
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 24: Control Flow Graphs
24 Mar 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Optimizations
• Code transformations to improve program

– Mainly: improve execution time
– Also: reduce program size

• Can be done at high level or low level
– E.g., constant folding

• Optimizations must be safe
– Execution of transformed code must yield same

results as the original code for all possible executions

CS 412/413 Spring 2008 Introduction to Compilers 3

Optimization Safety
• Safety of code transformations usually requires certain

information that may not be explicit in the code
• Example: dead code elimination

(1) x = y + 1;
(2) y = 2 * z;
(3) x = y + z;
(4) z = 1;
(5) z = x;

• What statements are dead and can be removed?

CS 412/413 Spring 2008 Introduction to Compilers 4

Optimization Safety
• Safety of code transformations usually requires certain

information which may not explicit in the code
• Example: dead code elimination

(1) x = y + 1;
(2) y = 2 * z;
(3) x = y + z;
(4) z = 1;
(5) z = x;

• Need to know whether values assigned to x at (1) is
never used later (i.e., x is dead at statement (1))
– Obvious for this simple example (with no control flow)
– Not obvious for complex flow of control

CS 412/413 Spring 2008 Introduction to Compilers 5

Dead Variable Example
• Add control flow to example:

x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;
z = x;

• Is ‘x = y+1’ dead code? Is ‘z = 1’ dead code?

CS 412/413 Spring 2008 Introduction to Compilers 6

Dead Variable Example
• Add control flow to example:

x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;
z = x;

• Statement x = y+1 is not dead code!
• On some executions, value is used later

CS 412/413 Spring 2008 Introduction to Compilers 7

Dead Variable Example
• Add more control flow:

while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

• Is ‘x = y+1’ dead code? Is ‘z = 1’ dead code?

CS 412/413 Spring 2008 Introduction to Compilers 8

Dead Variable Example
• Add more control flow:

while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

• Statement ‘x = y+1’ not dead (as before)
• Statement ‘z = 1’ not dead either!
• On some executions, value from ‘z=1’ is used later

CS 412/413 Spring 2008 Introduction to Compilers 9

Low-level Code
• Harder to eliminate dead code in low-level code:

label L1
fjump c L2
x = y + 1;
y = 2 * z;
fjump d L3
x = y+z;
label L3
z = 1;
jump L1
label L2
z = x;

Are these
statements

dead?

CS 412/413 Spring 2008 Introduction to Compilers 10

Low-level Code
• Harder to eliminate dead code in low-level code:

label L1
fjump c L2
x = y + 1;
y = 2 * z;
fjump d L3
x = y+z;
label L3
z = 1;
jump L1
label L2
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 11

Optimizations and Control Flow
• Application of optimizations requires information

– Dead code elimination: need to know if variables are
dead when assigned values

• Required information:
– Not explicit in the program
– Must compute it statically (at compile-time)
– Must characterize all dynamic (run-time) executions

• Control flow makes it hard to extract information
– Branches and loops in the program
– Different executions = different branches taken,

different number of loop iterations executed

CS 412/413 Spring 2008 Introduction to Compilers 12

Control Flow Graphs
• Control Flow Graph (CFG) = graph representation

of computation and control flow in the program
– framework for static analysis of program control-flow

• Nodes are basic blocks = straight-line, single-
entry code, no branching except at end of
sequence

• Edges represent possible flow of control from the
end of one block to the beginning of the other
– There may be multiple incoming/outgoing edges for

each block

CS 412/413 Spring 2008 Introduction to Compilers 13

CFG Example

x = z-2 ;
y = 2*z;
if (c) {

x = x+1;
y = y+1;

}
else {

x = x-1;
y = y-1;

}
z = x+y;

Control Flow Graph
Program

x = z-2;
y = 2*z;

if (c)

x = x+1;
y = y+1;

x = x-1;
y = y-1;

z = x+y;

T F

B1

B2

B4

B3

CS 412/413 Spring 2008 Introduction to Compilers 14

Basic Blocks
• Basic block = sequence of consecutive

statements such that:
– Control enters only at beginning of sequence
– Control leaves only at end of sequence

• No branching in or out in the middle of basic blocks

a = a+1;
b = c*a;
switch(b)

incoming control

outgoing control

CS 412/413 Spring 2008 Introduction to Compilers 15

Computation and Control Flow

• Basic Blocks =
Nodes in the graph =
computation in the
program

• Edges in the graph =
control flow in the
program

Control Flow Graph

x = z-2;
y = 2*z;

if (c)

x = x+1;
y = y+1;

x = x-1;
y = y-1;

z = x+y;

T F

B1

B2

B4

B3

CS 412/413 Spring 2008 Introduction to Compilers 16

Multiple Program Executions

• CFG models all
program executions

• Possible execution =
path in the graph

• Multiple paths =
multiple possible
program executions

Control Flow Graph

x = z-2;
y = 2*z;

if (c)

x = x+1;
y = y+1;

x = x-1;
y = y-1;

z = x+y;

T F

B1

B2

B4

B3

CS 412/413 Spring 2008 Introduction to Compilers 17

Execution 1

• CFG models all
program executions

• Possible execution =
path in the graph

• Execution 1:
– c is true
– Program executes

basic blocks B1,
B2, B4

Control Flow Graph

x = z-2;
y = 2*z;

if (c)

x = x+1;
y = y+1;

z = x+y;

T

B1

B2

B4

CS 412/413 Spring 2008 Introduction to Compilers 18

Execution 2

• CFG models all
program executions

• Possible execution =
path in the graph

• Execution 2:
– c is false
– Program executes

basic blocks B1,
B3, B4

Control Flow Graph

x = z-2;
y = 2*z;

if (c)

x = x-1;
y = y-1;

z = x+y;

F

B1

B4

B3

CS 412/413 Spring 2008 Introduction to Compilers 19

Infeasible Executions
• CFG models all program

executions, and then
some

• Possible execution =
path in the graph

• Execution 2:
– c is false and true (?!)
– Program executes

basic blocks B1, B3, B4
– and the T successor

of B4

Control Flow Graph

x = z-2;
y = 2*z;

if (c)

x = x-1;
y = y-1;

z = x+y;
if (c)

F

B1

B4

B3

T
CS 412/413 Spring 2008 Introduction to Compilers 20

Edges Going Out
• Multiple outgoing edges
• Basic block executed next may be one of the

successor basic blocks
• Each outgoing edge = outgoing flow of control

in some execution of the program

Basic
Block

outgoing edges

CS 412/413 Spring 2008 Introduction to Compilers 21

Edges Coming In
• Multiple incoming edges
• Control may come from any of the predecessor

basic blocks
• Each incoming edge = incoming flow of control

in some execution of the program

Basic
Block

incoming edges

CS 412/413 Spring 2008 Introduction to Compilers 22

Building the CFG
• Can construct CFG for either high-level IR

or the low-level IR of the program

• Build CFG for high-level IR
– Construct CFG for each high-level IR node

• Build CFG for low-level IR
– Analyze jump and label statements

CS 412/413 Spring 2008 Introduction to Compilers 23

CFG for High-level IR
• CFG(S) = flow graph of high-level statement S
• CFG(S) is single-entry, single-exit graph:

– one entry node (basic block)
– one exit node (basic block)

• Recursively define CFG(S)

CFG(S)

Entry

Exit

…=

CS 412/413 Spring 2008 Introduction to Compilers 24

CFG for Block Statement

• CFG(S1; S2; …; SN) =

CFG(S2)

CFG(S1)

CFG(SN)

…

CS 412/413 Spring 2008 Introduction to Compilers 25

CFG for If-then-else Statement

• CFG (if (E) S1 else S2)

if (E)

CFG(S2)

T F

CFG(S1)

Empty
basic block

CS 412/413 Spring 2008 Introduction to Compilers 26

CFG for If-then Statement

• CFG(if (E) S)

if (E)
T

FCFG(S1)

CS 412/413 Spring 2008 Introduction to Compilers 27

CFG for While Statement

• CFG for: while (e) S

if (e)
T

FCFG(S)

CS 412/413 Spring 2008 Introduction to Compilers 28

Recursive CFG Construction
• Nested statements: recursively construct CFG

while traversing IR nodes
• Example:

while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 29

Recursive CFG Construction
• Nested statements: recursively construct CFG

while traversing IR nodes

CFG(z=x)

CFG(while)

while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 30

Recursive CFG Construction
• Nested statements: recursively construct CFG

while traversing IR nodes

z=x

if (c)
T

FCFG(body)

while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 31

Recursive CFG Construction
• Nested statements: recursively construct CFG

while traversing IR nodes

z = x

if (c)

F
y = 2*z

CFG(if)

z = 1

x = y+1while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 32

Recursive CFG Construction
• Simple algorithm to build CFG
• Generated CFG

– Each basic block has a single statement
– There are empty basic blocks

• Small basic blocks = inefficient
– Small blocks = many nodes in CFG
– Compiler uses CFG to perform optimization
– Many nodes in CFG = compiler optimizations will be

time- and space-consuming

CS 412/413 Spring 2008 Introduction to Compilers 33

Efficient CFG Construction
• Basic blocks in CFG:

– As few as possible
– As large as possible

• There should be no pair of basic blocks (B1,B2)
such that:
– B2 is a successor of B1
– B1 has one outgoing edge
– B2 has one incoming edge

• There should be no empty basic blocks

CS 412/413 Spring 2008 Introduction to Compilers 34

x = y+1
y =2*z
if (d)

Example
• Efficient CFG:

z = x

if (c)

x = y+z

z = 1

while (c) {
x = y + 1;
y = 2 * z;
if (d) x = y+z;
z = 1;

}
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 35

CFG for Low-level IR
• Identify pre-basic blocks as sequences of:

– Non-branching instructions
– Non-label instructions

• No branches (jump) instructions = control
doesn’t flow out of basic blocks

• No labels instructions = control doesn’t
flow into blocks

label L1
fjump c L2
x = y + 1;
y = 2 * z;
fjump d L3
x = y+z;
label L3

z = 1;
jump L1
label L2
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 36

CFG for Low-level IR

• Basic block start:
– At label instructions
– After jump instructions

• Basic blocks end:
– At jump instructions
– Before label instructions

label L1
fjump c L2
x = y + 1;
y = 2 * z;
fjump d L3
x = y+z;
label L3
z = 1;
jump L1
label L2
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 37

CFG for Low-level IR

• Conditional jump:
2 successors

• Unconditional jump:
1 successor

label L1
fjump c L2

x = y + 1;
y = 2 * z;
fjump d L3

x = y+z;

label L3
z = 1;
jump L1
label L2
z = x;

CS 412/413 Spring 2008 Introduction to Compilers 38

CFG for Low-level IR

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

label L1
fjump c L2

x = y + 1;
y = 2 * z;
fjump d L3

x = y+z;

label L3
z = 1;
jump L1
label L2
z = x;

