Class Tournament Teams TODO

- Have penalty kick behavior ready
- No ground truth measurements provided during games
- 2D: You can create and compile in a custom banner (not required)
- 3D: Make sure that you’re using a legal set of agent types
- Include source code with a README
Class Tournament Teams TODO

- Have penalty kick behavior ready
- No ground truth measurements provided during games
- 2D: You can create and compile in a custom banner (not required)
- 3D: Make sure that you’re using a legal set of agent types
- Include source code with a README
- Include a log file of your team playing
Important Items for Final Reports

- Have at least 3 citations (2 non-RoboCup)
Important Items for Final Reports

- Have at least 3 citations (2 non-RoboCup)
 - Citations include title, authors(s), venue of publication, year
Important Items for Final Reports

- Have at least 3 citations (2 non-RoboCup)
 - Citations include title, authors(s), venue of publication, year
 - For “RoboCup-X: Robot Soccer World Cup X” RoboCup symposium papers editors are not authors!
Important Items for Final Reports

• Have at least 3 citations (2 non-RoboCup)
 − Citations include title, authors(s), venue of publication, year
 − For “RoboCup-X: Robot Soccer World Cup X” RoboCup symposium papers editors are not authors!

• Include some statistical significance test – you can run games in parallel on condor
Paper Sections

- **Abstract**: brief summary of what paper is about and the results it will show
Paper Sections

- **Abstract**: brief summary of what paper is about and the results it will show

- **Introduction/Motivation**: briefly discuss problems/ideas that will be addressed and why the topic/focus of the paper is important
Paper Sections

- **Abstract:** brief summary of what paper is about and the results it will show

- **Introduction/Motivation:** briefly discuss problems/ideas that will be addressed and why the topic-focus of the paper is important

- **Background:** give technical background information necessary for understanding the paper
Paper Sections

- **Abstract:** brief summary of what paper is about and the results it will show

- **Introduction/Motivation:** briefly discuss problems/ideas that will be addressed and why the topic/focus of the paper is important

- **Background:** give technical background information necessary for understanding the paper

- **Methodology/Algorithm Description:** explain the new ideas/algorithms that the paper is presenting
Paper Sections

- **Experimental Setup**: detail the experimental setup used to test out the ideas/algorithms/hypothesis in the paper
Paper Sections

- **Experimental Setup:** detail the experimental setup used to test out the ideas/algorithms/hypothesis in the paper

- **Results/Analysis:** results and analysis of experiments
Paper Sections

- **Experimental Setup:** detail the experimental setup used to test out the ideas/algorithms/hypothesis in the paper

- **Results/Analysis:** results and analysis of experiments

- **Related Work:** work related to what has been presented and possibly compares and contrasts related work with that of the work presented in the paper
Paper Sections

- **Experimental Setup**: detail the experimental setup used to test out the ideas/algorithms/hypothesis in the paper
- **Results/Analysis**: results and analysis of experiments
- **Related Work**: work related to what has been presented and possibly compares and contrasts related work with that of the work presented in the paper
- **Summary/Conclusion**: short summary of work presented in the paper as well as possibly mentioning future work
Last week: Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
Last week: Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
 - **Game**: 8 agents, 12 min.
 - **Agent**: simulated travel agent with 8 clients
 - **Client**: TACtown ↔ Tampa within 5-day period
Last week: Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
 - **Game**: 8 agents, 12 min.
 - **Agent**: simulated travel agent with 8 clients
 - **Client**: TACtown ↔ Tampa within 5-day period

- **Auctions** for flights, hotels, entertainment tickets
 - **Server** maintains markets, sends prices to agents
 - Agent sends bids to server **over network**

Goal: analytically calculate optimal bids
High-Level Strategy

- Learn model of expected hotel price
High-Level Strategy

- Learn model of expected hotel price distributions
High-Level Strategy

- Learn model of expected hotel price distributions

- For each auction:
 - Repeatedly sample price vector from distributions
High-Level Strategy

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility
Finals

<table>
<thead>
<tr>
<th>Team</th>
<th>Avg.</th>
<th>Adj.</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>3622</td>
<td>4154</td>
<td>AT&T</td>
</tr>
<tr>
<td>livingagents</td>
<td>3670</td>
<td>4094</td>
<td>Living Systems (Germ.)</td>
</tr>
<tr>
<td>whitebear</td>
<td>3513</td>
<td>3931</td>
<td>Cornell</td>
</tr>
<tr>
<td>Urlaub01</td>
<td>3421</td>
<td>3909</td>
<td>Penn State</td>
</tr>
<tr>
<td>Retsina</td>
<td>3352</td>
<td>3812</td>
<td>CMU</td>
</tr>
<tr>
<td>CaiserSose</td>
<td>3074</td>
<td>3766</td>
<td>Essex (UK)</td>
</tr>
<tr>
<td>Southampton</td>
<td>3253*</td>
<td>3679</td>
<td>Southampton (UK)</td>
</tr>
<tr>
<td>TacsMan</td>
<td>2859</td>
<td>3338</td>
<td>Stanford</td>
</tr>
</tbody>
</table>

- **ATTac** improves over time
- **livingagents** is an open-loop strategy
Other TAC competitions

- Supply Chain Management
- Ad Auctions
- Power
Recursive Modeling Method

- What should I do?
Recursive Modeling Method

- What should I do?
- What should I do given what I think you’ll do?
Recursive Modeling Method

- What should I do?
- What should I do given what I think you’ll do?
- What should I think you’ll do given what I think you think I’ll do?
Reading Overview — Vidal and Durfee

Recursive Modeling Method

- What should I do?
- What should I do given what I think you’ll do?
- What should I think you’ll do given what I think you think I’ll do?
- etc.
Prediction Method

- Watch for patterns of others
Prediction Method

- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes
Prediction Method

- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes

- Use deeper models
 - Includes physical and mental states
Prediction Method

• Watch for patterns of others
 – Might have incorrect expectations, especially if environment changes

• Use deeper models
 – Includes physical and mental states
 – Could be computationally expensive
Prediction Method

- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes

- Use deeper models
 - Includes physical and mental states
 - Could be computationally expensive

- Trade-off between time and performance gain
Prediction Method

• Watch for patterns of others
 – Might have incorrect expectations, especially if environment changes

• Use deeper models
 – Includes physical and mental states
 – Could be computationally expensive

• Trade-off between time and performance gain

• When is it worthwhile to model deeper?
Lessons

- Modeling can help
- There is a lot of useless information in recursive models
- Approximations (limited rationality) can be useful
PLASTIC-policy for Ad Hoc Teamwork

• Forced to work with a group of unknown teammates on HFO task
PLASTIC-policy for Ad Hoc Teamwork

- Forced to work with a group of unknown teammates on HFO task
- Start with learned models of prior teammates - FQI
PLASTIC-policy for Ad Hoc Teamwork

- Forced to work with a group of unknown teammates on HFO task
- Start with learned models of prior teammates - FQI
- Select model that is believed to be closest to current teammate(s) - polynomial weights algorithm from regret minimization
PLASTIC-policy for Ad Hoc Teamwork

- Forced to work with a group of unknown teammates on HFO task
- Start with learned models of prior teammates - FQI
- Select model that is believed to be closest to current teammate(s) - polynomial weights algorithm from regret minimization
- Plan using selected model to perform well on task
Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model
Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

What if we can’t build a full model in advance?
Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

What if we can’t build a full model in advance?

- What are some incremental approaches for building a predictive model?
Play me at RoShamBo

- Rock beats scissors
- Scissors beats paper
- Paper beats rock
Play me at RoShamBo

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
Play me at RoShamBo

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
Play me at RoShamBo

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
- Am I modeling you?
Play me at RoShamBo

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
- Am I modeling you?
- Would your end strategy change if I can?
Discussion

• How do you deal with a teammate/opponent who is adapting to you as well?
Discussion

- How do you deal with a teammate/opponent who is adapting to you as well?

- Applications of ad hoc teamwork?
Discussion

- How do you deal with a teammate/opponent who is adapting to you as well?
- Applications of ad hoc teamwork?
- What if there was communication?
Discussion

- How do you deal with a teammate/opponent who is adapting to you as well?
- Applications of ad hoc teamwork?
- What if there was communication?
- How would you build an ad hoc teammate?