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Abstract

A cyberphysical avatar is a semi-autonomous robot that adjusts to an unstructured environ-

ment and performs physical tasks subject to critical timing constraints while under human su-

pervision. The paper first realizes a cyberphysical avatar that integrates three key technologies:

body-compliant control, neuroevolution, and real-time constraints. Body-compliant control is

essential for operator safety because avatars perform cooperative tasks in close proximity to

humans; neuroevolution (NEAT) enables “programming” avatars such that they can be used

by non-experts for a large array of tasks, some unforeseen, in an unstructured environment;

and real-time constraints are indispensable to provide predictable, bounded-time response in

human-avatar interaction. Then, we present a study on the tradeoffs between three design pa-

rameters for robotic task systems which must incorporate at least three dimensions: (1) the

amount of training effort for robot to perform the task, (2) the time available to complete the

task when the command is given, and (3) the quality of the result of the performed task. A

tradeoff study in this design space by using the imprecise computation as a framework is to

perform a common robotic task, specifically, grasping of unknown objects. The results were

validated with a real robot and contribute to the development of a systematic approach for de-

signing robotic task systems that must function in environments like flexible manufacturing

systems of the future.
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1 INTRODUCTION

Although modern robots can perform complex tasks competently through hand-designed algo-

rithms [48], it remains challenging [43] to create robots capable of completing mission-critical

tasks in unstructured environments without complete dependence upon a human (e.g. through tele-

operation). Our framework to tackle this challenge is based upon the concept of a “cyberphysical

avatar,” defined to be a semi-autonomous remote robotic system that adjusts to an unstructured

environment and performs physical tasks subject to real-time constraints under human supervi-

sion [7].

The key scientific question of interest is what form and minimum degree of human supervision

is required to enable a robot to perform a particular type of task. To answer this question, it is

important to recognize the fact that the quality of robotic task performance is a function of at least

two parameters: the amount of training the robot has had through machine learning algorithms, as

well as the tightness of the real-time task deadline that the robot is to meet. For example, if we give

the robot one second to grasp an unknown object, it is likely that the grasp will not be as firm and

reliable as what the robot would be able to achieve given ten seconds to complete the grasp. The

goal of our research is to perform a systematic investigation of the tradeoffs between the training

effort, the resulting quality of the robotic task, and the time the robot takes to perform the task.

Understanding this tradeoff is essential to design robots that can function effectively in real time.

The specific robotic task we use for this investigation is the grasping of an unknown object by

the robot. While robotic grasping has received significant research attention, the type of tradeoff

investigation mentioned above is not. We use Dreamer, a humanoid torque-controlled mobile robot

as our experimental platform. For training Dreamer to perform the grasping task, we adopt the

NEAT (NeuroEvolution of Augmenting Topologies) machine learning method. The design space of

the robotic grasping task has three dimensions: (1) The training effort, measured by the time used in

running the NEAT algorithm to train Dreamer to perform the grasp. (2) The task completion time,

defined by the time Dreamer has to perform the grasping task. (To enforce the completion time

constraint, a trajectory planner is used to compute the way-points for the trajectory that connects

the initial and final configuration of Dreamer within the target completion time. The actual physical

trajectory is realized by Dreamer’s on-board controller). (3) The quality of the grasp is evaluated

both in simulation and on a physical robot. Our training method relies on simulations modeled

with GraspIt! [31], which is an open-source grasp simulation environment that models the targeted

robotic hand and can evaluate grasp quality. In this paper, we focus on the tradeoff between training

effort and amount of time allowed to attempt the grasp. The metric for evaluating this tradeoff is the

quality of the resulting grasp. Implicit in the premise of this paper is that training time is a limited

resource. In traditional process automation areas such as manufacturing, the design of the system

may often take months, or even years, because the system is then expected to run continuously

without further significant modification. However, many future robotic applications require much

faster training. For example, for flexible manufacturing a robot may be trained to assemble only

a small number of a particular product (i.e. rapid small-lot manufacturing) before being retrained

to make a different product. It is therefore important to understand how much training is enough

for the robot to satisfactorily perform a task. Our investigation is also relevant in light of recent

successes in deep learning [20, 49]. Similar to the neuroevolution approch applied here, successful

application of deep learning involves multi-layer neural networks, and depends upon a well-chosen

network topology and a sufficient number of training examples. Thus, an important question is how

task performance improves as a function of the number of training cases. A plausible conjecture

is that with a properly connected multi-layer network, the performance curve may exhibit fast
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improvement once past some critical number of input training cases. For example, a juggling robot

may ‘suddenly’ acquire the juggling skill once some basic hand-eye coordination ‘invariant’ has

been captured by the evolving neural network. To answer this type of question, the tradeoff study

in this paper should be useful. In particular, we use a framework from the area of real-time systems

research called the imprecise computation model [25, 26], to help explore the boundary region of

tolerance and find best effort techniques. Our work can be viewed as providing a realistic basis for

some of the scheduling work done by the real-time systems community in the past two decades.

The remainder of this paper is organized as follows. Section 2 reviews related work and de-

scribes the neuroevolution method and the imprecise computation. Section 3 describes system

integration and its architecture. Section 4 introduces our model of the whole-body compliant grasp

of Dreamer and its hierarchical control structure. The learning approach is presented in Section 5,

while Section 6 describes experimental results and their evaluation. Section 7 measures the grasp-

ing performance by applying imprecise computation. Finally, Section 8 and Section 9 conclude by

reviewing remaining problems and future work.

2 BACKGROUND AND RELATED WORK

This section reviews previous machine learning approaches to robotic grasping in 2.1, the neuroevo-

lution method applied in the experiments in 2.2, the imprecise computation technique to analyze

performance in 2.3, and grasp quality measurement in 2.4.

2.1 Robotic Grasping through Machine Learning

Impressive progress has been made in learning to grasp novel objects [19, 32, 37, 38, 42–44]. To

the best of our knowledge, previous methods use only simple hand models [32, 43] and are not

directly applicable for the target hand in this work (i.e. Dreamer robot’s hand, Mekahand). Also,

transferring controllers from simulation to reality remains challenging [14, 23].

Related to the approach described here are previous artificial neural networks (ANNs) ap-

proaches that simulate arm kinematics [34, 36, 39]. Other approaches use reinforcement learning

techniques [17, 55] to explore search spaces optimally for control strategies, and learning from

demonstration (LfD) [1] to improve grasping capability, and partially observable Markov decision

processes (POMDP) [9, 10] to choose optimal control policies. Yet only a few of these methods

were tested in the real world.

2.2 Neuroevolution

Neuroevolution (NE) is an approach where an evolutionary algorithm is applied to learn the struc-

ture of an ANN, its connection weights, or both [51]. Compared with other machine learning

methods, neuroevolution is unique in two main ways.

First, most other learning methods are supervised, i.e., they learn behavior that approximates

a given set of examples [8]. It is important that such examples are carefully chosen to ensure that

the training process results in learning a function that smoothly interpolates between them. For

instance, in robotic grasping, a training set consists of grasping situations paired with the corre-

sponding optimal grasping behavior. Because optimal behavior is often not known, it is unclear how

such examples can be produced to cover representative situations well. In contrast, neuroevolution

is a reinforcement learning method, and as such it does not require training examples where ideal

3



behavior is known. Second, neuroevolution does not rely on complete state information. Other

methods that are designed to learn under sparse reinforcement, such as Q-learning (or value func-

tion learning in general) often assume that the current state of the system is completely known [53].

However, if objects are occluded or situation varies dynamically, it is difficult for such methods to

differentiate between possible situations because the observed values of actions cannot be associ-

ated with the correct underlying state. Neuroevalution solves the problem by evolving recurrent

connectivity; recurrence establishes memory that make it possible to distinguish between states.

One complication in applying neuroevolution to a complex domain like robotic grasping is that

the ideal network topology (i.e. how many neurons compose the network and how are they inter-

connected) is not a known apriori. Because the depth image input contains many low-level features

(i.e., pixels), a fully connected network with many hidden neurons may have an intractable number

of parameters to tune. This motivates the NeuroEvolution of Augmenting Topologies (NEAT; [51])

method which is a popular method for evolving both network topology and connection weights.

With NEAT, the ideal network topology needs not be known apriori, but is discovered automat-

ically as part of evolution. The NEAT has shown previous promise both in grasping [2] and in

extracting features from low-level input [18].

2.3 Imprecise Computation

In real-time applications (e. g., safety-critical applications), it is difficult for every critical task

to meet its deadline. Imprecise computation is a scheduling technique that reduces the amount

of time used on a job by means of sacrificing levels of quality of service (QoS) [25, 26]. If the

best desired quality of results cannot be obtained, imprecise computation decreases the QoS to

make it possible to meet timing constraints of real-time tasks while still keeping the quality within

an acceptable range. When the system can not produce accurate results in a timely manner, the

graceful degradation can be achieved by providing users with an approximate quality of acceptable

results to prevent timing failures. For the real-time robotic task design in the imprecise computation

framework, consider a grasping task, implementing two parts. A mandatory part that the task must

complete before its deadline to achieve the minimum expected quality, and an optional part that can

be discarded at any time to improve the quality results by associating a reward with their execution.

2.4 Grasp Quality Measurement

Given an object, finding a suitable grasp configuration among the infinite set of candidates has

been studied extensively in the robotics community over the two decades [5, 32, 41, 47, 50]. The

algorithms of producing a feasible grasp require determining proper dexterous hand configurations

(i.e., Mekahand) as well as contact points on the objects. Much previous grasping quality research

focuses only on contact types and positions, ignoring hand geometry and kinematics. Other mea-

sures assume simple grippers. Roa and Suárez [41] reviewed and analyzed the performances of

evaluation methodologies of grasp quality in the literature. One of the most popular quality mea-

sure approaches [41] is to consider the force constraints, a grasping quality measure is defined as

the externally largest perturbation wrench where the grasp must be capable of resisting in any direc-

tion of forces ( [6, 16]); the frictional grasps of mathematical basis has been proposed [30, 33, 54],

and is also applied in the work on predicting grasping [13, 31, 35]. A grasp is in balance when

the summation of forces and torques is null and the fingers is applied in the object (external dis-

turbances) [3, 15, 24, 27]. The method of grasping quality is based on an analytic formulation to

compute how friction occurring grasping acting on those contacts affects the space of forces and
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Figure 1: The semi-autonomous robotic system. (1) A human supervisor connects to the Kinect

laptop, (2) captures a depth image, and (3) parses the depth array to serve as input to an evolved

Artificial Neural Network (ANN). (4) The neural network’s output is interpreted as directions to

control Mekahand’s position and orientation, and is sent to the supervisor. (5) The supervisor sends

commands to manupulate Dreamer robot. (6) Motion planner generates a trajector from the initial

state to the final state. (7) The controller of the wheeled humanoid avatar controls its body and arm

to destination in unstructured environments. The conclusion is that the system integrates real-time

vision, neuroevolution as a training method, and control manipulator while skillfully reaching an

object through the man-machine interface.

torques that can be applied to an object and further rank/decide what set of contacts are appropriate

to grasp. This method was adopted in GraspIt! to measure grasp quality of the Mekahand, which

is used in this paper.

The architecture of the system is described in the next section.

3 THE SEMI-AUTONOMOUS ROBOTIC SYSTEM

Having summarized the motivation for designing cyberphysical avatars, emphasizing the important

contributions that they could make, we turn to present the actual architecture of a cyberphysical

avatar, also called a semi-autonomous robotics system, used interchangeably in this paper.

This semi-autonomous robotic system comprises a mobile dexterous humanoid robot Dreamer

with its whole body control system, and devised machine learning algorithms (Neuroevolution)

including awareness of the environment complexity and sensing unpredictable world, and a real-

time physical distribution network, and a series of cost-effective, real-time and vision system. The

specific task explored in this work is controlling the Dreamer robot to approach and pick up a

designated target object under remote human supervision in a real-time environment. The physical

realization of the cyberphysical avatar has been implemented in the Human Centered Robotics

Laboratory (HCRL) at the University of Texas at Austin, and the portable remote control user

interface is located in another building nearby.

Figure 1 illustrates an overview of the semi-autonomous robotic system. Dreamer consists of a

torso, two arms, two hands, an anthropomorphic head [46]. The Dreamer is equipped with torque

and sensors to provide force compliant capabilities. A desktop PC running Ubuntu Linux with the

RTAI Real-time Kernel executes the models and control infrastructure to govern Dreamer’s behav-

ior via EtherCAT serial ports. Two types of cameras are installed in the system. A Kinect camera

connects to a laptop and is installed in front of the robot to capture images and depth information,
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and an IP camera is installed at the ceiling to capture Dreamer’s surrounding environment. The

Kinect laptop connects to the avatar and sends images to the remote supervisor.

A grasping experiment is achieved as follows. First, the human supervisor directs the Dreamer

robot with a command to grasp the desired object. The cyberphysical avatar communication soft-

ware relays the human input and depth information to a neural network that has been evolved with

NEAT. Recall that NEAT’s role is to train a neural network in a simulator to produce the appropriate

outputs for Dreamer to act on. To apply NEAT to learn where and how to grasp an object requires

both training scenarios and a measure for evaluating performance. GraspIt! [31] provides the in-

teractive simulation, planning, analysis, and visualization. The neural network (trained off-line)

outputs the appropriate positions and orientations to Dreamer robot which then moves towards the

destination and grasps the targeted object with its Mekahand.

Next, we introduce the designed dynamic controller of Dreamer and the Mekahand model.

4 DYNAMIC CONTROL OF HUMANOID ROBOTS IN UN-

STRUCTURED ENVIRONMENTS

Dreamer’s upper body consists of 3-dof torso, 7-dof arms and a 12-dof Mekahand, as shown in

Figure 2. The 3-dof torso has one unactuated joint which is coupled with the waist joint. The hand

also has five actuated joints and seven coupled unactuated joints, shown in Figure 2. To simplify

the controller, we divided the controller into one for controlling the body and the arm, and the other

for controlling the hand.

To control the body and the arm together, skill modeling and dynamic control of the robot are

necessary. The prioritized whole-body compliant controller (WBC) is used for our purpose [46].

In WBC, first an objective is set and then a task is defined by a Jacobian [45] to derive the relations

between the robot’s 10-dimensional joint spaces and the M-dimensional operational space. The

controller is derived from the following constrained system dynamics equations.

Aq̈ + b(q, q̇) + g(q) + JT
c λ = UT T, (1)

where A is the mass matrix of the system, q is the joint coordinate vector, b is the torque caused by

Coriolis and Centrifugal effects, g is the torque caused by gravity, Jc is the constrained Jacobian,

λ is the Lagrangian multiplier that describes the constrained joints, U is the actuation matrix, and

T is the torque input to the system. The reason why the constrained Jacobian and the Lagrangian

multiplies are shown in the system is to model the underactuated torso and the transmission con-

straint. The body joints 1 and 2 are coupled together. Therefore, we can specify the constraint as

follows:

q̇1 − q̇2 = 0, (2)

Jcq̇ = 0, (3)

Jc =
[

0 1 −1 0 · · · 0
]

∈ R1×10. (4)

We can take the constrained mass matrix Λc, the dynamically consistent generalized inverse of Jc,
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Figure 2: Dreamer’s upper body and the Meka-

hand. Dreamer contains 3-dof torso (1-3), a 7-

dof arm (4-10) and a 12-dof Mekahand (11-22).

Each unactuated/actuated joint is coupled with

another joint. The conclusion is that since many

DOFs increase in difficulty of Dreamer’s bal-

ance control while grasping, it is necessary to

design a skill modeling and dynamic control of

Dreamer.

Figure 3: The designed whole-body compliant

controller (WBC). The tasks of hand position,

hand orientation and the posture of Dreamer

upper-body are combined to perform a grasping

skill. The feedback/feedforward control poli-

cies contribute to the closed-loop dynamic con-

troller. The conclusion is that the designed con-

trol structure can effectively utilize dynamic and

contact models of the physical robot in unstruc-

tured environment.

and the constrained null space Nc to derive the constrained dynamic equation as follows:

Λc ,
(

JcA−1JT
c

)+

, (5)

Jc , A−1JT
c Λc, (6)

Nc , I − JcJc, (7)

q̈ = A−1NT
c UT T. (8)

Then, we can define task space specifications to derive the desired forces in the constrained

dynamic systems. In the case of the position task that makes the end-effector (hand) approach the

object, the task Jacobian is defined as

ẋ = Jpositionq̇, (9)

where x is the end-effector coordinate. The task Jacobian can describe the relation between the

joint velocities and the coordinate system that a supervisor expects to control. The task Jacobian

does not include the constrained dynamics, so we need to project this Jacobian to the constrained

space and then generate the constrained task Jacobian,

J∗position , JpositionUNc. (10)

The grasping skill, including posture, position and orientation, is defined as a juxtaposition of

multiple operational tasks to help translate between high-level goals, such as those provided by the

planning algorithms, and the operational tasks. In the robot’s environment, a skill is composed of

the three tasks in Figure 3: hand position, hand orientation, and the posture of Dreamer’s whole

body. The control structure can be expressed as

τcontrol = J∗TpositionFposition + J∗Tori Fori + J∗TpostureFposture, (11)

where Fposition, Fori and Fposture are the force or impedance commands to control the hand, and

J∗T
position

, J∗T
ori

and J∗Tposture are the whole-body task Jacobians [45]. The grasping process consists of
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three behaviors, among which the Mekahand position and orientation have higher priority than the

whole-body posture task because the latter is of secondary concern in the context of grasping.

The feedback control policies for the entire controller are shown in Figure 3, which depicts

the closed-loop dynamic controller. In the figure, the Goal Hand Position/Orientation is a com-

pliant hand position/orientation that enables the robot to reach a designated position/orientation.

The Goal Posture control exploits the remaining DOFs to stabilize self-motions. The proposed

feedback/feedforward control laws are

Fposition = Λ
∗
position(−kp, positione

goal

position
− kv, position ẋposition)

+pposition, (12)

Forientation = Λ
∗
ori(−kp, orie

goal

ori
− kv, ori ẋori) + pori, (13)

Fposture = Λ
∗
posture(−kp, posturee

goal

posture − kv, posture ẋposture)

+pposture, (14)

where Λ∗
position

, Λ∗
ori

and Λ∗posture are the inertial matrices projected in the manifold of the constraints,

e
goal

position
, e

goal

ori
and e

goal

posture are feedback error functions, kp, kv are gain matrices, and pposition, pori and

pposture are gravitational terms. This structure is a derivation of the previous work on compliant

whole-body control [46].

Since our designed control structure can effectively use dynamic and contact models of the

physical robot in its environments, it is able to optimize the process of approaching and grasping

objects simultaneously, and to achieve precise tracking of forces and trajectories within the contact

conditions. Thus, the grasping skill is acquired through neural network described next.

5 ACQUIRING GRASPING SKILLS THROUGH NEUROEVO-

LUTION

Although robots can be often controlled through carefully hand-designed algorithms, this paper

explores one way in which reinforcement learning methods can provide a significant advantage:

optimization of robot behaviors. The difficulty in designing effective control algorithms by hand

suggests that machine learning may be a desirable approach, yet to apply common supervised learn-

ing algorithms requires a corpus of labeled examples. However, in contrast to supervised learning,

a measure of quality is sufficient to apply reinforcement learning algorithms. In many cases, it

is much easier to derive a measure of how desirable a particular behavior is than it is to either

hand-construct that behavior or provide a comprehensive corpus of optimal example behaviors.

For this reason, the approach in the paper applies reinforcement learning to facilitate learning

high-level behaviors that can be then invoked by a human operator. In particular, neuroevolution

algorithms have proven effective in domains with low-level continuous features that are character-

istics of the problem here, i.e. learning to grip objects given depth sensor information. Thus, this

section introduces our approach [11], which is based on applying a popular neuroevolution method

called NEAT to the GraspIt! simulation environment. Subsection 5.1 introduces the grasping learn-

ing approach; Subsection 5.2 then describes the learning process, specifying the input and output

layers, as well as fitness function, and also how to speedup the process. Finally, Subsection 5.3

presents the tradeoffs evaluation in the imprecise computation framework.
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5.1 Grasp Learning Approach

Our approach takes inspiration from Kohl et al. [18] who showed that neuroevolution can develop

effective automobile warning systems from only low-level sensor input (i.e. pixels) taken from a

digital camera. A similar vision-based feature extraction approach is applied here, where through

neuroevolution the Mekahand robotic arm learns appropriate hand positions and orientations for

grasping. Such learning is enabled by interacting with objects in the GraspIt! simulation environ-

ment, which is described next followed by the approach to measure grasping quality and determine

a visual bounding box for grasping.

5.1.1 GraspIt! Simulation Implementation

To apply neuroevolution to learn where and how to grasp an object requires both training scenarios

and a metric for evaluating performance. GraspIt! [4,29] facilitates simulating the Mekahand robot

in representative grasping tasks and aids in measuring the quality of resulting grips.

GraspIt! only provides a rough Mekahand model, so we extended the simulator to better model

it. In GraspIt!, the Mekahand is defined by one DOF for each knuckle in each finger, with an

additional DOF for the thumb’s rotator. The mechanics of this model are modified here to augment

two aspects of the simulation. First, controlling the wrist is not modeled by default, but is an

important DOF. Therefore, a wrist component was added to the Mekahand model supplied by

GraspIt!. Second, most of the DOFs in the real Mekahand are not actuated, although they are

modeled as actuated in the GraspIt! simulation. Each finger of the real Mekahand consists of three

joints that are all connected by a single rubber tendon. Thus when the finger curls, all three knuckles

curl in unison. Therefore, the torques in GraspIt! were adjusted such that the set of torques given

to a single finger are equivalent to the torques initiated by stretching the rubber tendon in the real

robot.

GraspIt! uses a quaternion to represent the rotation of a 3D object. Since our learning out-

put applies axis-angle representation in a 3D Euclidean space. Our implementation automatically

translates the quaternion into the axis-angle representation in a 3D Euclidean space for the output.

5.1.2 Measuring Grasp Quality

An evolutionary search optimizes a fitness function that measures the quality of candidate solutions.

Because robust grasping behaviors are desired in this experiment, an important consideration is how

to measure the quality of grasps appropriately. Recall that the approach for grasp measure [3,15,24,

27, 30] was applied in GraspIt! to measure grasp quality of the Mekahand. Given a 3D object and

posture of the Mekahand, their measure can accurately identify the types of contact points between

the links of the hand and the object and compute the grasp’s quality. Figure 4 illustrates the score

for each grasp when applied to different objects (a single cylinder, sphere, cube, and mug) from the

different positions and orientations in ascending order. The grasp quality is −1 if the Mekahand just

touches the object; otherwise, the quality is larger than zero. This grasp quality metric can yield

different scores, which can be used to score each grasp for machine learning.

The next Subsection shows how this approach can be applied to a human-supplied bounding box

and focusing the robot’s visual processing on the target object, thereby lessening the dimensionality

of the robot’s computer vision processing.
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Figure 4: Measuring grasp quality. One grasp acting on a single (a) cylinder, (b) sphere, (c) cube,

(d) and mug is represented by different scores based on the Mekahand’s position and orientation.

The grasp quality is −1 if the Mekahand just touches the object; otherwise, the quality is larger than

zero. This quality metric can be utilized to score each grasp for machine learning.

5.1.3 Visual Bounding Box

In the experiment, ANNs through exploration learn how to grasp objects by integrating informa-

tion from a high-dimensional depth image provided by a Kinect sensor. To better focus on the

most important features of the depth image, a bounding box strategy was implemented. For each

object extracted from the original scene, image data was considered only from within a supervisor-

specified bounding box. The bounding box thus serves to minimize the number of irrelevant pixels

considered and then simplifies the learning problem.

The training process with the bounding box method proceeds as follows. GraspIt! loads a scene,

and then two mouse clicks from the user specify a rectangular bounding box that encompasses the

object. In the simulated implementation, because all relative 2D coordinates of each object can be

determined, an encompassing bounding box is automatically generated and centered on the desired

object. For simplicity, all the computed bounding boxes have the same size. The boundary range

can be mapped to four coordinates. For example, in Figure 5, a cube is chosen, so the bounding

box is (Cx,Cy), (C
′
x,Cy), (Cx,C

′
y), (C

′
x,C

′
y). The depth array of the bounding box is then divided into

M × N pixels that are given to the ANN being evaluated as input data.

To simplify the implementation, the position of the camera sensor is always set such that the

origin O3d (0, 0, 0) in the GraspIt! scene is in the center of the 2D plane, as shown in Figure 5.

Because the input is reduced to a small part of the overall depth image, after the ANN produces

the output, the position of each object must be offset relative to the bounding box. For example, in

Figure 5, for the cube, ∆x and ∆y should be added to the position of the output, for mapping to the

normalized origin position.

5.2 Learning Process

In learning process, we elaborate the NEAT method first. Then, combining neuroevolution with

the grasping task requires specifying the input and output layers of the neural network, as well as

a fitness function to evaluate grasps. A schematic description of the general framework combining

GraspIt! and NEAT is depicted in Figure 6. Note that there are no supervised examples that the

algorithm attempts to emulate. Instead, the algorithm learns from reinforcement feedback based on

only the measured quality of attempted grasps. In this way, evolution can discover solutions that

work well even when the optimal behaviors are unknown.
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5.2.1 The NEAT Method

Behaviors are evolved for robots that are controlled by artificial neural networks (ANNs). Thus,

the NEAT method is suitable to underpin our experiments because it is broadly utilized [21, 22, 40,

51, 52]. NEAT evolves starting from a population of small and simple networks, and complexifies

the network topology into diverse species over generations, leading to increasingly sophisticated

behavior. Here, a brief review of the NEAT methodology was provided; for comprehensive intro-

ductions see e.g. [21,51,52]. To keep track of which gene is being added to new genes, a historical

marking is uniquely assigned to each new structural component. During crossover, genes with

the same historical markings are aligned, effectively producing meaningful offspring. Speciation

in NEAT protects structural innovations by decreasing competition among different structures and

network complexities, allowing newer and more complex structures to be adjusted. Networks are

assigned to species according to the extent to which they share historical markers. Complexification

resembles how genes are added during natural evolution [28], and is thus supported by speciation

and historical markings, thereby giving NEAT to establish high-level features early in evolution.

In addition, the ability of NEAT to evolve increasingly complex ANNs is well-suited to robotic

grasping behaviors, which need potentially complex evolved structure.

5.2.2 Input and Output Layers of Neural Network

Each ANN evaluated by NEAT receives input data denoting the current state of the robot in its

environment. It is thus necessary to encode such state information, which includes the position

of the target object as well as information about the object’s shape. To eliminate dependency on

high-level human-provided features of the grasped object, the object’s state is described by general

low-level features provided by a depth map. In particular, each pixel in the depth information array

is assigned a unique input node, as shown in Figure 6. In this way, the network can potentially

learn to associate the state of an arbitrary object in an arbitrary environment with an appropriate

grasping strategy.

Each ANN predicts where the object is and in what direction to grasp the object by outputting

3D hand positions and orientations. Note that each dimensional coordinate of the Mekahand’s

position and orientation maps to one output neuron. Because the orientation is expressed in an

axis-angle format (e.g. a 3D axis vector and one angle), the total dimensionality is seven, i.e. the

ANN has seven output neurons.

Evolution is initialized with ANNs with input nodes that are fully connected to at least a single

hidden neuron, and with the hidden node fully connected to the output neurons. Recall that during

evolution, ANNs can accumulate additional connections and nodes through structural mutations

that augment network topology.

5.2.3 Grasping Fitness Function

A key element of the experimental design is to construct a fitness function to guide the search

process for an appropriate ANN grasp controller. The design of a fitness function is a critical factor

for guiding successful evolution.

In particular, in this experiment, the fitness of a network n with respect to an object O has four

components:

• f1: Grasp quality metric Q, described in Subsection 5.1.2.
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Figure 5: Bounding boxes of a cube and mug,

and the output shift offsets ∆x and ∆y (∆x′ and

∆y′). Because all relative 2D coordinates of each

object are known, an encompassing bounding

box is generated centered on the desired object.

This figure shows that the boundary range can

be mapped to four coordinates. To simplify im-

plementation, the position of the camera sensor

is always set such that the origin O3d (0, 0, 0) in

the GraspIt! scene is always in the center of 2D

plane. The conclusion is that a bounding box

strategy can focus on the most important fea-

tures of the depth image.

Figure 6: Representation of the designed grasp

controller network. The left side of the fig-

ure shows GraspIt! simulation environment; the

right side of the figure shows a neural network

receiving input consisting of depth data and the

goal coordinate (a, b) on the GraspIt! visual in-

put scene. The network has seven output nodes:

hand position (X,Y,Z), rotation axis (x, y, z) and

rotation angle (r). Note that NEAT can add in-

ternal hidden nodes as evolution progresses. The

figure shows how to implement grasping experi-

ments with NEAT in GraspIt!.

• f2: The reciprocal of Euclidean distance d(
−→
Pi,
−→
Oi) between the hand position computed by

the neural network (
−→
Pi) and a desired object (

−→
Oi). Note that

−→
Pi and

−→
Oi are vectors.

• f3: The reciprocal of Euclidean distance d(
−→
Pi,
−→
S i) between the hand position computed by

the neural network (
−→
Pi) and the actual hand coordinate after interacting with the environment

(
−→
S i). Note that

−→
Pi and

−→
S i are vectors.

• f4: An angle θ between the Mekahand and grasping object. Let
−→
V1 be one vector from the

center of the palm to the fingertip of the thumb; let
−→
V2 be the vector from the hand position to

the center-of-gravity of the desired object; let
−→
V3 be the vector indicating the direction of the

hand’s axis of rotation. Let θ1 (θ2, respectively) be an angle between
−→
V1 and

−→
V2 (
−→
V2 and

−→
V3,

respectively). To ensure that the center of palm always turns toward the object, the sum of θ1
and θ2 must be roughly around 90◦. Figure 7(a) is one good case where the hand axis-angle

is almost perpendicular to the object. Figure 7(b) is one bad case where the palm of hand is

not orientated toward the object. Here,
−→
V1 and

−→
V2 (
−→
V2 and

−→
V3, respectively) are normalized so

that ‖
−→
V1‖ = ‖

−→
V2‖ = 1 (‖

−→
V2‖ = ‖

−→
V3‖ = 1, respectively). The angle θ is the sum of θ1 and θ2 as

follows:

θ = θ1 + θ2 = θ(
−→
V1,
−→
V2) + θ(

−→
V2,
−→
V3)

=
arccos(

−→
V1 �
−→
V2)

‖
−→
V1 ‖‖

−→
V2 ‖

+
arccos(

−→
V2 �
−→
V3)

‖
−→
V2 ‖‖

−→
V3 ‖

. (15)
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Figure 7: An angle θ between the Mekahand and grasping object.
−→
V1 is a vector from the center of

palm to the fingertip of the thumb;
−→
V2 is a vector from the center of palm to the center-of-gravity

of the cube;
−→
V3 is a vector from the Mekahand’s rotation axis. (a) A good case where the palm’s

center is facing the target object; the sum of θ1 and θ2 is almost 90◦. (b) A bad case where the

palm’s center is not facing the target object; the sum of θ1 and θ2 is larger than 90◦. The conclusion

is that because the center of plam facing towards an object can increase the grasping opportunity,

the component was added to reward the fitness function.

Thus, the fitness function f of a network n is defined as follows:

f = f1 + f2 + f3 + f4

= γQ +
β

d(
−→
Pi,
−→
Oi) + α

+
λ

d(
−→
Pi,
−→
S i) + ǫ

+ f (θ). (16)

where α, β, γ, λ and ǫ are constants chosen to balance the various parameters. Note that

f (θ) = f (θ1 + θ2) =

{

ω , if 85◦ ≤ θ ≤ 95◦

0 , otherwise.

During the initial phases of evolution, when the neural networks are mostly untrained, all net-

works may direct the Mekahand to grasp at positions where it cannot even touch the object. As

a result, in early generation f1 is often effectively zero. Thus in this stage, f2, which rewards ap-

proaching the target object, is important for differentiating the fitness. After further evolution, when

the hand can grasp the object, f1 begins to dominate and the neural networks are ranked mostly by

grasp quality. In addition, the third term f3 is large if the Mekahand is not blocked by obstacles (e.g.

objects other than the target object). Finally, the fourth term ( f4) rewards facing the palm of the

robotic hand towards the target object. Parameters α, β, γ, λ, ǫ and ω adjust the relative effects of

those four terms. In this way, the described fitness function rewards ANNs first to learn to approach

the object, and then to grasp the object in an increasingly appropriate way. Algorithm 1 shows the

fitness function in detail.

5.2.4 Reducing Training Time through Parallelization

The computational cost incurred by the sequential implementation of the fitness function compu-

tation is as follows. For one experiment, each generation consists of ô ANNs, and each ANN is

evaluated over ŝ object combinations. Each object combination contains b̂ objects, and each ob-

ject is selected as k̂ candidates to be an input. If one experiment runs for ĝ generations, the total

number of independent training simulations in GraspIt! T is ô × ŝ × b̂ × k̂ × ĝ. In our experiments,

ô = 200, ŝ = 5, b̂ = 4, k̂ = 10, ĝ = 150. Thus, T = 6, 000, 000. Therefore, a parallel strategy that

dispatches different trials to all available computer cores is implemented to encourage computa-

tional efficiency. In particular, work is dispatched over a network to multiple GraspIt! processes

that run on different computers. In this way, each CPU core in different computers can be fully

employed, and the resulting multi-threaded implementation speeds up the evolution process.
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Alg 1 Computation of the Fitness Function

1: Input: Q is the grasp quality after the execution of a single grasp, θ is the summation of θ1 and θ2,
−→
Pi

is the predicted position of hand for grasping by the network,
−→
Oi is the coordinate of the selected object

after the mouse click,
−→
S i is the actual hand coordinate after interacting with the environment.

2: Output: A fitness evaluation of a single grasp.

3: Let A j be a set of 3D coordinates of objects in the environment, where 1 ≤ j ≤ n;

4: for j = 1 to n do

5: Disto = min(Disto,

√

∑

i∈x,y,z(
−−→
A j,i −

−→
S i)

2);

6: end for

7: Distt =

√

∑

i∈x,y,z(
−→
Oi −

−→
S i)

2);

8: if (Q = 0) ‖ (Disto < Distt) then

9: {∗No grasp quality or Mekahand is closer to other objects.∗}

10: f1 = 0;

11: f2 =
β

d(
−→
Pi,
−→
Oi)+α

;

12: else

13: f1 = γQ, where γ ≥ 10000 ;

14: f2 = k, where k ≤ 1000;

15: end if

16: f3 =
λ

d(
−→
Pi,
−→
S i)+ǫ

;

17: if (85 ≤ θ) && (θ ≤ 95) then

18: if Distt < 50 then

19: f4 = ω;

20: else

21: f4 = w, w < ω;

22: end if

23: else

24: f4 = 0;

25: end if

26: return sum =
∑4

i=1 f iti;
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Figure 8: The same computers were used to compare the sequential and parallel comparison meth-

ods.(a) The original sequential method. (b) The faster parallel method. The results show that with

the original sequential implementation, the program only utilizes a single core, but after paral-

lelizing the algorithm, the program can fully utilize four cores, and the experiment’s run time is

shortened by a factor of three.

Figure 8(a) illustrates the sequential method for each generation. To reduce execution time, the

following computational steps were parallelized, as shown in Figure 8(b). The sequential method

was redesigned as a producer-consumer pattern for parallel programming, which consists of two

major components: GraspIt! simulator and NEAT training. NEAT as producer generates the pos-

tures and enqueues into the queue for further processing. GraspIt! simulator as consumer dequeues

the postures and run the evaluation of grasping quality, and then enqueues the quality measure-

ments into the second queue. After all postures were generated and NEAT obtained the grasping

qualities, the information would be fed into the neural network as an input for the next genera-

tion. First, three commands are defined: cmd get info is to get the depth array, cmd get quality

is to get the quality for each grasp, and cmd shuffle is to change the position and orientation of

each object. Here, assume that four instances of GraspIt! are run and waiting for commands. Two

kinds of threads are created: Organism tasks that use ANNs from NEAT’s main process to generate

grasping tasks and collect the resulting fitness score; and GraspIt! tasks that communicate with

a GraspIt! process to send the output from an ANN for simulation in GraspIt!, and receive the

resulting grasp quality. The speedup achieved by such parallization depends on how many GraspIt!

Instances are running. To gain more computing power and speed up the training time, we imple-

ment the producer-consumer as client/server architecture where command and data are exchanged.

Our results show that the run time is accelerated by at least a factor of three.

5.3 Robotic Control in the Imprecise Computation

Our specific robotic grasping task has time constraint, so how to maximize the reward associated

with the optional part of execution while satisfying all mandatory deadlines, can be considered it

as an imprecise scheduling problem. For example, objects localization from images processing,

rough estimate of location from low-resolution images produces in time, whereas accurate location

from high-resolution images takes longer time. In the robotic control, the mandatory part guaran-

tees an approximate solution, so can be viewed as mandatory. On the other hand, the optional part

depends on the precision of the solution and must be non-decreasing, so can be varied by adjusting

robotic arm speed, neural network training time. Ideally, each task would finish running its optional
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part, but these computations can be canceled when out of time. Therefore, this model is still not

sufficient to provide a well-defined scheduling problem, because some mechanisms are required

to decide which optional parts to carry out. This paper fulfills the fundamental step to explore the

boundary region of tolerance and find best effort techniques to satisfy the minimum QoS require-

ment. With an increased number of subsequent deadline constraints, the objective is to derive the

relationship between execution time and grasping trajectory accuracy. The tradeoffs analysis lays

the foundation for the scheduling in the imprecise computation framework. For example, when

we remotely operate Dreamer in the real world, the choices of completion time associated with

each data point might be different in the experiments, as described in Section 7. In this case, the

tradeoff mapping could be of an aid to assist the robot to make a decision on choosing different

combinations in order to complete the task without exceeding the time constraint.

Next, we shall present the experimental quality evaluation.

6 EXPERIMENTAL EVALUATION

In this section, the training and testing experiments are described. The design and parameters are

presented in 6.1 and 6.2. The first set of training experiments combines the four fitness components

in different ways, as described in 6.3. The best combination is applied in the second and third sets

of training experiments, which evaluate the benefit of applying a bounding box to focus the ANN’s

attention in 6.4. Fully trained ANNs are tested in simulation (6.5) and also transferred to the real

robot (6.6).

6.1 Experimental Design

Because the raw depth data from the Kinect sensor is of high dimensionality, for practical purposes

the array is first down-scaled. Before the input data is supplied to an ANN, the 640×480 pixel array

was sampled to form a reduced 20×15 array. A larger scale was also tried, such as 40×30, 80×60,

but not only the evolution process was so time-consuming but also the improvement over the results

was not obvious at all. Therefore, we decided to shrink back 20×15 array. This smaller array was

converted to gray-scale intensity values, and then normalized between zero and one; an example

is shown in Figure 9. The input data also includes a coordinate that represents the mouse click

input from the user that specifies the target object. In the grasping experiments, the coordinate is

chosen by randomly picking a different point on the target object in each trial. To increase accuracy

in evaluating each network, they are each evaluated five times over different trials. That is, the

robot attempts to grasp each target object five times, and the fitness value is the average over all the

attempts. To preserve generality, the position and orientation of the objects for each evaluation are

randomized.

The experiments are divided into two parts: training and testing. A collection of objects are

divided into N separate classes, and for each class, ANNs are trained by NEAT to grasp objects

from that class. For testing, the best neural network generated from training is further tested in sim-

ulations over objects placed in different locations. A final test applies a real scenario from Dreamer

to the evolved neural networks. The flowchart for training and testing is shown in Figure 10. All

experimental parameters are described in 6.2.
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Figure 9: Sample input data for training neural networks. (a) The RGB pixel data of the scene

from the camera within GraspIt!. (b) The 20 × 15 depth data array supplied to the neural network

as input. The depth data is normalized to a floating point number between [0, 1]. The purpose is

that the original raw pixel data is high-dimensional, so a down-scaled data of the same data can be

easily performed in practice.

6.2 Experimental Parameters of Neural Network

In the experiments, the population size was set to 150−200. Different values of the three parameters

α, β and γ of the fitness function (Eq. 16) were tried and tuned to guide evolution. The number

of generations was 100. The coefficients for measuring compatibility for NEAT were c1 = 1.0,

c2 = 2.0, c3 = 2.0. The survival threshold was set to 0.2− 0.3. The drop-off age was set to 10 − 20.

Recurrent connections were disabled because the task is not dependent on history. The probability

of adding nodes and adding new connections to evolved ANNs were set to 0.2 and 0.3, respectively.

Detailed description of these parameters are given in [51].

6.3 Testing Combinations of Fitness Function Components

Training experiments are performed with four target objects plus a dining table to vary the scene

distribution as shown in Figure 11(a), (b). The goal is to gauge which combination of fitness

function components (from Section 5.2.3) will yield the best performance. Figure 11(c) shows the

five results of the fitness function for four scenarios through iterative training experiments.

Because grasp quality ( f1) is the most important performance metric, each case must contain

f1, so the combination of total cases is C3
3
+C3

2
+C3

1
= 7. The following notation is used to refer to

the section: { Fiti | i ∈ {12, 13, 14, 123, 124, 134, 1234} }.

As an example, Fit134 denotes the case with f1, f3 and f4. The simulation environment performs

a series of simulated grasps on one object on a dinner table for grasping evaluation. Figures 12(a)-

(d) show training results for grasping a single cylinder, cube, sphere, and mug, respectively. For

the cylinder, cube, and mug, the maximum grasping quality f1 is achieved through Fit1234 (i.e. each

fitness component is helpful). However, Figure 12(c) shows that the maximum grasping quality

f1 for a sphere is achieved through Fit134, which suggests that f2 does not contribute to better

performance. Because the sphere is relatively small, placed in-between other objects it is sometimes

blocked by other objects. Because its color is similar to the table, it is hard to distinguish it from

the other objects. As a result, NEAT will be mislead by the simple f2 distance metric.

6.4 Bounding Box Experiments

In this section, the approach is applied to a human-supplied bounding box to focus the robot’s

visual processing on the target object, thereby reducing its dimensionality.

In the second set of experiments, four different training scenarios (without a bounding box)

are performed with different target objects, similar to Section 6.3. Figure 13(a)-(d) show training

results for networks trained to grasp a single cylinder, a single cube, a single sphere and a single
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Figure 10: The flowchart of the training process

and the testing process for the experiments. In

the training process, a set of objects are grouped

into N separate classes, and then each class pro-

duces a neural network through NEAT; in the

testing process, the best neural networks can be

applied in simulations and tested in a real sce-

nario. The grasping accuracy can be further im-

proved by preprocessing the data before con-

ducting training/testing experiments. These pro-

cesses can examine if the proposed approach can

work.

Figure 11: Experimental scenarios. (a) A sin-

gle cylinder, cube, sphere, mug, and cuboid with

a dining table and the Mekahand. (b) Focus on

a single target object each time. (c) The five re-

sults for each object during training. The conclu-

sion is that the fitness function can guide Meka-

hand to grasp four different objects.
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(a). Cylinder grasping
with seven combinations
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(b). Cube grasping
with seven combinations
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(c). Sphere grasping
with seven combinations
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(d). Mug grasping

with seven combinations

 

 

F it 12

F it 13

F it 14

F it 123

F it 124

F it 134

F it 1234

Figure 12: Training performance with combinations of fitness components. The training scenario

includes a cylinder, a cube, a sphere, and a mug, on a dinner table, but the depth sensor focuses only

on a single object for each experiment. The x axis represents the number of generations while the y

axis represents the normalized grasping quality. These figures show how grasping quality increases

over the course of evolution. To evaluate whether each of the four fitness component helps improve

performance, (a)-(d) compare seven combinations of fitness components: (a) shows the results for

grasping the cylinder, (b) for the cube, (c) for the sphere, and (d) for the mug. The conclusion is

that Fit1234 produces the best grasping quality for (a), (b), (d), while Fit134 provides the best one

for (c).
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mug. These figures show how fitness values increase over the course of evolution. Note that larger

fitness value implies better grasping quality; also, to differentiate the contributions of f1, f2, f3 and

f4, each of these terms is normalized.

According to the best combination of the four fitness components from Figure 12(a)-(d), Fig-

ures 13(a), (b), (d) differentiate the contributions of f1, f2, f3, and f4, and Figure 13(c) differentiates

the contributions of f1, f3 and f4. Note that the maximum score f1 can attain is 0.6, the maximum

for both f2 and f3 is 0.1, and the maximum for f4 is 0.2. Because f2 and f3 encourage approaching

objects and avoiding obstacles, and f4 rewards orienting the palm toward objects, that can serve as

secondary objectives. These terms are therefore given lower weights than f1, which measures the

grasping quality itself and is thus the most important performance metric.

Because in practice only the best controller would be used, overall best-case results are pre-

sented here. To start evolution, individuals in the population are initialized with random weights

and a simple topology (i.e. input nodes fully connected to one hidden node, and this hidden node

fully connected to the outputs). Because randomly generated policies generally do not cause the

robot hand to approach the target objects, low fitness scores are expected. In this stage, f1 for all

the networks is low, so the fitness scores of the networks are mainly determined by f2 and f3. These

two terms guide evolution to produce networks that approach the objects without being blocked

by obstacles. The f4 component leads the Mekahand to the right orientation toward the object.

In accordance with this explanation, Figure 13(a) shows that initially f1 is smaller than f2 and

f3. However, after 25 generations, f1 becomes dominant. Then, after 90 generations, f1 reaches

its maximum value of 0.5, which means the Mekahand can grasp the object more accurately with

proper position and orientation. Similar results appear in the other three experiments (Figure 13(b)-

(d)). In Figure 13(b), after approximately 15 generations, f1 sharply increases, and the total fitness

value steadily increases to reach a maximum value of 0.7. In Figure 13(c), only f1, f3, f4 are con-

sidered, but the fitness value remains around 0.7. In Figure 13(d), the fitness value only achieves

0.6. The reason is that it is difficult for the neural network to distinguish the mug object from the

other objects. Comparing the four figures, it can be seen that the fitness scores of neural networks

trained on the simple objects (Figure 13(a)-(c)) were larger than those trained on the more compli-

cated one (Figure 13(d)). However, even in the more complicated scenario the networks all learned

to approach the target objects and grasp them.

The third set of experiments tests evolution in the same four scenarios, but adds a visual bound-

ing box that can focus the ANN on the most relevant information. The first experiment is shown

in Figure 13(e). The fitness value gradually increases, and after 5 generations, the values are better

than Figure 13(a), achieving a value of 0.9 after 45 generations. Similar results are seen in Fig-

ure 13(f)-(h). In Figure 13(f), the maximum fitness value is 0.92. Figure 13(h) illustrates that with a

bounding box, more complex object configurations can still produce consistent results around 0.8.

This experiments suggest that the more complex the training scenario (i.e. the number of differ-

ent kinds of objects in the scene), the more difficult it is to train the neural network. Furthermore,

if a facet is obscured or the depth array values of an object are similar to the background, then even

if the object to be grasped is simple, the training results are poor. However, applying the bounding

box significantly improves the results in such cases.

6.5 Validating the Generality of Evolved Neural Networks

The training methodology results in neural networks evolved to grasp objects in simulation. To

validate such networks, they were further tested in a variety of novel situations through GraspIt!

(i.e. situating for which object was not explicitly trained). Most objects in the scenes were not
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(b). Cube grasping
without a bounding box
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(c). Sphere grasping
without a bounding box
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(d). Mug grasping
without a bounding box
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(a). Cylinder grasping
without a bounding box
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(f). Cube grasping
with a bounding box
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(g). Sphere grasping
with a bounding box
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Figure 13: Training performance with and without a bounding box. How fitness values increase

over generations is shown for each experiment. Plots (a) and (e) show a scenario with a single

cylinder on a table, (b) and (f) a single cube on a table, (c) and (g) a single sphere on a table, (d)

and (h) a single mug on a table. To evaluate whether a bounding box benefits performance, (a)-(d)

have no bounding box, while (e)-(h) include the bounding box technique. The total fitness value is

shown, as are the contributions from the three or four underlying normalized terms. The conclusion

is that the bounding box increases performance, and all experiments eventually evolve ANNs able

to grasp the objects in simulation.
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Figure 14: Testing different sizes and textures

of objects across novel locations and orientation.

Shown in the figure are a cylinder, a cuboid, a

cube, a sphere, a mug and a plated mug. Note

that the letters labeling each object correspond

to similar labels in Table 1.

# Objects Class

without a

Bounding

Box

with a

Bounding

Box

(a) cylinder NA 52% 89%

(b) cuboid NA 65% 81%

(c) cube (6 cm3) NB 69% 76%

(d) cube (5 cm3) NB 73% 82%

(e) sphere (radius 4 cm) NC 71% 88%

(f) sphere (radius 3 cm) NC 68% 80%

(g) mug ND 71% 85%

(h) plated mug ND 62% 74%

Mean/Std
66.38%

(±6.80%)

81.88%

(±5.33%)

Table 1: Generalization results of grasping ob-

jects at novel positions with evolved networks.

The results with a bounding box outperform

the ones without a bounding box, which indi-

cates that a bounding box is an effective way

of increasing grasping performance.

seen at all during evolution or not placed in the same location, and their arrangement is new. The

experiment thus measures how general the evolved solutions are. A successful case is recorded if

the Mekahand can grasp the object; otherwise it is recorded as a failure.

For this generality test, each object was tested 100 times. The grasping procedures were imple-

mented under test conditions randomly placing the different sizes and textures of a cylinder, a cube,

a sphere, and a mug, as shown in Figure 14, at different positions and orientations on the table. The

evolved neural networks in 6.4 were labeled as Cylinder (NA), Cube (NB), Sphere (NC), and Mug

(ND), and based on similar classification of objects, the most appropriate neural network was cho-

sen for testing. The success rate in Table 1 compares the neural networks with the different objects.

These results show that despite its simplicity, the proposed bounding box method still performs

reasonably well in grasping novel objects. However, if the target object is too far from the center

of the image frame, the neural networks often perform unreliably, indicating the training process

may need further refinement to deal with such boundary cases. Table 1 shows the best results from

among all the experiments. Also, in some cases the Mekahand collides with objects while grasping,

because many objects are placed on the table. A potential remedy is to decompose the movement

into more steps to avoid such collisions. One way to do so would be to rely on additional input

from the human supervisor.

6.6 Validating with Dreamer

Beyond simulated results, learned policies were also transferred to the physical world. A physical

(i.e. not simulated) Kinect sensor was applied to capture object depth array information. This

information was provided as input to an evolved neural network to guide Dreamer robot’s grasp.

6.6.1 Kinect Sensor Implementation

To retrieve the Kinect sensor data and feed it into the system, the sample program regview provided

by OpenKinect project1 was modified. This program was enhanced to be run as a server that waits

for the connection from the remote-control PC over the TCP/IP. Besides, it was tweaked to register

1http://openkinect.org
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Figure 15: A screen capture of the remote-control software application for supervising the Dreamer

robot. (a) Color and (b) depth images from the Kinect sensor. (c) The image from the IP camera.

(d) An image snapshot taken when the user clicks on the color image. (e) A dialog for connecting

to Dreamer through a computer network. (f) A dialog for inputting the captured depth array into

an evolved ANN. (g) Use motion planner to obtain a trajectory. (h) A dialog for sending the

orientations and positions from the ANN to Dreamer to control its grasp. The conclusion is that

the grasping experiment can be implemented throught the remote control panel.

the video format as FREENECT DEPTH REGISTERED. The reason is that in the Kinect sensor,

the depth camera and the color camera are two separate sensors, which means their views are

different. Only by doing so, the depth data will be projected to the view of the color camera. In

this video mode, the depth data is in millimeters, and the pixel coordinates can be translated from

(i, j, z) to (x, y, z) as follows:

x = (i − width/2) ∗ (z +minDistance)

∗scaleFactor ∗ (width/height), (17)

y = ( j − height/2) ∗ (z +minDistance) ∗ scaleFactor, (18)

z = z, (19)

where weight and height are the images size. The x, y, z is a right-handed Cartesian system: with

z axis perpendicular to the Kinect image towards the image, x-axis points to the left, and y-axis

points up. Before sending commands to the robot, the coordinates are transformed again to match

Dreamer’s coordinates.

6.6.2 Remote Control Panel

Figure 15 shows a screen capture of the remote-control application for supervising Dreamer. The

remote-control user interface shows the color images and depth images from the Kinect camera;

the images from the IP camera are displayed in the third image panel at the top of the user interface.

To automate the high-level supervision of the grasping experiment, six commands was imple-

mented on the remote control panel: Connect, Test, Output, Touch, Verify, and Debug, as shown

in Figure 15. When the supervisor clicks on the Connect button, the computer connects to the

Kinect sensor to capture depth information. Then, when the Test button is pressed, the depth array

is provided to the evolved neural network as an input. After executing the neural network, its out-

puts are interpreted as coordinates and orientation of the hand for grasping the object. When the

Output button is pressed, the results are sent to Dreamer and the robot is directed to approach the

object. Finally, when the Touch button is pressed, Dreamer will grasp the object using the grasping
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Figure 16: Screen captures from videos (http://www.cs.utexas.edu/˜peggy/rtss2015.html)

demonstrating Dreamer grasping a ball, a bottle, a cube and a cup through an evolved controller.

Note that the small picture with red dots are the snapshots from Kinect sensor panel. The bottom

snapshots labeled with (1)-(3) represent the object grasping process, from the initial, approach to

grasp a bottle. The figures confirm that transferring results from simulation to reality is possible,

and applying the approach generalizes to novel objects.

information provided by the neural network. After Dreamer obtains this information, i.e. the grip

orientation and position, the controller PC computes the distance between the Mekahand and the

object, predicts the hand’s trajectory, and approaches the object. Once the Mekahand is near the

target object, the thumb and the three finger motors are synchronized to perform the grasp. A Verify

button is provided to automate the entire process for convenience; the Debug button serves to aid

in system debugging, providing coding logging information.

6.6.3 Transitioning to Physical Controller

An automated grasping platform was built to demonstrate this process. The networks evolved in

simulation are transferred to this platform to evaluate them in a physical environment. To carry out

an experiment, a human experimenter uses the control panel to choose a target either without or

with a bounding box in the color image from the laptop screen with the Kinect sensor by clicking

on it. After designating the target, a copy of the color image is copied to the target object panel,

and a red dot is added on the image, indicating the position of the click. The depth data at that point

is used to calculate the approximate position of the object to be grasped. This results specifies the

grasping task for the robot to perform. Note that the grasping behavior was not evolved on the

actual robot, but was transferred from simulation.

The video http://www.cs.utexas.edu/∼peggy/rtss2015.html demonstrates grasping of novel ob-

jects from the simulation to the real Dreamer robot. In addition, Figure 16 shows screen captures

taken from a proof-of-concept demonstration of grasping a tennis ball, a bottle, ball, a Rubik’s

cube and a cup. Dreamer can successfully approach and grasp target objects when controlled by an

evolved neural network.

Since these objects were not seen during evolution, the experiment demonstrates two achieve-

ments: (1) learning transfers from simulation to the real world, and (2) it generalizes to grasp

objects. Quantifying how well grasping works needs a metric for the assessment of the quality of a

real grasp, so further work to incorporate real sensor data on the Mekahand (e.g. touch pressure) is

ongoing.
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7 THE REAL-TIME PERFORMANCE MEASUREMENTS

AMONG TASK COMPLETION TIME, TRAINING EFFORT

AND GRASPING QUALITY

This section discusses whether string task completion deadlines can be met by applying imprecise

computation to trade increased speed for decreased accuracy. That is, in some situations a faster

yet less precise grasp may better satisfy the use case. When considering tradeoffs, the design space

of the grasping task has three main dimensions: (1) the training effort, (2) the task completion time,

and (3) the grasp quality [12]. The next sections explore tradeoffs between these dimensions. In 7.1,

we first investigate how increasingly stringent time limits on computation reduce the accuracy of

the robotic hand’s approach trajectory. We then discuss the performance tradeoff between grasp

quality and task completion time. In 7.2, we evaluate the tradeoff between training effort and grasp

quality, and in 7.3, we measure the tradeoff between training effort and task completion time with

the successful grasp.

7.1 Grasp Quality vs. Task Completion Time Tradeoff Evaluation

For the grasping task, trajectories may be denoted by the point-to-point positions and orientations

of the end-effector as long as no collision occurs. This section focuses on the actual interaction

between the Mekahand and its environment assuming that there is no collision.

In a grasping experiment, the initial starting point S ∗ is the current position and orientation of

Dreamer’s end effector. The human supervisor assigns an object to be grasped from the user inter-

face panel; the evolved neural network automatically determines the final destination D∗ and orien-

tation of Mekahand and sends it to Dreamer’s main controller. On command, Dreamer moves along

the designated trajectory to approach and grasp the object, and then returns to the start position S ∗.

The actual trajectory of Dreamer is acquired by recording the position of the end-effector from for-

ward kinematics calculations with joint positions. In controlling the movement of Dreamer’s arm,

we use the proportional-derivative (PD) controller in the Whole Body Control (WBC) algorithm.

The position and orientation data are transmitted with a wireless system from the sensors to the

control computer.

The first set of experiments measures the quality of the grasping trajectories versus various task

completion times. In each experiment, Mekahand moves from S ∗ to D∗ within a specified time

interval of length ranging from 8 seconds down to 0.5 second. Each configuration was measured

five times over different trials to obtain an accurate trajectory error estimation. An ideal trajectory

was designed by a trajectory generation algorithm, and all experiments attempted to follow this

trajectory, subject to different completion time deadlines. Each execution time was separately

conducted five times, and averaged the five trajectories, as shown in Figure 17. In Figure 17, the

highest variance in error are found in the 0.5 second trials, while the lowest variance in error are

found in the 8 second trials. The differences between the ideal and actual trajectories for a one-

way trip were recorded and depicted as boxplots for different time constraints and trials. Each

scenario (execution time) was performed five times, and nine scenarios of experiments with the

various execution times from 0.5 second to 8 seconds were tested. Therefore, forty-five results were

yielded, as depicted in Figure 17 (a)-(i). Figure 17 illustrates that the five trials for each execution

time are comparable in the trajectory distributions. Figure 18 shows the difference between the

ideal and actual trajectory over various task completion times. As expected, the trajectory closest

to the ideal one is the one given the most time (i.e. 8 seconds). Figure 18 shows that in general,
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Figure 17: The results at five trials for nine scenarios with different execution times. The x axis

indicates the trial number; the y axis indicates the normalized trajectory error compared to the

ideal trajectory across the entire trajectory. Figures(a)-(i) show trials with execution times ranging

from 0.5 to 8 seconds, summarizing in total the distribution of trajectory errors for 45 trials. The

conclusion is that trajectory distributions for trials of particular length are similar enough to justify

deriving statistics models.

the shorter the completion time deadline, the higher the trajectory error. It should be noted that the

design goal is to contain the trajectory error so that the grasp action can succeed at the end of the

trajectory.

To predict the probability of a success grasp, we can fit a statistical model to characterize the

tradeoff between average trajectory error and task completion time. First, it is necessary to eval-

uate whether the five experiments are sufficient to represent ground truth. The standard deviation

(STD) (root-mean-squared (RMS)) error for each task completion time respectively range from

0.00231(m) to 0.00009(m) (from 0.15742(m) to 0.01395(m)). Such a low STD indicates that the

results do not vary much, and can therefore serve as a reasonable basis to derive models of RMS

error.

To find a well-fitting regression model, Table 2 shows the results of approximated RMS error

and adjusted R2 of power, Weibull, rational, Gaussian and polynomial distributions. The trajectory

errors are best modeled by a polynomial distribution of order five, as demonstrated by its low-

est RMS errors and highest coefficient of determination. The best fit polynomial model function

fmodel(x) is:

fmodel(x) = −0.000714 ∗ x5 + 0.002011 ∗ x4

+ − 0.02155 ∗ x3 + 0.1088 ∗ x2

+ − 0.26 ∗ x + 0.2635. (20)

Figure 19 shows the RMS errors fit to a linear interpolation and polynomial distributions. This

model can predict the error after 9 seconds that is nearly stable (below 0.02 m) which indicates the

9 results are sufficient to proceed with the following experiment. To investigate how the reduction

of task completion time may jeopardize sufficient accuracy for effecting a grasp, 6 seconds was

chosen as the time-constraint for the following experiment.

25



0 10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

The Percentage of the Completion Trajectory with Different Execution Time(%)

T
ra

je
c
to

ry
 E

rr
o

rN
o

rm
(m

)

8 secs

7 secs

6 secs

5 secs

4 secs

3 secs

2 secs

1 sec

0.5 sec

Ideal
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while the lowest error is found in the 8 seconds

trials. The trajectory error increases as the al-
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Figure 19: Fitting the RMS data with linear in-

terpolant and 5-degree polynomials. This chart

shows that inaccuracy is maximal when execu-

tion time is shortest (0.5 seconds), but rapidly

improves as the budget increases to 3 seconds.

Error decreases slightly between 3 and 6 sec-

onds, and plateaus thereafter. The derivation line

shows that the results approaches stability after

6 seconds, even the experiments after 9 seconds

still can predict the error may be below 0.02 m.

The second set of experiments focuses on trajectory accuracy and latency delay within a given

time constraint, i.e. six seconds. The controller operation is the most time-consuming part of the

practice, because many DOFs are considered in each step. In contrast, sending data and NEAT

operation are relatively fast, only taking around 1-2 seconds each. Therefore, a round-trip is given

fourteen seconds. The latency delays are 100ms, 50ms, and 10ms. The longer the latency delay,

the worse the performance. In order to complete the task within the limited time frame, it is hard to

control Dreamer very well. Figures 20(a)-(i) depict the relationship between the position and time

with 100ms, 50ms, and 10ms; Figures 20(j)-(l) display the relationship between error and time.

Note that the error was computed as the actual minus the ideal desired trajectory. Figure 20, as

expected, shows that the lowest latency delay (10ms) performs best.

7.2 Training Effort vs. Grasp Quality Tradeoff Evaluation

We first describe the experimental setup and then present a set of grasping results that relate the

quality of grasping to the training effort (defined to be the time spent on searching for the best

Mekahand configuration for effecting the grasp by the NEAT algorithm). To speed up the training

computation, we apply a parallelization strategy and run the NEAT algorithm with four multi-core

computers.

We evaluate the effectiveness of our learning approach by conducting the two following sets

of experiments. For the first experiment, the computational cost incurred by the sequential im-

plementation is described in 5.2.4. The parallel strategy which dispatches different trials to all

available computer cores is implemented to increase computational efficiency. In particular, work

is dispatched over the network to multiple GraspIt! processes (thirty-six threads) which run on four

computers, whose specifications are detailed in Table 3.

The first set of simulated experiments involve scenarios with different target objects, as ex-

plained in Section 6.3. Specifically, Figure 21(a)-(d) show the training results for networks trained
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Figure 20: (a)(d)(g), (b)(e)(h), and (c)(f)(i) display the relationship between trajectory and latency

delay (100ms, 50ms, and 10ms); (a)-(c), (d)-(f), and (g)-(i) show x, y, and z positions in 3D space.

Figures(j)-(l) depict the relationship between the error and latency delay. The x axis represents the

given time; the y axis in (a)-(i) denotes the actual and ideal positions, and in (j)-(l) denotes the error.

Here, the error was calculated as the actual minus the ideal trajectory. As expected, the variation

with 10ms was the best.

Fitting model RMS errors adjusted R2

Power (2 terms) 0.006670 0.9812

Weibull 0.006179 0.9838

Rational (degree 5) 0.003164 0.9958

Gaussian (2 terms) 0.002755 0.9968

Polynomial (degree 5) 0.002308 0.9977

Table 2: A comparison is shown of five well-

fitting statistical models of how RMS error

varies with execution time budgets. The best

fitting model is a polynomial of degree five,

which is used to predict the expected RMS er-

ror at 9 seconds.

CPU GPU Memory

(NVIDIA GeForce) (DDR3)

Intel Core i7 @ 3.6 GHz GTX 760 16GB @ 1333 MHz

4 Core / 8 Threads

Intel Core i7@ 3.0 GHz GTX 980 32GB @ 2133 MHz

8 Core / 16 Threads

Intel Xeon@ 2.67 GHz GTX 285 8GB @ 1066 MHz

4 Core / 8 Threads

Intel Core i7@ 2.8 GHz GT 520M 8GB @ 1333 MHz

2 Core / 4 Threads

Table 3: The experimental machine specifica-

tions. All of the CPU cores among the four

computers can be fully employed by using the

multi-threaded implementation, which signifi-

cantly speeds up the evolution process.
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Figure 21: Training and testing performance with the different time spent searching. How fitness

values increase over time is shown for each experiment. Plots (a) and (e) show a scenario with a

single cylinder on a table, (b) and (f) a single cube on a table, (c) and (g) a single sphere on a table,

(d) and (h) a single mug on a table. To evaluate whether Algorithm 1 benefits performance, (a)-(d)

are training results, while (e)-(h) are testing outcomes. Fitness generally improves as training pro-

gresses. The conclusion is that although accuracy generally benefits from increased time, increased

time may sometimes also there is risk overfitting to the training cases, as shown by the intermediate

trough in test performance in (h).

to grasp a single cylinder, a single cube, a single sphere, and a single mug. Because the goal is to

use only the best controller for the actual grasp, only overall best-case results are presented here.

For each 10 minutes, the best-case value was recorded, and we repeated the same experiments three

times, and the average values (the dots) and the fitting models are shown in Figure 21(a)-(d). These

figures show how fitness values increase over evolutionary search. The underlying assumption is

that larger fitness values implies better quality grasping.

To start the neuroevolution simulation, individuals in the population are initialized with random

weights and a simple topology (i.e., in our case input nodes fully connected to four hidden nodes

that are fully connected to the outputs), as shown in Figure 6. Because randomly generated policies

generally do not cause the robot hand to approach the target objects, low fitness scores are expected.

As time passes, Algorithm 1 leads the Mekahand to the right position/orientation toward the object.

Accordingly, Figure 21(a), a cylinder, shows that initially the fitness value is low, and then after

80,000 secs, it reaches 0.8. Similar results appear in the other three experiments in Figure 21(b)-

(d) (the cube, the sphere, and the mug). However, in Figure 21(b), (d), (the cube and the mug)

the ANNs took 170,000 secs to get 0.8. In Figure 21(c), the sphere,the ANNs only used 50,000

secs to achieve 0.8. Two interesting results are noteworthy here. First, in the case of the sphere

(Figure 21(c)), fitness dropped to 0.7 after 60,000 secs of training; one explanation is that some-

times overfitting occurs, which reduces accuracy. Second, in the case of the mug (Figure 21(d)),

the fitness value plateaus after 100,000 secs. Such plateaus in evolutionary search often reflect a

local optimum; the mug is likely difficult to distinguish from the other objects. Comparing the four

figures, it can be seen that the neural networks trained on the ‘simple’ objects (Figure 21(a), (c),

the cylinder and the sphere) were much easier trained than networks trained on objects of more
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complicated geometry (Figure 21(b), (d), the cube and the mug). Figure 22 shows an example of

an ANN evolved for 100,000 secs to grasp the cylinder.

The second set of experiments applies the NEAT algorithm on the same four target objects

but in novel situations unseen in training, as discussed in Section 6.5. Here, the one-hundred

best-trained neural networks that result from different search times were picked and tested with

the same input. Each ANN was tested 200 times. The success rates shown in Figures 21(e)-(h)

compare generalization of neural networks versus time spent in training. The first experiment in

Figure 21(e), the cylinder, shows that as the search time increases, the success rate improves and

after 45,000 secs, the success rate reaches and stabilizes at around 80%. Similar results are seen

in Figure 21(f), (g) (the cube and the sphere). In Figure 21(f), (g), the maximum success rate is

88%. However, in Figure 21(g), the sphere, the success rate continues to oscillate after 40,000, even

after the training fitness value has stabilized around 0.8. This may reflect the difficulty in finding

a robust and general grasp for an entirely-curved surface; maybe more training time is required.

Figure 21(h), the mug, illustrates that sometimes grasps for complex objects can be consistent,

although there is some oscillation in test performance later in evolution.

7.3 Grasp Quality vs. Training Effort vs. Task Completion Time Tradeoff

Evaluation

This set of experiments measures the success rate of grasps across a two-dimensional surface of

tradeoffs, examining how success varies across both training effort and task completion time. The

idea is to explore what minimum amount of training effort and task completion time is necessary

to successfully grasp an object. The grasping procedures were implemented under the designed

motion planner, whose sequence consists of five states and state transitions:(1) starting from initial

to grasp coordinates, (2) grasp, (3) go to dropoff location, (4) place, and (5) go back to initial

state. The different training stage of the evolved neural network were used to generate the grasping

position and orientation of the Mekahand at step (1). A grasp was rated as successful if an object

was grasped, lifted, and placed to another location from the initial position.

Figure 23 gives the complete grasping success rate with different task completion times and

different training efforts. Each object was tested 10 times per task completion time and per training

effort. For the implementation used, the grasping task completion time was measured ranging from

1 second to 10 seconds (the interval is 1 second) and the training effort was chosen ranging from

0 min to 1, 200 mins (the interval is 120 mins). Therefore, the total number of object tests is

10 × 10 × 10. Overall, these results indicate that when accumulated training effort is higher than

around 600 mins, we could achieve 70% successful grasps rate. Interestingly, the task completion

time has only a negligible impact on the success rate; even if only one second is allocated to task

completion, the grasp quality remains nearly the same, indicating the controller has a stable design.

The best match is depicted in Figure 23. If the success rate is set 70%, best performance results

when the ANN is trained for 600 minutes, and the task completion time is 8 seconds. Figure 23

was meant to be used as a reference to indicate the expected success rate when pre-conditions are

given, which is derived from the experiments, allowing decision-makers to make optimal tradeoffs

between the grasping quality, the task completion time and the training effort in robotic control.
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Figure 22: An example of a grasping network

evolved by NEAT after 100, 000 secs. The 304

Input nodes (20× 15 pixels, plus a set of coordi-

nate inputs, and object scale inputs) are located

on the left, while the 7 output nodes are located

at the right side. The light gray nodes in between

are the evolved hidden nodes. The conclusion is

that as time goes by, NEAT searches through in-

creasingly complex networks to find one able to

match the complexity of the grasping problem.

Figure 23: The grasp success rate vs. task com-

pletion time vs. training time. The x axis rep-

resents the task completion time, which ranges

from 1 to 10 seconds, the y axis indicates the

time spent searching ranging from 0 to 1, 000

mins, and the z axis represents the resulting

grasp success rate. In general, the results indi-

cate that a 70% successful grasp rate could be

achieved after around 600 minutes of training ef-

fort. Moreover, it helps highlight what task com-

pletion time is sufficient to successfully grasp an

object given enough training effort.

8 LESSONS LEARNED AND DIRECTIONS FOR FUTURE

WORK

There are several interesting observations we may infer from this tradeoff study. In the introduction,

we asked whether the quality of grasping may exhibit a steep improvement after some critical

number of training cases. As we can see from the results in Figure 21, the answer depends on

the shape of the object being grasped. From the results, the fitness function does not seem to be

a very reliable predictor of the success of a grasp, especially when training time is limited. A

possible explanation of the results is that for objects of shapes that generate a search space with

sharp local maxima, the NEAT algorithm does not perform well until the neural network evolved

assumes a topology that is compatible with the geometry of the search space, i.e., the neural network

implements the correct function for some choice of the edge weights. From that point onward, the

search should converge quickly to the correct weight configuration. If this interpretation has merit,

then it would make sense to focus on searching for the right topology rather than assigning the right

weights in the early phase of learning. A good heuristic for selecting the right network topology for

the robotic task of interest would be especially useful, perhaps by employing ideas from simulated

annealing.

A more practical result of this paper is the observation that the imprecise computation frame-

work is a good match for robotic skill acquisition. Inasmuch as the goal is to grasp an object well

enough so that the object cannot be dropped easily by minor perturbation on the controller, it is im-

portant to delineate the boundary between a good enough grasp and one that may drop the grasped

object. The tradeoff results are useful for this delineation. For future work, it is useful to extend the

tradeoff analysis to more complex robotic tasks than grasping.

30



9 CONCLUSION

Future robotic systems will need to function in unknown and unstructured environments, under

demanding timing constraints. This paper realizes a semi-autonomous remote robotic system that

integrates body-compliant control, neuroevolution and real-time constraints. An important contri-

bution of the paper is a tradeoff study in the design space of a representative robotic task, specif-

ically, grasping of unknown objects in unstructured environments through imprecise computation.

Such a design space typically includes three key dimensions: (1) the amount of training effort to

teach the robot to perform the task, (2) the time available to complete the task once a command is

given to perform it, and (3) the quality of the results of completing the task. The tradeoff results

in this study indicate that training effort is a critical factor for attaining high-quality grasping. The

trained model, after training, can then be reused without further modification. The work here can

be viewed as offering a realistic basis for the scheduling work done by the real-time systems com-

munity in the past two decades. Importantly, beyond simulated tests, the results were also validated

with a real robot (Dreamer) and contribute to the development of a systematic approach for design-

ing robotic systems that can function in the challenging environments of the future, such as flexible

manufacturing factories.
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