
1

Type checking

Slides adapted from CS 412 (Cornell) and CS 164 (Berkeley)

Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the
modern notion of type

Why Do We Need Type Systems?
Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

Types and Operations
• Most operations are legal only for values

of some types

– It doesn’t make sense to add a function
pointer and an integer in C

– It does make sense to add two integers

– But both have the same assembly language
implementation!

Type Systems
• A language’s type system specifies which

operations are valid for which types

• The goal of type checking is to ensure that
operations are used with the correct types
– Enforces intended interpretation of values, because

nothing else will!

• Type systems provide a concise formalization of
the semantic checking rules

What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

class FileSystem {
open(x : String) : File {

…
}

…
}

class Client {
f(fs : FileSystem) {

File fdesc <- fs.open(“foo”)
…

} -- f cannot see inside fdesc !
}

Dynamic And Static Types
• A dynamic type attaches to an object

reference or other value
– A run-time notion
– Applicable to any language

• The static type of an expression or
variable is a notion that captures all
possible dynamic types the value of the
expression could take or the variable
could contain
– A compile-time notion

Dynamic and Static Types.
(Cont.)

• In early type systems the set of static
types correspond directly with the
dynamic types:
– for all expressions E,

dynamic_type(E) = static_type(E)
(in all executions, E evaluates to values of
the type inferred by the compiler)

• This gets more complicated in advanced
type systems

Subtyping

• Define a relation X ≤ Y on classes to say that:
– An object (value) of type X could be used when one

of type Y is acceptable, or equivalently
– X conforms to Y
– In Java this means that X extends Y

• Define a relation ≤ on classes
X ≤ X
X ≤ Y if X inherits from Y
X ≤ Z if X ≤ Y and Y ≤ Z

Dynamic and Static Types

• A variable of static type A can hold values
of static type B at runtime, if B ≤ A

class A: …
class B extends A: …
………….

x: A
x = A()
…
x = B()
…

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

Dynamic and Static Types

Soundness theorem:
∀ E. dynamic_type(E) ≤ static_type(E)

Why is this Ok?
– For E, compiler uses static_type(E) (call it C)
– All operations that can be used on an object of type C

can also be used on an object of type C’ ≤ C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type !

Type Checking Overview
• Three kinds of languages:

– Statically typed: All or almost all checking of
types is done as part of compilation (C#,
Java). Static type system is rich.

– Dynamically typed: Almost all checking of
types is done as part of program execution
(Scheme, Python). Static type system is
trivial.

– Untyped: No type checking (machine code).
Static and dynamic type systems trivial.

The Type Wars
• Competing views on static vs. dynamic

typing
• Static typing proponents say:

– Static checking catches many programming
errors at compile time

– Avoids overhead of runtime type checks

• Dynamic typing proponents say:
– Static type systems are restrictive
– Rapid prototyping easier in a dynamic type

system

The Type Wars (Cont.)
• In practice, most code is written in

statically typed languages with an
“escape” mechanism
– Unsafe casts in C, native methods in Java,

unsafe modules in Modula-3

• Within the strongly typed world, are
various devices, including subtyping,
coercions, and type parameterization.

• Of course, each such wrinkle introduces
its own complications.

Conversion
• In Java, can write

int x = ‘c’;
float y = x;

• But relationship between char and int, or
int and float not usually called
subtyping, but rather conversion (or
coercion).

• In general, might be a change of value or
representation. Indeed int→float can
lose information—a narrowing conversion.

Conversions: Implicit vs. Explicit
• Conversions, when automatic (implicit),

another way to ease the pain of static
typing.

• Typical rule (from Java):
– Widening conversions are implicit; narrowing

conversions require explicit cast.
• Widening conversions convert “smaller”

types to “larger” ones (those whose
values are a superset).

• Narrowing conversions go in opposite
direction (and thus may lose information).

Examples
• Thus,

Object x = …; String y = …
int a = …; short b = 42;
x = y; a = b; // OK
y = x; b = a; // ERRORS
x = (Object) y; // OK
a = (int) b; // OK
y = (String) x; // OK but may cause exception
b = (short) a; // OK but may lose information

• Possibility of implicit coercion complicates type-
matching rules (see C++).

Type Inference
• Type Checking is the process of checking

that the program obeys the type system

• Often involves inferring types for parts of
the program
– Some people call the process type inference

when inference is necessary

Rules of Inference
• We have seen two examples of formal notation

specifying parts of a compiler
– Regular expressions (for the lexer)
– Context-free grammars (for the parser)

• The appropriate formalism for type checking is
logical rules of inference having the form
– If Hypothesis is true, then Conclusion is true

• For type checking, this becomes:
– If E1 and E2 have certain types, then E3 has a certain

type
– (eg) if E1 and E2 have type int, then E1 + E2 has a

certain type

Why Rules of Inference?
• Rules of inference are a compact notation

for “If-Then” statements
• Given proper notation, easy to read (with

practice), so easy to check that the rules
are accurate.

• Can even be mechanically translated into
programs.

CS 412/413 Spring 2008 Introduction to Compilers 21

Type Judgments
• The type judgment:

|– E : T
is read:

“E is a well-typed construct of type T”

• Type checking program P is demonstrating the validity of
the type judgment |– P : T for some type T

• Sample valid type judgments for program fragments:

|– 2 : int |– 2 * (3 + 4) : int

|– true : bool |– (true ? 2 : 3) : int

CS 412/413 Spring 2008 Introduction to Compilers 22

Deriving a Type Judgment
• Consider the judgment:

|– (b ? 2 : 3) : int

• What do we need in order to decide that this is a
valid type judgment?

• b must be a bool (|– b: bool)
• 2 must be an int (|– 2: int)
• 3 must be an int (|– 3: int)

CS 412/413 Spring 2008 Introduction to Compilers 23

Hypothetical Type Judgments
• The hypothetical type judgment

A |– E : T
is read:

“In type context A expression E is well-typed with type T”

• A type context is a mapping of identifiers to types (i.e., a symbol
table). It’s a set of assumptions about the types of identifiers.

• Sample valid hypothetical type judgments:
b: bool |– b : bool

|– 2 + 2 : int
b: bool, x: int |– (b ? 2 : x) : int
b: bool, x: int |– b : bool
b: bool, x: int |– 2 + 2 : int

• Type checking program P is demonstrating the validity of A|– P : T
for some type T and the language’s standard environment A

CS 412/413 Spring 2008 Introduction to Compilers 24

Deriving a Type Judgment

• To show:

b: bool, x: int |– (b ? 2 : x) : int

• Need to show:

b: bool, x: int |– b : bool
b: bool, x: int |– 2 : int
b: bool, x: int |– x : int

CS 412/413 Spring 2008 Introduction to Compilers 25

General Rule
• For any type environment A, expressions E, E1

and E2, the judgment

A |– (E ? E1 : E2) : T

is valid if:

A |– E : bool
A |– E1 : T
A |– E2 : T

CS 412/413 Spring 2008 Introduction to Compilers 26

Inference Rule Schema

A |– E: bool A |– E1: T A |– E2: T

A |– (E ? E1 : E2) : T

Premises (a.k.a., antecedant)

Conclusion (a.k.a., consequent)

• Holds for any choice of A, E, E1, E2, and T
•An inference rule schema defines an infinite
number of inference rules

(if-rule)

CS 412/413 Spring 2008 Introduction to Compilers 27

Axioms
• An axiom is an inference rule (schema) with no

premises

A |– true : bool

CS 412/413 Spring 2008 Introduction to Compilers 28

Why Inference Rules?
• Inference rules: compact, precise language for

specifying static semantics (can specify languages in
~20 pages vs. 100’s of pages of Java Language
Specification)

• Inference rules are to type inference systems as
productions are to context-free grammars

• Type judgments are to type inference systems as
nonterminals are to context-free grammars

• Type checking is an attempt to prove that a type
judgment is A |– E : T is valid

CS 412/413 Spring 2008 Introduction to Compilers 29

Meaning of Inference Rule
• Inference rule says:

given that the antecedent judgments are derivable
– with a uniform substitution for meta-variables (i.e., A, E1, E2)

then the consequent judgment is derivable
– with the same uniform substitution for the meta-variables

:int:int

+

E1

E1 E2

E2

:int

A |– E1 : int
A |– E2 : int

A |– E1 + E2 : int
(+)

CS 412/413 Spring 2008 Introduction to Compilers 30

Proof Tree

A1 |– (!b ? 2+3 : x) : int

A1 |– !b : bool A1 |– 2+3 : int A1 |– x : int

A1 |– b : bool A1 |– 3 : intA1 |– 2 : int

• A construct is well-typed if there exists a type
derivation for a type judgment for the construct

• Type derivation is a proof tree where all the leaves
are axioms

• Example: if A1 = b: bool, x: int, then:

CS 412/413 Spring 2008 Introduction to Compilers 31

Proof Tree, cont.
• Axioms are analogous to production with epsilon on the

right hand side

• A complete proof of A |– E : T is like a derivation of
epsilon from A |– E : T

CS 412/413 Spring 2008 Introduction to Compilers 32

Type Judgments for Statements
• Statements that have no value are said to have type

void, i.e., judgment
|– S : void

means “S is a well-typed statement with no result type”

• ML uses unit instead of void

CS 412/413 Spring 2008 Introduction to Compilers 33

While Statements

• Rule for while statements:

(while)

A |– E : bool
A |– S : T

A |– while (E) S : void

CS 412/413 Spring 2008 Introduction to Compilers 34

Assignment (Expression) Statements

(variable-assign)
A, id : T |– E : T

A, id : T |– id = E : T

(array-assign)

A |– E3 : T
A |– E2 : int

A |– E1 : array[T]

A |– E1[E2] = E3 : T

CS 412/413 Spring 2008 Introduction to Compilers 35

Statement Sequences
• Rule: A sequence of statements is well-typed if

the first statement is well-typed, and the
remaining are well-typed too:

(sequence)

A |– S1 : T1
A |– (S2 ; … ; Sn) : Tn

A |– (S1 ; S2 ; … ; Sn) : Tn

CS 412/413 Spring 2008 Introduction to Compilers 36

Identifier Declaration List
• What about variable declarations (with initialization)?
• Declarations add entries to the type environment in which

the scope of the declared variable must type check

(declaration)

A |– E : T
A, id : T |– (S2 ; … ; Sn) : T’

A |– (id : T = E ; S2 ; … ; Sn) : T’

CS 412/413 Spring 2008 Introduction to Compilers 37

Function Calls

• If expression E is a function value, it has a type
T1×T2×…×Tn→Tr

• Ti are argument types; Tr is return type
• How to type-check function call E(E1,…,En)?

(function-call)

A |– E : T1×T2×…×Tn→Tr

A |– Ei : Ti
(i∈1..n)

A |– E(E1,…,En) : Tr

CS 412/413 Spring 2008 Introduction to Compilers 38

Function Declarations

• Consider a function declaration of the form

Tr f (T1 a1,…, Tn an) { E; }

• The body of the function must type check in an
environment containing the type bindings for
the formal parameters

A, a1 : T1, ,…, an : Tn |– E : Tr
A |– Tr f (T1 a1,…, Tn an) { E; } : void (function-body)

CS 412/413 Spring 2008 Introduction to Compilers 39

But what about recursion?

• Example:

int fact(int x) {
if (x==0) return 1;
else return x * fact(x - 1);

}

• Need to prove: A |– x * fact(x-1) : int
where: A = { fact: int→int, x : int }

CS 412/413 Spring 2008 Introduction to Compilers 40

And mutual recursion?
• Example:

int f(int x) { return g(x) + 1; }
int g(int x) { return f(x) – 1; }

• Need environment containing at least
f: int → int, g: int → int

when checking both f and g

• Two-pass approach needed:
– First pass: collect all function signatures into a type

environment A
– Second pass: type-check each function declaration using this

global environment A
– How do we express this in our type inference notation?

Solution

• Intuition:
– Make one pass over program to add top level function

signatures to symbol table
– Use these signatures in a second pass to type-check program
– Slight complication for object-oriented programs with methods

inside classes:
• functions are named using pair (Class, method name)

• Formalization:
– Split the type environment into two parts, one for functions and

one for variables
– Type environment for functions does not change during the

second pass
• We will not show this to keep the notation simple.

CS 412/413 Spring 2008 Introduction to Compilers 42

How to Check Return?

A |– E : T

A |– return E : void

• A return statement produces no value for its
containing context to use

• Does not return control to containing context

• Suppose we use type void…
• …then how to make sure T is the return type of

the current function?

(return1)

CS 412/413 Spring 2008 Introduction to Compilers 43

Put return type in environment
• Add a special entry { return_fun : T } when we start

checking the function “f”, look up this entry when we hit
a return statement.

• To check Tr f (T1 a1,…, Tn an) { return S; } in
environment A, need to check:

A, return_f : T |– E : T
A, return_f : T |– return E : void

(return)

A, a1 : T1, ,…, an : Tn, return_f : Tr |– E : void
A |– Tr f (T1 a1,…, Tn an) { E; } : void

(function-body)

Example

{f:int int, x : int, return_f : int} |– return x; : void
{f:int int} |– int f (x:int) { return x; } : void

{f:int int, x : int, return_f : int} |– x:int

(function
definition)

(return)

Arrays
• Arrays:

– array types are of form int[], float[] etc.

Classes

• Class would be represented in the type
environment by a list of (name:type) pairs
which has one entry for each field and
method
class C1 {

int x,y;
int get_x() {return x;}

}
C1: {x:int,y:int,get_x:void int}

Inference rules
• Constructors:

• Field accesses:

• Method invocations

CS 412/413 Spring 2008 Introduction to Compilers 48

Static Semantics Summary
• Type inference system = formal specification of

typing rules

• Concise form of static semantics: typing rules
expressed as inference rules

• Expression and statements are well-formed (or
well-typed) if a typing derivation (proof tree)
can be constructed using the inference rules

