Good Afternoon, Colleagues
Good Afternoon, Colleagues

Are there any questions?
Logistics

• Questions about the syllabus?
Logistics

- Questions about the syllabus?
- Class registration
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas — announcements yesterday
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas — announcements yesterday
- Last week’s slides are up
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas — announcements yesterday
- Last week’s slides are up
- Next week’s readings are up:
 - Brooks’ reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas — announcements yesterday
- Last week’s slides are up
- Next week’s readings are up:
 - Brooks’ reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
- Seating arrangement
Thermostats

• Are they agents or not?

• How does Wooldridge resolve this?
Intelligent (autonomous) Agents

- Autonomous robot
Intelligent (autonomous) Agents

- Autonomous robot

- Information gathering agent
 - Find me the cheapest?
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
- Computer-game-playing agent
Not Intelligent Agents

- Thermostat
- Telephone
- Answering machine
- Pencil
- Java object
Your Agent Examples
Your Agent Examples

Simple home alarm; cat food dispenser

Software: anti-virus/malware agent; spam filter; web crawler; iOS autocorrect correct daemon

Automotive: smart keys; digital highway speed sign; traffic light with sensors; autonomous car; cruise control

Telecom: GPS device; cell phone

Physical Control: Roomba; lawn watering system

Health: pacemaker

Game/Entertainment: chess player; first person shooter

AI
An Example
An Example

- You, as a class, act as a learning agent
An Example

- You, as a class, act as a learning agent

- Actions: Wave, Stand, Clap
An Example

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
An Example

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
- **Goal**: Find an optimal *policy*
An Example

• You, as a class, act as a learning agent

• Actions: Wave, Stand, Clap

• Observations: colors, reward

• Goal: Find an optimal policy
 – Way of selecting actions that gets you the most reward
How did you do it?
How did you do it?

- What is your policy?
- What does the world look like?
Formalizing My Example

Knowns:
Formalizing My Example

Knowns:

- \(\mathcal{O} = \{ \text{Blue, Red, Green, Yellow, \ldots} \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)

\[o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \]
Formalizing My Example

Knowns:

- \(\mathcal{O} = \{ \text{Blue, Red, Green, Yellow, \ldots} \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)

Unknovns:

\[o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \]
Formalizing My Example

Knowns:
• $O = \{\text{Blue, Red, Green, Yellow, ...}\}$
• Rewards in \mathbb{R}
• $A = \{\text{Wave, Clap, Stand} \}$

$O_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:
• $S = 4 \times 3$ grid
• $R : S \times A \mapsto \mathbb{R}$
• $P = S \mapsto O$
• $T : S \times A \mapsto S$
Formalizing My Example

Knowns:

- $O = \{\text{Blue, Red, Green, Yellow, \ldots}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

$O_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- $S = 4 \times 3$ grid
- $R : S \times A \mapsto \mathbb{R}$
- $P = S \mapsto O$
- $T : S \times A \mapsto S$

$o_i = P(s_i)$
Formalizing My Example

Knowns:
- \(O = \{ \text{Blue, Red, Green, Yellow, ...} \} \)
- Rewards in \(R \)
- \(A = \{ \text{Wave, Clap, Stand} \} \)

Unknowns:
- \(S = 4 \times 3 \) grid
- \(R : S \times A \mapsto R \)
- \(P : S \mapsto O \)
- \(T : S \times A \mapsto S \)
- \(o_i = P(s_i) \)
- \(r_i = R(s_i, a_i) \)
Formalizing My Example

Knowns:
- \(\mathcal{O} = \{ \text{Blue, Red, Green, Yellow, …} \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)

\[
\begin{align*}
o_0, a_0, r_0, o_1, a_1, r_1, o_2, & \ldots
\end{align*}
\]

Unknowns:
- \(S = 4 \times 3 \) grid
- \(\mathcal{R} : S \times \mathcal{A} \mapsto \mathbb{R} \)
- \(\mathcal{P} = S \mapsto \mathcal{O} \)
- \(\mathcal{T} : S \times \mathcal{A} \mapsto S \)

\[
\begin{align*}
o_i &= \mathcal{P}(s_i) & r_i &= \mathcal{R}(s_i, a_i) & s_{i+1} &= \mathcal{T}(s_i, a_i)
\end{align*}
\]