Top-down parsing

Top-down parsing

» Top-down parsing expands a parse tree
from the start symbol to the leaves
— Always expand the leftmost non-terminal

int * int + int

Top-down parsing |l

» Top-down parsing expands a parse tree
from the start symbol to the leaves
— Always expand the leftmost non-terminal

N * The leaves at any point
E

form a string BAy

- B contains only terminals
T - The input string is pbs

- The prefix p matches

- The next tokenis b

int * int + int

Top-down parsing |l

» Top-down parsing expands a parse tree
from the start symbol to the leaves

— Always expand the leftmost non-terminal
E

N * The leaves at any point
E

T N form a string BAy (A=T, y=¢)
- B contains only terminals
int T -y contains any symbols
' - The input string is pbs (b=int)
int - So Ay must derive bd

int * int + int

Top-down parsing IV

» Top-down parsing expands a parse tree
from the start symbol to the leaves
- Alwgys expand the leftmost non-terminal

/v‘ + So choose production for T that
E can eventually derive something
/h T that starts with int

T T

int int

int * int + int

LL(k) parsing

E
Current sentential form: int* T +E
Look-ahead (1): int
Look-ahead (2): int +
Look-ahead (3): int +int
T

LL(1) parser: determines next production

in leftmost derivation, looking ahead by one
terminal

Key question: How do we choose the next
production systematically?

int * int + int

Overview

We will focus on LL(1) parsers.

— Generalization: LL(k) parsers

LL(1) parsers require three sets called

— nullable

— FIRST

— FOLLOW
Given these sets, you can write down a recursive-descent parser
Simplification

— nullable and FOLLOW are only required if the grammar has ¢ productions
Game plan

— start with grammars without ¢ productions

— then add ¢ productions

— end with an iterative, stack-based implementation of top-down parsing

Example 1

Restriction on grammar:
— for each non-terminal
« productions begin with terminals
« no two productions begin with same terminal
— sono & productions
Algorithm for parsing:
— one procedure for each non-terminal
— In each procedure, peek at the next token to determine which rule to apply
Example:
S > id = E [if E then S else S |while E do S

procedure S
case peekAtToken() of
id : match(id); match(:=); E; break;
if: match(if); E; match(then); S; match(else); S; break;
while: match (while); E; match(do); S; break;
otherwise error

Can we describe this more formally to set the stage for more complex grammars?

LL(1) Parsing Table FIRST sets

« FIRST: non-terminal - subset of terminals

T id = if then else do while — beFIRST(N)if N > b3
S |id=E if Ethen Selse S while E do S + Construction: .
— for each non-terminal A

« foreach rule A - ty, add constraint: t is in FIRST(A)
— find smallest sets that satisfy all constraints

S > id:=E|if Ethen S else S |while Edo S + For our example grammar,
S > id = E [if E then S else S |while E do S

set of terminals = {id, :=, if, then, else, while, do}
Constraints:

« Consider the T[S, if] entry Zidisin FIRST(S)
— Means “When current non-terminal is S and next input token is “if’, use - ifisin FIRST(S)
production S - if E then S else S” — whileis in FIRST(S)))
. i X - « There are many sets that satisfy these constraints
» Given this table, we can construct the recursive code ftrivially. (eg) {id.if,while}, {idif,while,:=}, {idif while,do,:=},....
: : + We want the smallest set that satisfies all constraints
. ?
How do we generate parsing tables automatically? — FIRST(S) = {id, fwhile}

Extension: it is convenient to extend FIRST to any string y:
— beFIRST(y)ify >+ bs

Constructing Parsing Tables Example 2

* Some productions may begin with non-terminal

» Construct a parsing table T for CFG G - Example:
» For each production A — o in G do: S > XY|YX
— For each terminal b e First(a) do é?) EZ
* T[A,b]=A> a
+ Conflict: two or more productions in one table Itis clear that we can parse S as follows:
entry
— Grammar is not LL(1) prc::(;esiu;:kAtToken() of
— We may or may not be able to rewrite grammar to be aX:Y
LL(1) b:Y; X

otherwise error

FIRST sets

» Construction: for each non-terminal A
« for each rule A > ty, tisin FIRST(A)
« for each rule A - By, FIRST(B) is a subset of FIRST(A)
» For our example, rules give
— FIRST(X) is a subset of FIRST(S)
— FIRST(Y) is a subset of FIRST(S)
— ais in FIRST(X)
- bis in FIRST(Y)
* If we solve these constraints, we get
- FIRST(X) = {a}
— FIRST(Y) = {b}
- FIRST(S) = {a,b}

Constructing Parsing Tables

» Same as before T a b
» For each production
A ain G do: S| XY | oYX
— For each terminal X ab
t e First(a) do
CTA=AS> a Y ba

What if a grammar is not LL(1)?

« Table conflicts:
— two or more productions in some T[A,t]
* Example:
S>ablac
T[S,a] contains both productions so grammar is not LL(1)
* Some non-LL(1) grammars can be rewritten to be LL(1)
« Example can be left-factored
S>a¥s
S'>blc
= When writing recursive parser by hand, you can hack code to avoid
left-factoring
procedure S
match(a);
case input_roken of
b: match(b);
c: match(c);
otherwise error

Left-recursion

Grammar is left-recursive if for some non-terminal A
A>* Ay
Example: lists
T>L;
L>id|L,id
Grammars can be rewritten to eliminate left-recursion
T->idR
R->;|,idR
Hack to avoid doing this in code
procedure L
match(id);
while (input_token ==,) {
match(,); match(id);
}

¢ productions

Non-terminal N is nullable if N >+ ¢
Example:
S > AB$
A>ale
B->b
When should you use the A = ¢ production?
One solution:
— Ignore ¢ productions and compute FIRST
— Table[Aa] = A>a
— all other entries for A: A > ¢
This is bad practice
— errors should be caught as soon as possible
— what if next input token was $?
Solution:
— if we use A > ¢ production to derive a legal string, next token in input must be b
— if next token is b, use A > ¢ production; otherwise report error
How do we describe this formally?

FOLLOW sets

FOLLOW: Non-terminal - subset of terminals
b ¢ FOLLOW(A)if S >* ...Ab...
To compute FOLLOW(A), we must look at RHS of
productions that contain A
Example:
S > ABS
A>als
B->b
FOLLOW(B) = {$}
FOLLOW(A) = FIRST(B)
But ¢ rules change FIRST computation as well!
— FIRST(S) needs to take into account the fact that A is nullable
How do we get all this straight?

Pobd -~

Game plan

Compute set of nullable non-terminals
Use nullable set to compute FIRST
Use FIRST to compute FOLLOW

Use FIRST and FOLLOW sets to
populate LL(1) parsing table

Computing Nullable

Set up constraints for nullable set of non-terminals
as follows:
— nullable is a subset of non-terminals
-A>c¢

Ais in nullable
-A-> .t

no constraint
- A>BC.M

if B,C,...,M are in nullable, then A is in nullable
Find least set of non-terminals that satisfy all
constraints

Example

Z—d no constraint

Y —e nullable contains Y

X—=Y if nullable contains Y, nullable contains X
Z—-XYZ if nullable contains X,Y,Z, nullable contains Z
Y—-c no constraint

X—a no constraint

So constraints are

nullable contains Y

if nullable contains Y, nullable contains X

if nullable contains X,Y,Z, nullable contains Z

Solution: nullable = {X,Y}

Computing First Sets

Definition First(X) ={b | X - ba}
1. First(b) ={ b } for b any terminal symbol

2. Forall productions X = A; ... A,
+ First(A,) is a subset of First(X)
. First(A,) is a subset of First(X) if A;is nullable

« First(A,) is a subset of First(X) if A,...A, are nullable
Note: X > ¢ does not generate any constraint

3. Solve

Example

Z—d {d} is a subset of FIRST(Z)

Y —¢ no constraint

X—Y FIRST(Y) is a subset of FIRST(X)

Z->XYZ FIRST(X) is a subset of FIRST(Z)
FIRST(Y) is a subset of FIRST(Z)
FIRST(Z) is a subset of FIRST(Z)

Y—-c {c} is a subset of FIRST(Y)

X—a {a} is a subset of FIRST(X)

Solution:

FIRST(X) = {a,c}
FIRST(Y) = {c}
FIRST(Z) = {a,c.d}

Computing Follow Sets

Definition Follow(X)={b|S >'BXbw}

1. Forall productions Y — ... XA, ... A
First(A,) is a subset of Follow(X)
First(A,) is a subset of Follow(X) if A, is nullable

n

First(A,) is a subset of Follow(X) if A,,..,A;are nullable
Follow(Y) is a subset of Follow(X) if A;,..,A, are nullable

2. Solve.

Computing nullable,FIRST,FOLLOW
Example
Z—d no constraint for each symbol X
Y b no constraint FIRSTIX] = [}, FOLLOWIX] = [}, nullable[X] := false
XY FOLLOW(X) is a subset of FOLLOW/(Y) roree
Z->XYZ FIRST(Y) is a subset of FOLLOW(X) f F’I;;T}f;:: {;I symbol t
FIRST(Z) is a subset of FOLLOW(X)
FIRST(Z) is a subset of FOLLOW(Y) repeat
Y e no constraint for each PrUdu:hUﬂX + Y1¥2 .. YK,
X-—>a no constraint if all i are m.ulable then
nullable[X] = true
If ¥1..¥i-1 are nullable then
Solution: FIRST[X] := FIRST[X] U FIRST[YI]
FOLLOW(X) = {a,c,d} if Yi+1. ¥k are all nullable then
FOLLOW(Y) = {avcd} FOLLOW(YI] := FOLLOW[Y] U FOLLOW[X]
FOLLOW(Z) = {} eLLon ?ﬁ:agatﬁac?\:;[&'ﬁe 0 FIRST[Y])
untll FIRST, FOLLOW, nullable do not change
LL(1) Parsing Table Example
Constructing Parsing Table E L Tx X > +E s
T—>(E)|intY Yo>*T|e
int * + () $
* For each production A — a in G do: T| intY (E)
— For each terminal b € First(a) do E TX TX
*TIA, b] = a X *E e e
—If Ais nullable, for each b e Follow(A) do Y o7 £ € €
*T[A,b]=¢ . A
Follow(E) ={), $} First(T) = {int, (}
Follow(X)= {$,)} First(E)= {int, (}
Follow(Y)= {+,) , $} First(X)= {+}
Foll TY={+), First(Y)= {*}
ollow(T)= {+.).. $} X and Y are nullable

Notes on LL(1) Parsing Tables

« If any entry is multiply defined then G is
not LL(1). This happens
— If G is ambiguous
—If G is left recursive
— If G is not left-factored
— And in other cases as well

* Most programming language grammars
are not LL(1)

» There are tools that build LL(1) tables

Stack-based parser

* We can read off the recursive parser from
the parsing table.
* We can also use a stack-based iterative
parser that is driven by the parsing table.

* Advantage:

— smaller space requirements

— usually faster

LL(1) Parsing Algorithm

initialize stack = <S,$>
repeat
case stack of

<X, rest> [if TIX,next()] ==T 2> Y,..Y,;

stack « <Y,... Y, rest>;
else: error ();
<t, rest> : scan (t); stack « <rest>;
until stack == <>

LL(1) Parsing Example

Stack Input Action
ES$ int*int$ TX
TXS$ int*int$ intY
intY X$ int*int$ terminal
YX$ *int$ *T
*TX$ *int$ terminal
TXS$ int$ intY
intY X$ int$ terminal
YX$ $ €

X$ $ €

$ $ ACCEPT

Another picture of LL(1) parsers

« To transition smoothly to bottom-
up LR parsers, it is convenient to P>S$ S>(S) S->a
think about LL(1) parsers as
follows:

L S $
~ One FSA for each production in ‘—.—“.
grammar °
— FSA symbols are both terminals S)
and non-terminals O_O_O

— When FSA1 needs to recognize a (
non-terminal, it “invokes” the
appropriate FSA, saving its own
state on stack a Q

— When that FSA is done, state for
FSA1 is popped from stack and it Input string
continues

« So at any point in parsing, there
may be activated multiple FSA’s,
although only one will be
executing

. | Stack

