
1

Symbol Tables

CS 412/413 Spring 2008 Introduction to Compilers 2

Where We Are

Source code
(character stream)

Lexical Analysis

Syntax Analysis
(Parsing)

Token
stream

Abstract syntax
tree (AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

if
==

b 0
=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean
Decorated

AST

int

Errors
(incorrect
program)

CS 412/413 Spring 2008 Introduction to Compilers 3

Non-Context-Free Syntax
• Programs that are correct with respect to the

language’s lexical and context-free syntactic rules
may still contain other errors

• Lexical analysis and context-free syntax analysis are
not powerful enough to ensure the correct usage of
variables, objects, functions, statements, etc.

• Non-context-free syntactic analysis is known as
semantic analysis

CS 412/413 Spring 2008 Introduction to Compilers 4

Incorrect Programs
• Example 1: lexical analysis does not distinguish between

different variable or function identifiers (it returns the same
token for all identifiers)

int a; int a;

a = 1; b = 1;

• Example 2: syntax analysis does not correlate the declarations
with the uses of variables in the program:

int a;

a = 1; a = 1;

• Example 3: syntax analysis does not correlate the types from the
declarations with the uses of variables:

int a; int a;

a = 1; a = 1.0;

CS 412/413 Spring 2008 Introduction to Compilers 5

Goals of Semantic Analysis
• Semantic analysis ensures that the program satisfies a set of

additional rules regarding the usage of programming
constructs (variables, objects, expressions, statements)

• Examples of semantic rules:
– Variables must be declared before being used
– A variable should not be declared multiple times in the

same scope
– In an assignment statement, the variable and the

assigned expression must have the same type
– The condition of an if-statement must have type Boolean

• Some categories of rules:
– Semantic rules regarding types
– Semantic rules regarding scopes

CS 412/413 Spring 2008 Introduction to Compilers 6

Type Information

• Type information classifies a program’s constructs
(e.g., variables, statements, expressions, functions)
into categories, and imposes rules on their use (in
terms of those categories) with the goal of avoiding
runtime errors

variables: int a; integer location
expressions: (a+1) == 2 Boolean
statements: a = 1.0; void
functions: int pow(int n, int m) int x int → int

CS 412/413 Spring 2008 Introduction to Compilers 7

Type Checking

• Type checking is the validation of the set of type rules

• Examples:
– The type of a variable must match the type from its

declaration
– The operands of arithmetic expressions (+, *, -, /)

must have integer types; the result has integer type
– The operands of comparison expressions (==, !=)

must have integer or string types; the result has
Boolean type

CS 412/413 Spring 2008 Introduction to Compilers 8

Type Checking

• More examples:
– For each assignment statement, the type of the updated

variable must match the type of the expression being
assigned

– For each call statement foo(v1, …, vn), the type of each
actual argument vi must match the type of the
corresponding formal parameter fi from the declaration
of function foo

– The type of the return value must match the return type
from the declaration of the function

• Type checking: next two lectures.

CS 412/413 Spring 2008 Introduction to Compilers 9

Scope Information
• Scope information characterizes the declaration of identifiers

and the portions of the program where use of each identifier is
allowed
– Example identifiers: variables, functions, objects, labels

• Lexical scope is a textual region in the program
– Statement block
– Formal argument list
– Object body
– Function or method body
– Module body
– Whole program (multiple modules)

• Scope of an identifier: the lexical scope in which it is valid

CS 412/413 Spring 2008 Introduction to Compilers 10

Scope Information
• Scope of variables in statement blocks:

{ int a;
…

{ int b;
}

…
}

• In C:
– Scope of file static variables: current file
– Scope of external variables: whole program
– Scope of automatic variables, formal parameters, and

function static variables: the function

scope of variable b

scope of variable a

CS 412/413 Spring 2008 Introduction to Compilers 11

• Scope of formal arguments of functions/methods:

• Scope of labels:

Scope Information

int factorial(int n) {
…

}

scope of formal
parameter n

void f() {
… goto l; …
l: a =1;
… goto l; …

}

scope of label l

CS 412/413 Spring 2008 Introduction to Compilers 12

Scope Information

class A {
private int x;
public void g() { x=1; }
…

}

class B extends A {
…
public int h() { g(); }
…

}

scope of method g

scope of field x

• Scope of object fields and methods:

CS 412/413 Spring 2008 Introduction to Compilers 13

Semantic Rules for Scopes
• Main rules regarding scopes:

Rule 1: Use an identifier only if defined in enclosing scope
Rule 2: Do not declare identifiers of the same kind with
identical names more than once in the same scope

• Can declare identifiers with the same name with identical
or overlapping lexical scopes if they are of different kinds
class X {

int X;
void X(int X) {

X: for(;;)
break X;

}
}

int X(int X) {
int X;
goto X;
{ int X;

X: X = 1; }
}

Not
Recommended!

CS 412/413 Spring 2008 Introduction to Compilers 14

Symbol Tables

• Semantic checks refer to properties of identifiers in the
program -- their scope or type

• Need an environment to store the information about
identifiers = symbol table

• Each entry in the symbol table contains
– the name of an identifier
– additional information: its kind, its type, if it is constant, …

NAME KIND TYPE OTHER
foo fun int x int → bool extern
m par int auto
n par int const

tmp var bool const

CS 412/413 Spring 2008 Introduction to Compilers 15

Scope Information

• How to represent scope information in the
symbol table?

• Idea:
• There is a hierarchy of scopes in the program
• Use a similar hierarchy of symbol tables
• One symbol table for each scope
• Each symbol table contains the symbols

declared in that lexical scope

CS 412/413 Spring 2008 Introduction to Compilers 16

Example

x var int
f fun int → void
g fun int → int

m par int
x var float
y var float

i var int
j var int

x var int
l lab

n par int
t var bool

Global symtab

func f
symtab

func g
symtab

int x;

void f(int m) {
float x, y;
…
{ int i, j; …; }
{ int x; l: …; }

}

int g(int n) {
bool t;
…;

}

CS 412/413 Spring 2008 Introduction to Compilers 17

Identifiers With Same Name

• The hierarchical structure of symbol tables
automatically solves the problem of resolving
name collisions (identifiers with the same name
and overlapping scopes)

• To find the declaration of an identifier that is
active at a program point:
• Start from the current scope
• Go up in the hierarchy until you find an

identifier with the same name, or fail

CS 412/413 Spring 2008 Introduction to Compilers 18

Example

x var int
f fun int → void
g fun int → int

m par int
x var float
y var float

i var int
j var int

x var int
l lab

n par int
t var bool

Global symtab

x = 3

x = 1 x = 2

int x;

void f(int m) {
float x, y;
…
{ int i, j; x = 1; }
{ int x; l: x = 2; }

}

int g(int n) {
bool t;
x = 3;

}

CS 412/413 Spring 2008 Introduction to Compilers 19

Catching Semantic Errors

x var int
f fun int → void
g fun int → int

m par int
x var float
y var float

i var int
j var int

x var int
l lab

n par int
t var bool

x = 3

x = 1 i = 2

Error!int x;

void f(int m) {
float x, y;
…
{ int i, j; x = 1; }
{ int x; l: i = 2; }

}

int g(int n) {
bool t;
x = 3;

}

CS 412/413 Spring 2008 Introduction to Compilers 20

Symbol Table Operations
• Three operations

• Create a new empty symbol table with a given parent
table

• Insert a new identifier in a symbol table (or error)
• Lookup an identifier in a symbol table (or error)

• Cannot build symbol tables during lexical analysis
• hierarchy of scopes encoded in the syntax

• Build the symbol tables:
• While parsing, using the semantic actions
• After the AST is constructed

CS 412/413 Spring 2008 Introduction to Compilers 21

Array Implementation
• Simple implementation = array

• One entry per symbol
• Scan the array for lookup, compare name at each entry

• Disadvantage:
• table has fixed size
• need to know in advance the number of entries

foo fun int x int → bool
m arg int
n arg int

tmp var bool

CS 412/413 Spring 2008 Introduction to Compilers 22

List Implementation
• Dynamic structure = list

• One cell per entry in the table
• Can grow dynamically during compilation

• Disadvantage: inefficient for large symbol tables
• need to scan half the list on average

foo
func

int x int
→ bool

m
var
int

n
var
int

tmp
Var
bool

CS 412/413 Spring 2008 Introduction to Compilers 23

Hash Table Implementation
• Efficient implementation = hash table

• It is an array of lists (buckets)
• Uses a hashing function to map the symbol name to the

corresponding bucket: hashfunc : string → int
• Good hash function = even distribution in the buckets

• hashfunc(“m”) = 0, hashfunc(“foo”) = 3

m var int tmp var bool

n var int

foo func …

CS 412/413 Spring 2008 Introduction to Compilers 24

Forward References
• Forward references = use an identifier within the scope of

its declaration, but before it is declared
• Any compiler phase that uses the information from the

symbol table must be performed after the table is
constructed

• Cannot type-check and build symbol table at the same time

• Example (requiring 2 passes):

class A {
int m() { return n(); }
int n() { return 1; }

}

CS 412/413 Spring 2008 Introduction to Compilers 25

Summary
• Semantic checks ensure the correct usage of variables,

objects, expressions, statements, functions, and labels in
the program

• Scope semantic checks ensure that identifiers are correctly
used within the scope of their declaration

• Type semantic checks ensures the type consistency of
various constructs in the program

• Symbol tables: a data structure for storing information
about symbols in the program
• Used in semantic analysis and subsequent compiler stages

• Next time: type-checking

