CS344M
Autonomous Multiagent Systems

Patrick MacAlpine

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- Cobot now?
- How cobot dealt with multiple users at the same time?
- Learning in marimba playing robot?
- rtNEAT in more games?
- Largest scale applies to video games?

Patrick MacAlpine
Logistics

• Final reports due today before class

• Just one point off if turned in at my office by Friday at 5pm
 – Only if you’re in class today!
Logistics

- Final reports due today before class
- Just one point off if turned in at my office by Friday at 5pm
 - Only if you’re in class today!
 - ...and no penalty if you also visit the writing center!
Logistics

• Final reports due today before class

• Just one point off if turned in at my office by Friday at 5pm
 – Only if you’re in class today!
 – ...and no penalty if you also visit the writing center!

• Missing assignments/readings no longer accepted for credit
Logistics

- Final reports due today before class
- Just one point off if turned in at my office by Friday at 5pm
 - Only if you’re in class today!
 - ...and no penalty if you also visit the writing center!
- Missing assignments/readings no longer accepted for credit
- Fill out the online course survey for +1 point extra credit
Logistics

- Final reports due today before class
- Just one point off if turned in at my office by Friday at 5pm
 - Only if you’re in class today!
 - ...and no penalty if you also visit the writing center!
- Missing assignments/readings no longer accepted for credit
- Fill out the online course survey for +1 point extra credit
- RoboCup informational meeting Monday 12/7 at 12 PM in GDC 3.516
Discussion

• Should agents model emotions?
The Turing Test

• Loebner Prize
The Turing Test

- Loebner Prize
- BotPrize (video)
The Turing Test

- Loebner Prize
- BotPrize (video)
 - Coleman
 - Milford
 - Moises
 - Lawerence
 - Clifford
 - Kathe
 - Tristan
 - Jackie
The Turing Test

- Loebner Prize
- BotPrize (video)
 - Coleman
 - Milford
 - Moises
 - Lawerence
 - Clifford
 - Kathe
 - Tristan
 - Jackie
- Botting in games
Course recap

• You’ve read.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
Course recap

• You’ve read.

• You’ve reacted and formed opinions.

• You’ve spoken (or at least will at the class tournament).
Course recap

● You’ve read.

● You’ve reacted and formed opinions.

● You’ve spoken (or at least will at the class tournament).

● You’ve written.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
- You’ve spoken (or at least will at the class tournament).
- You’ve written.
- You’ve coded for a task with no right answer and no way of knowing that you’re done.
Course recap

- You’ve read.
- You’ve reacted and formed opinions.
- You’ve spoken (or at least will at the class tournament).
- You’ve written.
- You’ve coded for a task with no right answer and no way of knowing that you’re done.

Do you like CS research?
What have we covered?

1. Autonomous agents: What is an agent?
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, 3T
What have we covered?

1. **Autonomous agents:**
 - What is an agent?

2. **Agent architectures:**
 - Subsumption, 3T

3. **Multiagent Systems:**
 - Overview, subsumption
What have we covered?

1. Autonomous agents:
 - What is an agent?
2. Agent architectures:
 - Subsumption, 3T
3. Multiagent Systems:
 - Overview, subsumption
4. Communication and Teamwork:
 - ACLs, Joint Intentions
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, 3T
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: ACLs, Joint Intentions
5. RoboCup case studies
What have we covered?

1. **Autonomous agents:** What is an agent?
2. **Agent architectures:** Subsumption, 3T
3. **Multiagent Systems:** Overview, subsumption
4. **Communication and Teamwork:** ACLs, Joint Intentions
5. **RoboCup case studies**
6. **Swarms and ant-based approaches:** “Go to the Ant”
What have we covered?

1. **Autonomous agents:** What is an agent?
2. **Agent architectures:** Subsumption, 3T
3. **Multiagent Systems:** Overview, subsumption
4. **Communication and Teamwork:** ACLs, Joint Intentions
5. **RoboCup case studies**
6. **Swarms and ant-based approaches:** “Go to the Ant”
7. **Applications:** KIVA, intersection traffic
What have we covered?

1.	Autonomous agents:	What is an agent?
2.	Agent architectures:	Subsumption, 3T
3.	Multiagent Systems:	Overview, subsumption
4.	Communication and Teamwork:	ACLs, Joint Intentions
5.	RoboCup case studies	
6.	Swarms and ant-based approaches:	“Go to the Ant”
7.	Applications:	KIVA, intersection traffic
8.	Game theory:	Nash equilibrium
What have we covered?

1. Autonomous agents: What is an agent? Subsumption, 3T
2. Agent architectures: Overview, subsumption
3. Multiagent Systems: ACLs, Joint Intentions
4. Communication and Teamwork: “Go to the Ant”
5. RoboCup case studies
6. Swarms and ant-based approaches: KIVA, intersection traffic
7. Applications: Nash equilibrium
8. Game theory: t-tests
9. Statistical measurements:
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, 3T
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: ACLs, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: KIVA, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Distributed rational decision making: voting, ...
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, 3T
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: ACLs, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: KIVA, intersection traffic
8. Game theory: Nash equilibrium
t-tests
9. Statistical measurements: voting, ...
10. Distributed rational decision making: FCC spectrum auctions, TAC
11. Auctions: FCC spectrum auctions, TAC
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, 3T
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: ACLs, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: KIVA, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Distributed rational decision making: voting, ...
11. Auctions: FCC spectrum auctions, TAC
12. Agent modeling: coaching, RMM, tracking teams
<table>
<thead>
<tr>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous agents:</td>
<td>What is an agent?</td>
</tr>
<tr>
<td>Agent architectures:</td>
<td>Subsumption, 3T</td>
</tr>
<tr>
<td>Multiagent Systems:</td>
<td>Overview, subsumption</td>
</tr>
<tr>
<td>Communication and Teamwork:</td>
<td>ACLs, Joint Intentions</td>
</tr>
<tr>
<td>RoboCup case studies</td>
<td></td>
</tr>
<tr>
<td>Swarms and ant-based approaches:</td>
<td>“Go to the Ant”</td>
</tr>
<tr>
<td>Applications:</td>
<td>KIVA, intersection traffic</td>
</tr>
<tr>
<td>Game theory:</td>
<td>Nash equilibrium</td>
</tr>
<tr>
<td>Statistical measurements:</td>
<td>t-tests</td>
</tr>
<tr>
<td>Distributed rational decision making:</td>
<td>voting, ...</td>
</tr>
<tr>
<td>Auctions:</td>
<td>FCC spectrum auctions, TAC</td>
</tr>
<tr>
<td>Agent modeling:</td>
<td>coaching, RMM, tracking teams</td>
</tr>
<tr>
<td>Multiagent learning:</td>
<td>multiagent RL</td>
</tr>
</tbody>
</table>
What have we covered?

1. Autonomous agents: What is an agent?
2. Agent architectures: Subsumption, 3T
3. Multiagent Systems: Overview, subsumption
4. Communication and Teamwork: ACLs, Joint Intentions
5. RoboCup case studies
6. Swarms and ant-based approaches: “Go to the Ant”
7. Applications: KIVA, intersection traffic
8. Game theory: Nash equilibrium
9. Statistical measurements: t-tests
10. Distributed rational decision making: voting, ...
11. Auctions: FCC spectrum auctions, TAC
12. Agent modeling: coaching, RMM, tracking teams
13. Multiagent learning: multiagent RL
14. Entertainment agents chatbots, music bots
The original question

- What is an agent?
Course recap

- I’ve enjoyed teaching you
Course recap

- I’ve enjoyed teaching you

- I’ve been impressed by the levels of discussions we’ve had in class
Course recap

- I’ve enjoyed teaching you
- I’ve been impressed by the levels of discussions we’ve had in class
- I’m happy with the progress in writing that many of you have made
Course recap

• I’ve enjoyed teaching you

• I’ve been impressed by the levels of discussions we’ve had in class

• I’m happy with the progress in writing that many of you have made

• I’m proud of all of you for sticking with it through such a demanding course
Course recap

- I’ve enjoyed teaching you
- I’ve been impressed by the levels of discussions we’ve had in class
- I’m happy with the progress in writing that many of you have made
- I’m proud of all of you for sticking with it through such a demanding course

THANKS!!!
Surveys

- Positive and negative feedback useful
Surveys

- Positive **and** negative feedback useful
- Invitation to send more feedback online
Surveys

- Positive and negative feedback useful
- Invitation to send more feedback online
 - Should the course be run again?
 - How should it change?
Surveys

• Positive **and** negative feedback useful

• Invitation to send more feedback online
 – Should the course be run again?
 – How should it change?

• Most important: course rating, instructor rating, written comments
Next Meeting

● The tournament!
Next Meeting

• The tournament!

• Wednesday, December 9th

• GDC 5.302

• 7pm–10pm
Next Meeting

• The tournament!

• Wednesday, December 9th

• GDC 5.302

• 7pm–10pm

• Come prepared to talk (informally) about your team