Good Afternoon, Colleagues

Are there any questions?
Logistics

- Next week’s readings
Logistics

• Next week’s readings

• Class Survey (21 as of this morning)

• Talks in the department:
 – Patrick MacAlpine, PhD Proposal, Wednesday at 2:30pm (GDC 4.816) “Multilayered Skill Learning and Movement Coordination for Autonomous Robotic Agents in Spatial Domains”
Game Theory

- Multiagent systems
- Economics
- Social science, law, etc.
Goals for Today

• Understand premises of game theory
• Understand the notion of utility
• Understand solution concepts
Goals for Today

• Understand premises of game theory

• Understand the notion of utility

• Understand solution concepts
 – Dominant strategy
 – Nash equilibrium
 – Pareto optimality
 – Maximum social welfare
 – Maximin strategy
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3,3</td>
</tr>
<tr>
<td>D(2)</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Row

Patrick MacAlpine
Game Theory Premises

- Simultaneous actions
- No communication
- Outcome depends on combination of actions
Game Theory Premises

- Simultaneous actions
- No communication
- Outcome depends on combination of actions
- Utility (payoff) encapsulates everything about preferences over outcomes
Utility

- Money is a useful analogy for utility
 - But they’re not equivalent
Utility

- Money is a useful analogy for utility
 - But they’re not equivalent

- Diminishing values
Utility

- Money is a useful analogy for utility
 - But they’re not equivalent

- Diminishing values

- Risk aversion
Utility

- Money is a useful analogy for utility
 - But they’re not equivalent
- Diminishing values
- Risk aversion
- Loss aversion
Utility

- Money is a useful analogy for utility
 - But they’re not equivalent

- Diminishing values

- Risk aversion

- Loss aversion

- Friendliness/vindictiveness
Solution Concepts

- Dominant strategy
Solution Concepts

- Dominant strategy
- Nash equilibrium
Solution Concepts

- Dominant strategy
- Nash equilibrium
- Pareto optimality
Solution Concepts

- Dominant strategy
- Nash equilibrium
- Pareto optimality
- Maximum social welfare
Solution Concepts

- Dominant strategy
- Nash equilibrium
- Pareto optimality
- Maximum social welfare
- Maximin strategy
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th>Row</th>
<th>C(1)</th>
<th>D(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>D(2)</td>
<td>5,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Column
Chicken

<table>
<thead>
<tr>
<th></th>
<th>Column</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C(1)</td>
<td>D(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3,3</td>
<td>1,5</td>
</tr>
<tr>
<td>D(2)</td>
<td>5,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>